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Background: Microplastics (MPs) and nanoplastics (NPs) have become emerging

contaminants worldwide in food matrices. However, analytical approaches for

their determination have yet to be standardized. Therefore, a systematic study

is urgently needed to highlight the merits of mass spectrometry (MS) based

methods for these applications.

Purpose: The aim of the study is to review the current status of MS-based

multimodal analysis for the determination of MPs in food matrices.

Methods: Web of Science and Google Scholar databases were searched and

screened until Jan. 2023. Inclusion criteria: “publication years” was set to the last

decades, “English” was selected as the “language,” and “research area” was set to

environmental chemistry, food analysis and polymer science. The keywords were

“microplastics,” “nanoplastics,” “determination,” “identification/quantification,”

and “mass spectrometry.”

Results: Traditional spectrometry techniques offer good abilities to conduct the

multimodal analysis of MPs in terms of color, shape and other morphologies.

However, such technologies have some limitations, in particular the relatively high

limits of detection. In contrast, MS-based methods supply excellent supplements.

In MS-based methods, gas chromatographic-mass spectrometry (GC-MS), and

LC-MS/MS were selected as representative methods for determining MPs in the

food matrices, while specialized MS methods (i.e., MALDI-ToF MS and ToF-SIMS)

were considered to offer great potential in multimodal analysis of MPs especially

when interfaced with the imaging systems.

Significance: This study will contribute to gaining a deeper insight into the

assessment of the exposure levels of MPs in human body, and may help build

a bridge between the monitoring studies and the toxicology field.
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Introduction

The ever-growing usage of plastics results in increasing
the worldwide attention of microplastics (MPs; ≤5 mm) and
nanoplastics (NPs; ≤1 mm) pollution and their detrimental
consequences on Earth systems (1, 2). Recent data indicate that
around 390.7 million tons of plastic were produced in 2021
(3). Considering the outbreak of the COVID-19 pandemic, the
extensive usage of personal protective equipment has inevitably
exacerbated the upward trend in the growth of plastics usage by
about 10.0% annually (4, 5). After use, around 79% of the plastic
waste is disposed of improperly under the present management
practices (6). Such a large amount of bulk waste further fragments
into MPs under the weathering effects, and∼10% of this ultimately
persists in the aquatic environment (6, 7). Recent publications
report the widespread presence of MPs in the hydrosphere,
atmosphere, and biosphere (8). For example, MPs have been
discovered in the polar regions, and the Mariana Trench (9).
Through water-vapor exchange, the concentration of MPs in the
air can reach as high as 917 items·m−2

·d−1 (10). The terrestrial
environment is also a sink for MPs, and contains about 300–
67,500 mg·kg−1 of MPs (11, 12), especially MPs derived from film
mulching (560.0± 52.92–2215.56± 1549.86 items·kg−1) (13).

Such an extensive existence of MPs inevitably leads to them
being taken up by humans, resulting in a series of detrimental
responses, including inflammation, immune impairment and other
biochemical consequences (14–16). Cox et al. (17) reported that
ingestion is the major pathway for MPs to enter the human body.
Herein, the abundance of MPs contained in foods is highlighted.
Based on the consumption data for adults and children in the USA,
it can be projected that the annual intake of MPs ranges between
81,000 and 123,000 items per year. Another study estimated that the
number of MPs could reach 11,000 items per year for one European
consumer (18). Our previous study comprehensively estimated the
MP exposure to the human body via seafood, drinking water, plastic
packages and other food items (2). For example, the annual MP
exposure by ingestion of mollusks could achieve ∼8.92 × 104

items, while that via fish and table salt ranged from 518 to 4600
items·year−1. These data were one order of magnitude lower than
that from mollusks. Such a large discrepancy may result from the
variabilities arising from the use of different estimation methods,
implying that more accurate determinations for the MP content of
food should be established before we can reliably estimate and set
the further exposure levels in toxicology studies.

The traditional techniques for MP analysis rely mainly on
spectroscopic methods, including Fourier transform infrared
spectroscopy (FT-IR) and Raman spectroscopy. Such methods can
identify the MPs based on measuring the polymer absorption
band according to the specific characteristic functional groups
(19). Raman spectrometry is often interfered by the additives on
the surface of the MPs, and both of them contain relatively high
limits of detection (LOD) at ∼20 µm (20, 21). In combination
with an imaging capability, the detection limit theoretically could
be decreased to as low as ∼1 µm. However, NPs with smaller
sizes (≤1 mm) are often ignored in survey work, resulting in
an underestimation of MP abundance in food matrices. For
example, Zuccarello et al. (22) found a high abundance of MPs
(including NPs, 5.4 × 107 items·L−1) in the bottled water by

scanning electronic microscopy (SEM). However, there was a huge
discrepancy with the µ-Raman or the µ-FT-IR results (10–103

items·L−1) (23, 24). SEM and transmission electron microscopy
(TEM) are techniques that may be used to observe MPs; they
offer a superior resolution of 1 nm relative to optical microscopy
but with a smaller field of view (1 mm2). A slightly uneven
distribution of MPs in sample plates could also induce huge
discrepancies in the results for MP abundance. Additionally,
the aforementioned techniques (SEM, TEM) could provide the
morphology information of MPs in the food matrices, but such
morphological data are not the metrology parameters (cf mg·kg−1,
mg·L−1) that are essential in toxicological research. To ensure
compatibility between the monitoring and toxicological field, the
application of mass spectrometry (MS) in MP identification and
quantitation has begun to attract much attention in recent years.

Mass spectrometry comprises a range of sophisticated
analytical techniques that can be applied for molecular detection
and determination of material structure and composition. The
MS approach has revolutionized analytical practice in chemistry,
pharmacy, life science, and inter-related fields (25). With the
advantages of rapid and reliable analysis, simple operation, high
sensitivity, high-throughput analysis, the MS methods have
attracted increasing attention for the direct identification of
polymeric structures (16, 26). The basic principle of MS methods
relies on the ionization of the MPs followed by separation of
molecular constituents according to the m/z. The MS analysis
further identifies the types and nature of the MPs by determining
the repeating unit mass, end groups, and chemical formula (27).
The technical challenges in the analytical process rely on the means
to ionize the high-molar-mass MP polymers. Therefore, it is vital
to appreciate the recent developments in MS as applied to detect
the MPs in the food matrices. Herein, we first introduced the
current status of using MS to identify MPs in the foods. Moreover,
the physiochemical characterization of the size, shape and other
characteristics in the food matrices should also be considered.
Finally, the challenges and new perspectives for detecting MPs by
MS approaches are also outlined and discussed. By exploring these
issues, this study will contribute to gaining a deeper insight into
the accurate determination of the exposure levels of MPs in the
human body, and in so doing may also help build bridges between
monitoring studies and toxicological fields.

Determination of MPs in food
matrices by mass spectrometry

Various MS approaches have been developed for the
determination of MPs and NPs in food matrices (Figure 1),
including gas chromatographic-mass spectrometry (GC-MS),
liquid chromatography-tandem mass spectrometry (LC-MS/MS),
time-of-flight mass spectrometry (ToF-MS) and other novel MS
techniques.

Gas chromatography-mass spectrometry

Gas chromatography-mass spectrometry is one of the
representative methods for determining MPs in the food

Frontiers in Nutrition 02 frontiersin.org

https://doi.org/10.3389/fnut.2023.1163823
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-10-1163823 April 4, 2023 Time: 7:19 # 3

Wu et al. 10.3389/fnut.2023.1163823

FIGURE 1

Determination of microplastics by mass spectrometry in food matrix.

matrix, especially after coupling with the thermal desorption
or pyrolysis devices. In principle, the MPs are first pyrolyzed
and fully decomposed into relatively small molecules in an inert
environment and then vaporized into the gaseous phase by a micro
furnace held at 600–1000◦C (28). Finally, the instrument generates
the characteristic fingerprint mass spectrum for the sample of
interest (29). In addition to polymers, some typical additives
contained in the plastics could be analyzed simultaneously.

The GC-MS method has become one of the dominant MS
methods for the determination of MPs in foods (Table 1). For
example, Peters et al. (30) extracted MPs from benthivore fish and
tried to identify the types of plastics by pyrolysis GC-MS. The
results showed that a total of 43 MPs were detected, including 30
fibers, 3 fragments, and 10 spheres. Moreover, Polyvinyl chloride
(PVC) took the highest priority with 32.6% of the total samples,
then followed by polyethylene terephthalate (PET; 9.3%), nylon
(9.3%), silicone (2.3%) and epoxy resin (2.3%). Likewise, Liu et al.
(31) combined thermal gravimetric analysis (TGA) and GC-MS
to identify and quantify MPs in marine mussels. By using the
hyphenated approaches, they found up to 1.71 mg of plastic per
kg of tissue (mean value: 0.58 mg·kg−1) in Mytilus edulis from
six locations along the coast of China, while polyethylene (PE)
was found to be the most abundant type of plastics. These two
works set the foundation for determining MPs by MS methods
in a single species of seafood. Li et al. (32) developed a method
to quantify nanoplastic uptake in plants with cucumber by Py-
GC/MS. Thereafter, applications were extended by Ribeiro et al.
(33), who examined the occurrence and content of MPs in
different seafood organisms, i.e., oysters, prawns, squid, crabs,
and sardines. The results showed the total concentration of MPs
varied highly according to the different species. Meanwhile, Dessì
et al. (34) analyzed rice samples by using double-shot pyrolysis
gas chromatography/mass spectrometry (Pyr-GC/MS) to estimate
the mass concentration of selected plastic polymers in rice. The

results showed PE, PET, and polypropylene (PP) were quantifiable
in the rice samples (34). The results illustrated that PE was the most
frequently detected with 95% in these samples. This is reasonable
as they were also widely detected in the air (20). In addition to
the MPs, the method also successfully investigated the presence
of plastic-related additives and their interaction with the MPs
(35). For example, a GC-MS study investigated the relationship
between polymethyl methacrylate (PMMA) containing MPs and
the environmental contaminant benzo(k)fluoranthene (BkF) where
it was found that BkF could be adsorbed by PMMA, thereby
decreasing the absorption of contaminants in the fish bodies
(31). Uribe-Echeverría et al. (36) utilized GC-MS to investigate
the potentially toxic effects of various MPs by determining the
plasticizers and additives. It was reported that PVC was the
most toxic MPs among polyhydroxybutyrate resin, polylactic acid
cups, and polylactic acid/polyhydroxyalkanoate MPs. Additional
benefits of GC-MS are that the approach needs minimal sample
preparation, and direct injection of the sample can be realized
depending upon the matrix. Sample pretreatments in GC-MS
involving analyte extraction or separation before injecting the
sample but the additional step(s) may be required in the
case of complex matrices. However, as with other techniques
lacking optical interrogation, GC-MS does not directly provide
information on the physical shape of the plastic debris and is
destructive, and it should be required high control of experimental
conditions (Table 2).

Liquid chromatography-tandem mass
spectrometry

Liquid chromatography-MS/MS is a workhorse technique
widely applied in medicine, environmental and biological analysis
(37). In polymer science, many studies have confirmed its
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TABLE 1 The applications of gas chromatographic-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS) in
microplastics (MPs) determination.

Technique Samples Types of MPs References

Pyr-GC-MS Raw and treated drinking water PE > PA > PET > PP > PS* (35)

Pyr-GC-MS Spadefish; sand trout; pinfish; kingfish PVC, PET, nylon (30)

Pyr-GC-MS Fish PE, PP, PET, PS, PVC, PC, PMMA, PA (49)

TGA-FTIR-GC-MS Seafoods: mussels PE, PP, PVC, PS (31)

TED-GC-MS Bottled water and other beverages PET, PE (50)

LC-MS/MS Fish fillets phthalates (51)

HPLC-MS/MS Cat and dog foods PET, PC (28)

UPLC-MS/MS Sea turtle PET, PC (52)

LC-MS/MS Fish PA6, PA66 (40)

LC-MS/MS Salt PET, PE (39)

MALDI-ToF MS Fish PET, PS (26)

ASAP-MS Bottled water PHB (45)

IR-MS Plastic packaging PE, PET, PP, PS, PVS, PLA, ABS, PES (46)

SP-ICP-MS Food packaging – (47)

*PA, polyamide; PE, polyethylene; PET, polyethylene terphtalate; PP, polypropylene; PS, polystyrene; PVC, polyvinyl chloride; PC, polycarbonate; PMMA, polymethyl methacrylate; PHB,
poly(hydroxy butyrate).

TABLE 2 Advantages and disadvantages of MS technique in MPs analysis.

Technique Principle LOD* Advantages Disadvantages References

FT-IR Polymer absorption
band

∼10 µm Non-destructive; information on
the aging degree of MPs

Not suitable for NPs characterization;
influenced by the additives; time

consuming

(16)

Raman Polymer absorption
band

>1 µm Non-destructive; Non-contact Time consuming; heavily influenced by
the fluorescent molecules or dyes; time

consuming

(16)

SEM Secondary electron
microscopy

>5 nm Non-destructive; high resolution
images

Complex sample preparation; highly
depend on sample preparation

(2)

Pyr-GC-MS Characters
fingerprint

MS quantification

>1 µg Minimal sample preparation;
highly sensitive

Destruction; complex data processing (20, 30)

LC-MS/MS Characters
fingerprint

MS quantification

LOQ# : 6.3 ng/g for PC
and 1.5 mg/g for PET;

Highly sensitive; rapid detection
speed

Destruction; complex data processing (28)

MALDI-ToF MS Characters
fingerprint

MS quantification

>25 ng Highly sensitive; rapid detection
speed; simple operation;
high-throughput analysis

Destruction; complex data processing;
solvent requirement

(16, 26)

ToF-SIMS Characters
fingerprint

>20 µm; >70 nm Highly sensitive; rapid detection
speed; simple operation;
high-throughput analysis

Destruction; hard to differentiate MPs
from samples; complex data processing

(43)

*LOD, limit of detection; #LOQ, limit of quantification.

applicability to nylon-, PET-, polycarbonate (PC)-based MPs
analysis. Similar to GC-MS, the samples typically require
extraction, purification and depolymerization before injection into
the LC systems (25). In the initial stages of the method, the
MPs are extracted and cleaned with solvents, such as NaI and
ethanol (38). Thereafter, the small MPs are again decomposed
into the monomers, dimers, and oligomers via pyrolysis (39).
Finally, the small molecules are identified and quantified by
tandem MS, hence the molecular mass of the MPs in the
matrix may be deduced.

Liquid chromatography-based techniques, offering particularly
low detection limits, are widespread in environmental analysis
(Table 1). However, these techniques have not been widely
utilized for detecting MPs in a food matrix, which might be
attributable to the more complex nature of food matrices. The
incomplete degradation of substances that form during pyrolysis
could contaminate the ionization source, resulting in damage to
the device. To date, only a few studies have adopted the method
for determining MPs in food samples. Wang et al. (40) studied
the abundance of nylon 6 in fish by determining the content of

Frontiers in Nutrition 04 frontiersin.org

https://doi.org/10.3389/fnut.2023.1163823
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-10-1163823 April 4, 2023 Time: 7:19 # 5

Wu et al. 10.3389/fnut.2023.1163823

6-aminocaproic acid and adipic acid, which were in the order of
10.8 and 39.6 mg·kg−1, respectively, while that of nylon 66 ranged
between 13.4 and 49.2 mg·kg−1. These contents are considered
to be relatively high for fish when considering concentrations in
other matrixes, e.g., sludge (nylon 6: 15.2 mg·kg−1; nylon 66:
48.2 mg·kg−1), sediments (nylon 6: 0.725–2.54 mg·kg−1; nylon
66: 8.15–15.4 mg·kg−1). In bivalves, the same group reported the
presence of PC- and PET-based MPs by determining bisphenol A
(BPA) and p-phthalic acid (PTA), respectively (39). After careful
calculation, the PC MPs in bivalve ranged from 2.33 to 4.41 mg/kg,
while the concentrations for PET MPs were calculated to be 75.4–
17.5 mg/kg, respectively. In addition to seafood, the group also
determined the concentrations of PC and PET MPs in salt samples,
which were calculated to be 0.088 and 0.102 mg/kg, respectively
(39). Not only in human foods, but the PC and PET MPs were also
found in pet food (cat and dog) in the United States (28). Also by
determining the concentrations of BPA and PTA, it was discovered
that there were about 0.23 and 61 mg/kg of PC and PET MPs in cat
food, and 0.16 and 30 mg/kg in dog food, respectively. However, it
remains a challenge to directly compare the exposure levels to MPs
in foods intended for human and pet consumption. This technique
is destructive in nature. The detection strategy also does not provide
information on the count, size, color and shape of MPs and NPs, but
rather it yields information on the mass and quantity of monomers
released during depolymerization (Table 2) (34).

Time-of-flight mass spectrometry

Time-of-flight mass spectrometry is a MS technique whereby
an ion’s m/z is determined via the time each ion takes to
reach the detector. Under the same electrical field with known
strength, ions of the same charge are accelerated with the same
kinetic energy. Due to the discrepancy of the mass, each ion
would have a different corresponding velocity. In other words,
it means that the time each ion takes to reach the detector
would vary and be inversely proportional to the molecular mass
of the ion. On this basis, the m/z of the ions would provide
a means for identification. In this MS approach, two prevalent
techniques have found application in MPs analysis, namely,
matrix assisted laser desorption/ionization-time of flight mass
spectrometry (MALDI-ToF MS) and time of flight secondary
ionization mass spectrometry (ToF-SIMS).

Matrix assisted laser desorption/ionization-time of flight mass
spectrometry is a powerful MS technique often applied for analysis
of high-molecular weight substances. The device consists of three
essential modules, MALDI as the ion source, ToF as the mass
separation, and the MS detector for the mass analysis (16). Once
the MPs are ionized gently the ions are conveyed via a matrix
vaporized by the laser energy, the [polymer]+ or [polymer]metal+

ions would then be separated by their m/z in the ToF system.
The technique has been used successfully to determine different
types of MPs (41). Recently, PS and PET MPs have been identified
and quantified in complex food matrixes (26). In the latter
study, a thermal pretreatment (380◦C) was used to facilitate the
fragmentation of macromolecules thereby enhancing the intensities
of the characteristic peaks. A detection limit of 25 ng for PS MPs
was obtained with a good linear relationship (R2 0.986) for signal

quantification. The method was used to determine PS MPs in
fish samples where the concentrations of PS MPs in fish ranging
between 0.068 and 0.146 mg·g−1. These results demonstrated
the reliability and effectiveness of the proposed technique for
determining PS MPs in food samples. When combined with
imaging system, the multimodal analysis of MPs was realized, and
additional information including shape, size, color, degree of aging,
and chemical composition (42) were also obtained. This approach
may be considered as one of the preferred analytical techniques in
future MPs analysis.

Time of flight secondary ionization mass spectrometry is based
on detecting secondary ions, electrons or even neutrals which are
generated as a result of the primary ions interacting with the sample
surface. Once the primary ion gun is aligned with the sample
surface which is then interrogated, a ToF-SIMS mass spectrum
is generated by summing the detected secondary ion intensities
and plotting them against the mass channels. The technique is
suitable for the analysis of inorganic and organic substances.
Similar to the MALDI-ToF MS, it is also possible to conduct
rapid MS scanning and present the organic ion graphs when
coupled with an imaging system. Hence, in theory it is possible
to supply information on MP sizes and their distributions in the
food matrix. Recently, Jungnickel et al. (43) reported that PE MPs
could be determined by ToF-SIMS, the main ions detected being
[CnH2n−1]+, [CnH2n+1]+, and [C3H3(CH2)n]+ in sand samples.
Furthermore, another study was conducted on four types of MPs
(e.g., PVC, PET, nylon 6, and PP in soil samples. However, these
studies focused mainly on environmental analysis (44).

Other novel MS techniques

Even though the above multimodal MS methods have been
largely used for MP analysis, there are also some other MS-based
techniques, including the atmospheric solids analysis probe mass
spectrometry (ASAP-MS) (45), isotope ratio mass spectrometry
(IR-MS) (46), and single particle-inductively coupled plasma mass
spectrometry (SP-ICP-MS) which are impacting the field (47).
These MS methods exhibit great potential for MPs analysis in
the food matrix although they are still considered to be at a
developmental stage. Vitali et al. (45) employed ASAP-MS for the
chemical analysis of PS, PET, PC, PE, and other common plastics,
while undertaking image analysis for characterization of the MPs.
In real samples, good qualitative and quantitative results, such as
the MP number, size and shape distribution, were demonstrated.
Thus, in this way, characterization of MPs may proceed allowing
full information related to contamination to be collected. For the
SP-ICP-MS technique, Birch et al. (47) undertook a systematic
study on characterization of common MPs by using the carbon
isotopic analysis (13C/12C) techniques. Full compatibility with
spectroscopic techniques and IR-MS image analysis approaches
was undertaken to compare the advantages/disadvantages of the
present technologies in measuring the MP content of bottled
water (Table 2) (46). In a similar vein, in SP-ICP-MS, the
13C isotope can be exploited to screen the MPs in personal
care products thus enabling studies on how MPs released from
food packaging, which is also a crucial way for MPs entering
the food matrix.
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Challenges and future perspectives

Microplastics in the last few decades have become a crucial
topic in the environmental and health field. Lots of attention has
focused on the MP determination, exposure routes, and health
effects, and clearly analytical techniques provide the foundation
for studying the health risks. Most of the modern analytical
techniques have proved to be suitable for the analysis of micron
sized and submicron sized plastics, while the identification and
quantification of NPs are hindered at present (Challenge 1).
Another significant challenge is that the mass of plastics is relatively
low thus it is not possible to weigh accurately MPs in samples
using gravimetric methods (e.g., balance) are difficult to weigh
them reliably (Challenge 2). A further complication relates to
the MPs with other substances could complicate the subsequent
analysis (Challenge 3). Therefore, development of reliable and
stable techniques are a high priority for studying the health effects
of MPs in foods. In devising mitigation approaches, MS-based
analytical strategies exhibited a high potential for MPs analysis in
the food matrix. First and most important, these techniques can
fill the knowledge gap within the field regarding the abundance of
MPs in the food matrix and, moreover, facilitate on their potential
interactions with cells or living organisms after ingestion (48).
Second, the MS-based multimodal techniques in conjunction with
imaging systems could supply information of MPs, such as the
size, shape, and even aging (16). Third, the chemical additives
and other relevant contaminants could be analyzed during the
determination of the MPs.

Conclusion

This review has summarized the principles and applications
of MS methods for the determination of MPs in the food matrix.
Among the MS techniques, GC-MS has been used extensively
used in the analysis of the polymer compositions, plasticizers, and
other additives in MPs. In addition, previous studies have found
that LC-MS of microplastics are used less frequently. Notably,
the novel multimodal MS methods including MALDI-ToF MS,
ToF-SIMS, ASAP-MS, IR-MS, and SP-ICP-MS, could enhance
the characterization of MPs in many circumstances. Moreover,
confronting the challenges and future perspectives have also been
highlighted in terms of what is currently known, especially the

relationship regarding the abundance of MPs in the food matrix
and potential interactions with cells or living organisms after
ingestion. Therefore, this review could be of great importance
given the increasing number of MPs that are being detected in
the environment and food matrices. Further, the review could also
provide a deeper insight into accurately measuring the exposure
levels of MPs in the human body via ingestion, which could
help to fill the knowledge gap regarding the abundance of MPs
and their toxicity.
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