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Objective: Poor diet quality contributes to metabolic dysfunction. This study 
aimed to gain a greater understanding of the relationship between dietary 
macronutrient quality and glucose homeostasis in adults with cystic fibrosis (CF).

Design: This was a cross-sectional study of N  =  27 adults with CF with glucose 
tolerance ranging from normal (n  =  9) to prediabetes (n  =  6) to being classified as 
having cystic fibrosis-related diabetes (CFRD, n  =  12). Fasted blood was collected 
for analysis of glucose, insulin, and C-peptide. Insulin resistance was assessed 
by Homeostatic Model Assessment for Insulin Resistance (HOMA2-IR). Subjects 
without known CFRD also underwent a 2-h oral glucose tolerance test. Three-
day food records were used to assess macronutrient sources. Dietary variables 
were adjusted for energy intake. Statistical analyses included ANOVA, Spearman 
correlations, and multiple linear regression.

Results: Individuals with CFRD consumed less total fat and monounsaturated 
fatty acids (MUFA) compared to those with normal glucose tolerance (p  <  0.05). 
In Spearman correlation analyses, dietary glycemic load was inversely associated 
with C-peptide (rho  =  −0.28, p  =  0.05). Total dietary fat, MUFA, and polyunsaturated 
fatty acids (PUFA) were positively associated with C-peptide (rho  =  0.39–0.41, all 
p  <  0.05). Plant protein intake was inversely related to HOMA2-IR (rho  =  −0.28, 
p  =  0.048). Associations remained significant after adjustment for age and sex.

Discussion: Improvements in diet quality are needed in people with CF. This study 
suggests that higher unsaturated dietary fat, higher plant protein, and higher 
carbohydrate quality were associated with better glucose tolerance indicators in 
adults with CF. Larger, prospective studies in individuals with CF are needed to 
determine the impact of diet quality on the development of CFRD.
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Introduction

Cystic fibrosis (CF) is an autosomal recessive genetic disease that 
leads to multi-organ impairment, including the lungs, pancreas, and 
gastrointestinal system (1). The disease results from cystic fibrosis 
transmembrane conductance regulator (CFTR) protein defects 
resulting in the inability to transport chloride and bicarbonate across 
epithelial cell membranes, subsequent mucosal abnormalities, and 
downstream chronic inflammation and tissue damage. Cystic fibrosis-
related diabetes (CFRD) is one of the most common co-morbidities 
of CF and is associated with significantly increased morbidity and 
mortality (2). It is currently proposed that a decline in β-cell function 
begins in early childhood and results in diminished insulin secretion 
and delayed first phase insulin response (2, 3). In addition, individuals 
with CF have a diminished incretin response that contributes to 
impaired insulin secretion (4). Secondary factors (either intrinsic or 
extrinsic) may hasten the development of CFRD. Some of these factors 
are known, such as having first degree relatives with type 2 diabetes 
and having pancreatic exocrine insufficiency (5). Whether there are 
modifiable secondary factors contributing to CFRD development, 
such as dietary intake, is unknown.

The CF diet is typically high in energy-dense, nutrient-poor foods. 
Historically, individuals with CF were prescribed high-energy, high-fat 
diets to maintain their hypermetabolic state and offset malabsorption. 
Current CF dietary guidelines recommend an energy intake of 1.2 to 
1.5 times that of the general population (6), but many in the CF 
community are revisiting the validity of this recommendation and 
there are growing calls to formulate evidence based dietary guidelines. 
Many people living with CF consume a diet abundant in high glycemic 
index (GI) foods, sugar sweetened beverages (SSBs), and refined 
sugars (6, 7). Further, the clinical recommendation for a high-fat diet 
in individuals with CF has historically resulted in an over-reliance on 
dietary saturated fats (7–9). Dietary intake analyses of individuals with 
CF reflect diets that are generally low in quality, as indicated by a 
disproportionately high intake of energy-dense, yet nutrient-poor, 
foods in children (7) and high added sugar and trans-fatty acid intake, 
as well as low Healthy Eating Index scores, in adults (10).

In non-CF populations, prolonged consumption of excess added 
sugars and saturated fat appear to promote a decline in β-cell function 
and increase insulin resistance (11–14). Although data are mixed, 
many studies suggest that fat quality is important in preventing the 
onset of type 2 diabetes (15). More specifically, diets high in saturated 
fat are associated with reduced insulin secretion, whereas diets high 
in monounsaturated fatty acids (MUFA) are associated with enhanced 
insulin secretion (15). Increased consumption of MUFA and 
polyunsaturated fatty acids (PUFA) can also lead to a reduction in 
HbA1C and insulin resistance (15–17). While dietary protein has 
known insulinotropic effects (18), observational studies in non-CF 
populations have indicated increased risk for diabetes with higher 
consumption of animal proteins and lower or no diabetes risk with 
higher plant protein intake (19, 20). The impact of dietary sources of 
macronutrients on glucose homeostasis for individuals with CF 
is unknown.

To date, there is a paucity of studies that investigate the metabolic 
sequelae of poor diet quality for individuals with CF. Thus, the 
purpose of this study was to quantify the relationships of diet quality 
indicators at the macronutrient level (e.g., carbohydrate, fat, protein) 
with measures of glucose homeostasis in adults with CF across the 

glucose tolerance spectrum. Such data may guide evidence-based 
updates to dietary recommendations for people living with CF.

Methods

Materials and methods

Subjects and study design
This was a prospective, cross-sectional study, which included 27 

adults with clinically stable CF enrolled between 2014 and 2018. 
Details about the study were previously reported for a sub-set of 
participants and, in comparison, healthy controls (10). Briefly, 
inclusion criteria were, for those with CF, a confirmed CF diagnosis 
via chloride sweat test and/or CFTR genetic test with at least one Class 
I, II, or III CFTR mutation. All individuals with CF had pancreatic 
exocrine insufficiency and received pancreatic enzyme replacement 
therapy. For testing, participants were required to be  on a stable 
medical regimen, including no oral or intravenous antibiotics or 
glucocorticoids, for at least 3 weeks. Exclusion criteria were current 
pregnancy, inability to fast overnight (including enteral tube feeds), 
and the most recent forced expiratory volume in 1 s (FEV1) expressed 
as a percentage of the predicted value (FEV1%) of <40%. All testing 
was performed following an overnight fast within the Georgia Clinical 
and Translational Science Institute Emory University Hospital Clinical 
Research Center (GCRC). Height and weight were assessed within the 
GCRC for determination of body mass index (BMI). Most recent lung 
function reported as percent predicted forced expiratory volume in 
one second (FEV1% predicted), was extracted from the electronic 
medical record based on spirometry performed at the Emory 
University Hospital Adult CF Clinic. The study was approved by the 
Emory Institutional Review Board, and written informed consent was 
conducted before any testing.

Assessment of glucose metabolism
For participants without previously diagnosed CFRD (n = 18), a 

standard 2-h oral glucose (75 g) tolerance test (OGTT) was performed 
and glucose tolerance status (normal glucose tolerance, pre-diabetes, 
or CFRD) was determined using cut-off glucose values recommended 
by the American Diabetes Association (21). For participants who 
already had a clinical diagnosis of CFRD within the medical chart 
(n = 9), short-acting insulin was not taken in the morning, as 
applicable, and only fasted blood was drawn. Blood was collected and 
processed on the day of the study. Serum was stored at −80°C until 
ready for analysis. Serum glucose concentrations (fasted and 2-h) were 
determined in real time in the Emory University Hospital Clinical 
Laboratory using a standard enzymatic assay for clinical care. Fasted 
serum insulin and C-peptide were assayed at the University of 
Alabama-Birmingham Metabolism Core in paired replicates using an 
immunofluorescence assay (TOSOH AIA 900, TOSOH Bioscience, 
South San Francisco, CA). The assay does not distinguish between 
types of insulin. The inter-assay (variation of controls between assays) 
and intra-assay (variation of replicates within the same assay) 
coefficients of variation within the Core are 3.95 and 1.49% for insulin 
and 6.81 and 1.67% for C-peptide, respectively. Insulin resistance was 
calculated with fasted glucose and insulin levels using the updated 
computer Homeostatic Model Assessment of Insulin Resistance 
(HOMA2-IR) (22).
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Dietary intake
Participants were provided detailed instructions for completion of a 

three-day food record to include two consecutive weekdays and one 
weekend day. On receipt of the food record, a registered dietitian reviewed 
the record with the participant and asked probing questions for missed 
details. Records were analyzed for total kilocalories (kcal) and 
macronutrient composition using the Nutrition Data System for Research 
software (NDSR, Nutrition Coordinating Center, University of 
Minnesota, MN, USA; database version 2018). Dietary intake information 
was previously reported for a sub-set of participants (10). The current 
analysis focused on assessment of macronutrients from varying sources 
(e.g., saturated fats vs. monounsaturated fats, plant vs. animal protein 
intake). Dietary information was not available from one participant.

Statistical analyses
Descriptive statistics were performed on all variables. To account 

for differences of total caloric intake, dietary variables (except total 
kcal and glycemic index) were adjusted per 1,000 kcal for statistical 
analyses. Kruskal-Wallis tests (for continuous variables) or Fischer’s 
exact test (for categorical variables) were used to compare variables 
between CF participants across the glucose tolerance groups. Post-hoc 
Steel-Dwass nonparametric multiple comparison tests were performed 
for variables as indicated (23). Associations between dietary intake 
variables and glucose tolerance outcomes were analyzed using 
Spearman rank correlations. Relationships were subsequently assessed 
using multiple linear regression, with adjustment for age and sex, and 
with log-transformed outcomes variables as needed based on visual 
inspection of a normal distribution. All analyses were conducted in 
JMP® Pro software version 15.0.0 (SAS Institute, Cary, NC), using 
two-sided tests with an alpha significance value of 0.05.

Results

Demographic information of the N = 27 study participants with 
CF is provided in Table  1. Briefly, the mean age was 26 years. 
Approximately half the cohort was female (51%), and approximately 
half (52%) were homozygous for the delF508 mutation. The mean 
BMI (21.4 kg/m2) was below target recommendations (10, 24). 
Participants had moderate lung disease based on mean FEV1 (75% 
predicted). A total of 44% of participants had CFRD, 22% had 
pre-diabetes, and 33% had normal glucose tolerance. Table  2 
provides demographic information based on glucose tolerance 
status. CFRD was more prevalent in females compared to males 
(75% vs. 25%, p = 0.05). Fasting glucose, insulin, or HOMA2-IR did 
not significantly differ between glucose tolerance groups (all 
p > 0.05, Table 3). Nine participants with CFRD were being treated 
with exogenous insulin for glucose control, three of whom were on 
a basal insulin regimen. Post-hoc exclusion of three participants on 
a basal insulin regimen did not alter the results. As expected, 
individuals with CFRD had significantly lower fasting C-peptide 
compared to those with normal glucose tolerance (p < 0.05), and 
those with pre-diabetes and CFRD had significantly higher 2-h 

TABLE 1 Demographics of adults with cystic fibrosis (n  =  27).

Median (IQR) or n (%)

Age 26.3 (21.5, 34.6)

Sex

  Female 14 (51%)

  Male 13 (48%)

Race1

  White/Caucasian 23 (85%)

  Black/African American 4 (15%)

Genotype

  delF508 homozygous 14 (52%)

  delF508 heterozygous 12 (44%)

Other 1 (4%)

BMI (kg/m2) 20.9 (19.7, 23.9)

FEV1(% predicted) 75 (61, 85)

Glucose tolerance

Normal glucose tolerance 9 (33%)

Pre-diabetes 6 (22%)

CF-related diabetes 12 (44%)

BMIbody mass index; FEV1forced expiratory volume in 1 s. 1n = 1 Hispanic Caucasian.

TABLE 2 Demographics by glucose tolerance status.

Normal glucose 
tolerance (n  =  9)

Pre-diabetes (n  =  6) CFRD (n  =  12) p-valuea

Age (years) 22.5 (20.3, 31.1) 26.4 (21.6, 37.7) 27.7 (21.2, 38.5) 0.31

Sex [n (%)] 0.05

  Female 2 (22%) 3 (50%) 9 (75%)

  Male 7 (78%) 3 (50%) 3 (25%)

Race [n (%)] 0.80

  White 7 (78) 5 (83) 11 (92)

  Black 2 (22) 1 (17) 1 (8)

delF508 homozygous [n (%)] 6 (67%) 2 (50%) 5 (42%) 0.84

BMI (kg/m2) 20.7 (17.9, 24.5) 22.1 (20.3, 23.5) 21.3 (19.2, 24.3) 0.81

FEV1 (%predicted) 75.0 (57.5, 102.0) 78.5 (71.3, 82.0) 68.5 (53.5, 84) 0.58

Reported as median (IQR) or n (%). aDetermined by Kruskal-Wallis test for continuous variables or Fischer’s exact test for categorical variables. BMI, body mass index; FEV1, forced expiratory 
volume in 1 s.
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glucose values following the OGTT compared to those with normal 
glucose tolerance (p < 0.05).

Dietary intake by glucose tolerance status

Dietary intake information by glucose tolerance status is provided 
in Table 4. Both total fat intake and MUFA intake were significantly 
lower in those with CFRD compared to those with normal glucose 
tolerance (p = 0.005 and 0.02, respectively). Total kcal, total dietary 
carbohydrates, added sugars, or dietary protein intake did not differ 
significantly by glucose tolerance group (all p > 0.05).

Association between dietary intake and 
glucose homoeostasis measures

Fasting glucose or fasting insulin did not significantly correlate 
with the dietary variables (Table 5). Fasting C-peptide concentrations 
were inversely associated with total carbohydrate intake and dietary 
glycemic load (rho = −0.28, p = 0.05 for both). Fasting C-peptide was 
significantly, positively associated with total dietary fat (rho = 0.41, 
p = 0.003), MUFA (rho = 0.40, p = 0.004) and PUFA (rho = 0.39, 
p = 0.006). There was a possible association between HOMA2-IR and 

added sugar intake (rho = 0.25, p = 0.08) although it did not reach 
statistical significance, and it was inversely associated with plant 
protein intake (rho = −0.28, p = 0.048). Relationships were similar after 
adjusting for age and sex using multiple linear regression (MLR) 
modeling (Supplementary Table S1). Of note, the inverse relationship 
between fasting C-peptide concentrations and total carbohydrate 
intake and dietary glycemic load became statistically significant after 
adjusting for age and sex (β  = −0.01 ± 0.005, p  = 0.01 and 
β  = −0.02 ± 0.007, p  = 0.04, respectively). The relationship between 
HOMA2-IR and added sugar intake likewise became statistically 
significant (β = 0.008 ± 0.003, p = 0.03). After adjustment for age and 
sex, statistically significant inverse relationships of 2-h glucose with 
total fat and MUFA emerged (β  = −5.6 ± 1.86, p  = 0.01 and 
β  = −9.51 ± 4.32, p  = 0.046, respectively). Regression plots for 
relationships that were similar in both Spearman and MLR analyses are 
shown in Figure 1. Results were similar after post-hoc exclusion of 
three participants on a basal insulin regimen.

Discussion

The present study provides an analysis of the typical diet of adults 
with CF across glucose spectrum to determine whether dietary intake, 

TABLE 3 Biochemical variables by glucose tolerance status1.

Normal Glucose Tolerance 
(n  =  9)

Pre-Diabetes (n  =  6) CFRD (n  =  12) p-value

Fasting glucose (mg/dL) 88 (76, 95) 93 (80, 107) 98 (77, 107) 0.44

Fasting insulin (uIU/mL) 5.6 (3.7, 6.2) 4.7 (2.0, 6.3) 3.6 (2.2, 6.7) 0.60

Fasting C-peptide (ng/mL) 1.09 (0.92, 1.41) 1.0 (0.6, 1.4) 0.50 (0.18, 0.81)3 0.02

2-h glucose2 100 (62, 124) 148 (136, 171)3 214 (202, 222)3 0.002

HOMA2-IR 0.6 (0.4, 0.7) 0.5 (0.3, 0.7) 0.4 (0.2, 0.7) 0.74

1Reported as median (IQR). For each variable with value of p <0.05, groups not connected by the same letter significantly differ via Steel-Dwass nonparametric comparison test. CFRD, CF-
related diabetes; HOMA2-IR, homeostatic assessment of insulin resistance-2. Bold values indicate statistical significance (p < 0.05). 2n = 9 NGT, 6 pre-diabetes, and 3 CFRD. 3Statistically 
significantly different compared to the normal glucose tolerance group, as determined by Steel-Dwass nonparametric comparison tests.

TABLE 4 Dietary variables by glucose tolerance status1.

Normal glucose 
tolerance (n  =  8)

Pre-diabetes (n  =  6) CFRD (n  =  12) p-value

Total calories (kcal) 3,188 (2,596, 4,020) 2,663 (2,586, 4,094) 2,279 (1992, 2,941) 0.08

Total carbohydrates (g) 343.8 (285.6, 436.1) 383.9 (253.9, 432.1) 276.0 (258.4, 354.9) 0.10

Added sugars (g) 79.8 (40.0, 89.6) 84.9 (71.4, 144.5) 102.7 (44.5, 140.3) 0.06

Glycemic index 62.3 (60.8, 66.6) 64.1 (57.7, 65.8) 62.4 (56.4, 65.3) 0.79

Glycemic load 206.5 (152.6, 269.0) 226.3 (136.3, 263.0) 171.6 (130.4, 215.4) 0.24

Total fat (g) 138.1 (110.8, 173.4) 122.1 (98.3, 163.2) 86.1 (63.5, 102.3)2 0.005

Saturated fat (g) 46.6 (30.2, 63.3) 39.8 (32.5, 59.7) 29.7 (19.8, 38.8) 0.14

Trans-fat (g) 3.1 (2.0, 4.9) 3.0 (1.6, 6.1) 2.0 (1.6, 4.5) 0.91

MUFA (g) 55.3 (37.9, 56.8) 44.8 (29.8, 55.2) 25.2 (21.7, 35.9)2 0.02

PUFA (g) 27.4 (21.8, 35.7) 33.0 (21.4, 39.7) 19.5 (15.5, 23.0) 0.07

Total protein (g) 145.8 (103.8, 170.8) 119.7 (85.3, 168.8) 97.7 (90.5, 125.3) 0.31

Animal protein (g) 107.4 (51.6, 131.4) 88.5 (48.6, 134.1) 76.3 (47.5, 96.5) 0.71

Plant protein (g) 44.9 (31.1, 58.9) 35.3 (24.9, 43.9) 22.5 (19.8, 31.0) 0.38

1Reported as median (IQR). Dietary variables (except total kcal and glycemic index) are adjusted per 1,000 kcal for statistical analyses. For each dietary variable, groups not connected by the 
same letter significantly differ via Steel-Dwass nonparametric comparison test. N = 26 as dietary data was missing for one subject. Bold values indicate statistical significance (p < 0.05). 
2Statistically significantly different compared to the normal glucose tolerance group, as determined by Steel-Dwass nonparametric comparison tests.
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with special attention paid to the nutrient source and diet quality of 
macronutrients, is associated with unfavorable outcomes for glucose 
homeostasis. We found that the source of macronutrients, including 
added sugars and glycemic load, MUFA, and plant protein intake, 
were significant correlates of glucose tolerance indicators, drawing 
attention to the importance of diet quality.

Studies investigating diet quality in CF, have focused on 
carbohydrate quality in the form of sugar sweetened beverages, 
glycemic index, or glycemic load (7, 10). Sutherland et al. found that 

children with CF consumed twice as many calories from sweetened 
drinks, confectionary sugars and packaged snacks when compared to 
control children (7), resulting in a diet high in added sugars and 
saturated fats with very sub-optimal micronutrients in the diet (7). 
We previously reported that adults with CF consumed large amounts 
of added sugar compared to controls, and this was associated with 
increased visceral adipose tissue (10), a risk factor for insulin 
resistance. In this updated analysis, the median total added sugar 
intake (83.2 g, 12.6% of total kcal daily) was above the recommended 

TABLE 5 Spearman correlations between dietary variables and glucose tolerance outcomes1.

Dietary variable2 Fasting glucose 
(mg/dL)

Fasting insulin 
(uIU/mL)

Fasting C-peptide 
(ng/mL)

2-h glucose3 HOMA2-IR

Total CHO (g) 0.13 (0.35) 0.08 (0.58) −0.28 (0.05) 0.04 (0.80) 0.06 (0.67)

Added sugars (g) 0.23 (0.11) 0.23 (0.10) −0.19 (0.19) 0.28 (0.08) 0.25 (0.08)

Glycemic index 0.05 (0.74) 0.09 (0.54) −0.15 (0.30) 0.33 (0.04) 0.10 (0.49)

Glycemic load 0.13 (0.37) 0.13 (0.35) −0.28 (0.05) 0.22 (0.18) 0.13 (0.37)

Total fat (g) 0.05 (0.71) 0.22 (0.12) 0.41 (0.003) −0.006 (0.99) 0.20 (0.15)

Saturated fat (g) 0.07 (0.65) 0.18 (0.19) 0.22 (0.13) 0.02 (0.91) 0.15 (0.30)

Trans-fat (g) 0.09 (0.54) −0.06 (0.69) 0.05 (0.72) 0.29 (0.07) −0.05 (0.72)

MUFA (g) −0.03 (0.82) 0.03 (0.86) 0.40 (0.004) 0.03 (0.88) 0.04 (0.79)

PUFA (g) 0.02 (0.91) 0.21 (0.13) 0.39 (0.006) 0.02 (0.90) 0.21 (0.14)

Total protein (g) −0.20 (0.15) −0.13 (0.37) −0.03 (0.84) −0.07 (0.67) −0.12 (0.42)

Animal protein (g) −0.03 (0.82) 0.007 (0.96) 0.007 (0.96) −0.02 (0.90) 0.02 (0.89)

Plant protein (g) −0.19 (0.18) −0.28 (0.05) 0.04 (0.79) −0.25 (0.12) −0.28 (0.048)

1Reported as Spearman’s rho (p-value). Bold values indicate statistical significance (p < 0.05). 2Dietary variables are adjusted per 1,000 kcal. 3N = 17.

FIGURE 1

Independent relationships between nutrients reflecting diet quality and glucose tolerance outcomes in adults with cystic fibrosis (CF). N  =  26 adults 
with CF. Dietary intake was collected via 3-day food records and analyzed using Nutrition Data Systems for Research. Multiple linear regression (MLR) 
analyses were performed with adjustment for age and sex. Shown are relationships that were statistically significant in both Spearman correlation and 
MLR analyses. Results of additional MLR analysis are provided in Supplementary Table S1. The asterisk in figure with HOMA2-IR =*Log10-transformed 
for analyses.
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limits suggested by the American Heart Association and the 2020 
Dietary Guidelines for Americans (<6 and < 10% of total kcal intake, 
respectively) (10, 25).

Further, we found a significant positive relationship between 
added sugar intake and insulin resistance and a significant inverse 
relationship between dietary glycemic load and fasting C-peptide, 
independent of age and sex. The role of chronic high glycemic load 
intake on insulin secretion in people with CF is unknown, but it is 
possible that chronic glucose stimulation by high carbohydrate, 
high glycemic load diets induces glucose toxicity to pancreatic 
β-cells (26). In another adult CF study, added sugar intake and 
glycemic load significantly correlated with higher glucose 
variability and less time in the euglycemic range during continuous 
glucose monitoring (27). Whether interventions to modify 
carbohydrate quality influence glucose tolerance in adults with CF 
is unknown, although a low glycemic index behavioral intervention 
in a pediatric CF cohort decreased, albeit not statistically 
significantly, fasting glucose levels (28). We did not find significant 
relationships between dietary variables and fasting glucose; 
however, fasting glucose is not a hallmark feature of CFRD (29), 
and it has been hypothesized that people with CF have enhanced 
glucose utilization (30).

Aside from achieving a goal of 35–40% of calories consumed 
from fats, there have historically been no recommended 
restrictions on the type of fats to consume in the CF diet. Like 
added sugars, the clinical recommendation for a high-fat diet in 
individuals with CF has resulted in an over-reliance on dietary 
saturated fats (7–9), in agreement with results of this study showing 
a median saturated fat intake of 12% of total kcal. Less emphasis in 
adults with CF has been placed on intake of unsaturated fats 
(MUFA and PUFA). Current study findings revealed positive 
correlations between fasted C-peptide concentrations and MUFA 
and PUFA. In non-CF populations, increased consumption of 
unsaturated fatty acids may improve glucose homeostasis (17, 31), 
with human acute meal challenges showing insulin secretory 
effects of MUFA through the action of the incretin glucagon-like 
peptide-1 (GLP-1) (32–34). The links between unsaturated fat 
consumption and glucose homeostasis generated evidence-based 
dietary guidelines for the general population that suggest diets 
high in vegetables, vegetable oils, nuts, and fish can decrease the 
risk of developing type 2 diabetes (17). In models adjusted for age 
and sex, the two-hour serum glucose level was also inversely 
correlated with MUFA intake. While further dietary interventions 
and meal challenge testing is required in adults with CF, these data 
suggest general population recommendations for increased intake 
of unsaturated fatty acids with concomitant decrease in saturated 
fatty acids (35), should apply to adults with CF.

We found a novel inverse relationship between HOMA-IR and 
plant protein intake among participants with CF. Plant proteins, 
compared to animal proteins, have previously been shown to correlate 
with a reduced prevalence or risk of developing type 2 diabetes (36, 
37) and lower fasting insulin and glucose in populations with type 2 
diabetes (38). Likewise, some, but not all (39), plant-based intervention 
studies in overweight adults have shown improvements in β-cell 
function and insulin sensitivity (40). Whether plant protein has a 
direct effect on insulin action, is not clear, as several nutrients 
commonly found in plant foods may play a role in mitigating the 
effects of insulin resistance, including polyphenols, such as genistein 

(41). Plant-based dietary interventions for glycemic control have not 
been studied in CF populations, likely owing to the historical emphasis 
on consumption of energy-dense foods.

Our study suggests that modifications to the typical CF diet, with 
decreased consumption of added sugars and increased consumption of 
MUFA, PUFA, and plant proteins, may improve glucose tolerance in 
adults with CF. As the lifespan of individuals with CF continues to 
increase, understanding the long-term sequelae of an unrestricted diet 
is of upmost importance for individuals living with CF. Evidence-based 
research in diet quality is gaining momentum but far from robust. This 
is particularly important, because in non-CF populations, energy dense, 
nutrient poor diets can lead to chronic diseases, like diabetes, which 
place a significant health burden on the population (7). There is an 
increasing prevalence of overweight and obesity among individuals with 
CF, even among individuals with CF who are pancreatic insufficient and 
who have severe CFTR mutations (2). The shift toward over-nutrition 
in CF is likely not only rooted in improved medical therapies, but also 
high-calorie, nutrient poor dietary intake. Thus, the need for changes in 
diet quality and recommendations that decrease the risk of chronic 
disease in the aging CF population are becoming a more urgent need.

This study adds to the limited body of literature that highlights 
diet quality and the role sources of dietary carbohydrates, fats, and 
proteins may have on improved glucose homeostasis in adults with 
CF. Limitations of the study include the small, single center, cross-
sectional study design, limiting our ability to infer causality in our 
findings. Reverse causality is a possibility, where a diagnosis of 
diabetes or glucose intolerance leads to changes in dietary intake. As 
an exploratory study, correction for multiple correlations was not 
performed, thus spurious significant relationships may also have 
arisen. Planning data was not available to address sample size and 
power considerations; however, the reported data will inform future 
prospective studies. It is possible that outcomes were influenced by 
basal insulin regimens in three participants; however, results involving 
insulin resistance were similar if these participants were excluded. 
Further, the current study primarily focused on fasted measures of 
glucose homeostasis, which may be more reflective of hepatic glucose 
metabolism and do not represent dynamic changes in glucose 
tolerance (42). Larger, prospective studies are needed to determine the 
impact of dietary fats and other macronutrients on glucose tolerance 
and risk for CFRD using robust, dynamic measures of insulin 
secretion and sensitivity. If proven effective in the CF population, 
interventions for diet modification represent a non-invasive and 
inexpensive measure that could prevent or delay metabolic 
abnormalities for individuals with CF.

Conclusion

In conclusion, we showed novel relationships linking the quality 
of dietary fat, carbohydrates, and protein to glucose homeostasis in 
adults with CF across the glucose spectrum. While added sugars and 
dietary glycemic load were associated with metabolic impairment, 
unsaturated fatty acids and plant proteins were associated with better 
markers of glucose metabolism. Rigorous clinical trials are warranted 
to determine if modifying the macronutrient quality of the CF diet 
will influence glycemic outcomes, such as insulin secretion or insulin 
sensitivity, and ultimately mitigate decline in glucose tolerance among 
individuals with CF.
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