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Introduction:Depression is a prevalent disorderworldwide, with potentially severe

implications. It contributes significantly to an increased risk of diseases associated

with multiple risk factors. Early accurate diagnosis of depressive symptoms is

a critical first step toward management, intervention, and prevention. Various

nutritional and dietary compounds have been suggested to be involved in the

onset, maintenance, and severity of depressive disorders. Despite the challenges

to better understanding the association between nutritional risk factors and

the occurrence of depression, assessing the interplay of these markers through

supervised machine learning remains to be fully explored.

Methods: This study aimed to determine the ability of machine learning-

based decision support methods to identify the presence of depression using

publicly available health data from the Korean National Health and Nutrition

Examination Survey. Two exploration techniques, namely, uniform manifold

approximation and projection and Pearson correlation, were performed for

explanatory analysis among datasets. A grid search optimization with cross-

validation was performed to fine-tune the models for classifying depression

with the highest accuracy. Several performance measures, including accuracy,

precision, recall, F1 score, confusion matrix, areas under the precision-recall

and receiver operating characteristic curves, and calibration plot, were used to

compare classifier performances. We further investigated the importance of the

features provided: visualized interpretation using ELI5, partial dependence plots,

and local interpretable using model-agnostic explanations and Shapley additive

explanation for the prediction at both the population and individual levels.

Results: The best model achieved an accuracy of 86.18% for XGBoost and an

area under the curve of 84.96% for the random forest model in original dataset

and the XGBoost algorithm with an accuracy of 86.02% and an area under the

curve of 85.34% in the quantile-based dataset. The explainable results revealed a

complementary observation of the relative changes in feature values, and, thus,

the importance of emergent depression risks could be identified.

Discussion: The strength of our approach is the large sample size used for training

with a fine-tuned model. The machine learning-based analysis showed that the

hyper-tuned model has empirically higher accuracy in classifying patients with

depressive disorder, as evidenced by the set of interpretable experiments, and can

be an e�ective solution for disease control.
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1. Introduction

Depression is a common heterogeneous neuropsychiatric
disorder and one of the most common mental disorders associated
with high costs, morbidity, and mortality (1, 2). It is characterized
by profoundly depressive emotional and cognitive impairment,
including sadness (3), loss of self-esteem (4), loss of interest,
potentially decreased motivation (5), sleep disturbance, intense
feelings of guilt, and difficulty concentrating or making a decision
(6, 7). Needless to say that these symptoms adversely affect well-
being, life expectancy, and physical and mental health (8, 9).
The etiology of depression is multifactorial and dependent on the
individual’s biological, psychosocial, and social factors (10). These
depressive symptoms have a relatively high prevalence and play a
crucial role in symptom persistence and recurrence, often making
diagnosis and treatment challenging. According to various findings,
depression negatively affects over 300 million people worldwide
and is estimated to be the leading cause of the disease burden
globally by 2030 (11). According to the World Mental Health
Survey findings, the lifetime risk of developing depression is higher
in high-income countries, with 15% of the population at risk,
compared with 11% in low- and middle-income countries (12).
Globally, it is estimated that 5% of adults suffer from depression
(11). With the rapidly growing number of people with depression
worldwide, it is becoming one of the most severe disorders for
humankind. In recent years, it has been established that depression
affects a significant portion of the population, with a lifetime
prevalence rate of 15% (13), endangering people’s physical health.
It has adversely affected at least 322 million people worldwide and
∼4.4% of the world’s population, with an incidence rate higher
than the rate of global population growth (14). The relationship
between nutrition and depression is of growing interest and has
attracted considerable attention. To date, accumulating evidence
from demographic studies has implicated dietary factors as a
substantial risk factor for the development of depression (15–18).
The prevalence of depression may be affected by dietary intake
patterns, as there is a connection between nutrition and depression
(19). A recent study revealed that nutrition plays a pivotal role
in the onset, progression, severity, and duration of depression,
with poor nutrition contributing to its pathogenesis (20). However,
there are only a few published articles on nutrition-based risk
factors; hence, further exploration is required to confirm these
findings. While identifying depressive disorder in primary care is
essential for effective treatment, only approximately half of patients
with a depressive disorder are discovered by routine healthcare
providers in high-income settings (21). Therefore, it is desirable
to identify individuals at risk of the disease at an early stage to
enable preventive medical interventions and risk stratification to
promote lifestyle modifications as early as possible. This is critical
in preventing long-term health complications and fatalities and will
help control and manage the disease.

In recent years, technological advances in data science, a
multidisciplinary field, have led to a golden opportunity for the
healthcare industry to generate a large volume of data from various
sources on patient demography, treatment plans, and medical
examinations that have led to the compilation of big data. The
ever-increasing volume of data created in the healthcare industry

requires healthcare professionals to understand how to connect big
data for improved efficiency in diagnosis and research operations
so that the patient’s needs can be addressed (22, 23). Given the
various sources of information, knowledge regarding depressive
disorders can be mined by automated computerized methods to
help clinicians discover hidden patterns in the data. Automated
computerized approaches often employ data mining and machine
learning (ML) algorithms as computer-aided diagnosis (CAD)
systems. Diagnostic decision-making in medical care by clinicians
can also be augmented by CAD systems that extract information
from clinical features to classify or predict disease. Mining
depression-related health data will offer significant opportunities
for further discovering clinical information regarding the role of
diet variables and facilitate cohort-wide investigations. Datamining
is a commonly used technique for processing large amounts of
data in the healthcare domain (24, 25). Researchers have applied
several data mining and ML techniques to analyze big medical
data, helping healthcare professionals predict depression disorders
and their risk factors. ML, which is a powerful branch of artificial
intelligence (AI), has been widely applied to CAD systems for more
robust disease classification and prediction. CAD uses MLmethods
to analyze patient data and evaluate a patient’s condition, which can
then be used to assist clinicians in their decision-making process.
In the past decade, several CAD techniques have been developed to
analyze risk factor and predictor relationships (26–28).

Efficient early detection of depressive disorder is crucial in
managing mental health at a population level. The widespread
adoption of electronic health records (EHRs) has facilitated the
analysis of large datasets to investigate clinical questions using
computational analysis. A systematic electronic medical records
diagnosis of depression was found to be an effective method for
diagnosing clinical depression with the area under the curve (AUC)
of 0.77% (29) as a baseline prediction rate. A study by Nam et al.
(30), using the extreme gradient boosting (XGBoost) machine
learning classifier, aimed to identify essential depression-associated
factors from the K-NHANES dataset with 120 variables for 12,596
cases and achieved an 86% ROC curve score after feature selection.
This study, however, suffered from a highly imbalanced problem
with a 2.7% prevalence of depression. To detect depression in the K-
NHANES dataset, Oh et al. used customized deep neural network
and machine learning in which logistic regression obtained the
highest performance with AUC of 0.77% (31). However, there was
a severe imbalance problem in which there were only 344 cases
(7.0%) of depression out of a total of 4,949 cases.

Collectively, while this investigation aims to further elucidate
the feasibility of CAD-based analysis for depression diagnosis,
additional exploration is required to support the current existing
findings based on the direct impact of nutritional factors.
There were several critical issues while using many variables
yet to be addressed ranging from difficulty in interpretation,
increased computational complexity, cost and time constraints
when collecting data, overfitting, multicollinearity, and redundancy
(32, 33). In addition to the insightful ML-based studies with
strong diagnostic accuracy, there have been limited efforts to
create an interpretable and explainable method for predicting
depression. Furthermore, the nutrition-related risk factors of
depression have not been fully explored in an ML-based approach
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in an explainable manner with an individual and the global
level that contributed to the prediction. This study aimed to
develop an interpretable data-driven CAD approach capable of
distinguishing participants with and without depression using
clinical and nutrition-related variables and data from the K-
NHANES. We constructed and compared depression prediction
models using supervised ML algorithms: logistic regression (LR),
support vector machine (SVM), decision tree (DT), random forest
(RF), and extreme gradient boosting (XGB). This study used
model optimization to select a suitable hyperparameter for the pre-
trained model on the depression classification task. We also applied
feature-importance techniques using permutations to determine
the relative importance of these features. To aid physicians
in decision-making, we present a local interpretable approach
that offers relevant and actionable information. Furthermore,
we consider this a significant advancement in the use of ML
to study clinical depression. Our method not only dramatically
increases the ability to diagnose depression at an early stage
but also explains the predictions from accurate and complex
models to understand the causes of the prognosis for critical
intervention methods to be designed. The major contributions of
this study are as follows. First, we prepared a cohort database
containing accessible clinical and standard nutritional variables.
These variables were collected from K-NHANES, a large-scale
database. Second, we employed several well-known ML models
and trained the models from scratch using the two collected
datasets. The models showed significant performance in the
classification of depression. Third, we performed a comparative
explainable ML analysis and visualized the interpretation using
several interpretability techniques. We believe that our work is a
crucial step toward advancing the understanding and credibility of
trustworthy precision medicine by incorporating a comprehensive
list of explanations for depression prediction at both the local and
global levels.

The rest of this article is organized as follows: Section 2 provides
a detailed description of the materials and methods, and Section 3
describes the experimental data and results. Section 4 provides a
discussion. Finally, Section 5 presents the conclusion and proposes
future research directions.

2. Materials and methods

2.1. Dataset description

In this study, the K-NHANES dataset (34), a dataset from
a large-scale cross-sectional study, was used to investigate the
nutritional risk factors for depression. The K-NHANES is a
longitudinal survey initiated in 1998 designed to assess the health
and nutritional status of people living in Korea. It provides
researchers with vital information to determine the causes of
the disease based on the population’s distribution of health
problems and risk factors. This survey is conducted annually
by the Korea Disease Control and Prevention Agency (KDCA).
The KNHANES dataset includes demographic, socioeconomic,
comorbidities, and dietary features. According to the clinical
professional and research question, 4,804 cases meeting the
inclusion criteria of 33 variables were identified as predictors for

depression classification analyses. All participants were classified
as depressed or non-depressed. The non-depression class label
was assigned to 4,031 samples (84% of the dataset), while the
depression class label was assigned to 773 samples (16% of
the dataset).

Nutrition-related markers included energy, water, protein, fat,
carbohydrates, and fiber. The scores on the nutritional variables
objectively show the participants’ eating habits. For comparison,
we generated two datasets, each with 27 variables. One dataset was
used for the original values, and the second dataset was used for
quantile-based values for nutritional features. The numeric input
variables may have a non-standard or highly skewed distribution.
Outliers in the data, multimodal distributions, highly exponential
distributions, and other possibilities might be responsible for this
anomaly. In this case, the raw nutritional scores for each participant
were converted into quantiles. The details and descriptions of these
features are listed in Table 1. All K-NHANES data, except the
pediatric survey information, are in the public domain and are
available at the National Center for Health Statistics (https://www.
cdc.gov/nchs/nhanes).

2.2. Pre-processing

Prior information regarding the raw data directly affects the
performance of the optimized classifier. In this regard, pre-
processing the data is crucial to obtaining efficient classification
performance before evaluating the data using ML algorithms (35).
Among various data preprocessing methods, data normalization
is an essential preprocessing step in which the data are either
scaled or transformed to minimize the bias of those features
whose numerical contribution is higher in discriminating pattern
classes. It also helps in determining the operational speed of
the model. Before the modeling implementation, preprocessing
was conducted in the form of missing value replacement and
data normalization.

2.3. Machine learning model development

This study examined the performance of five widely used
and well-known ML classifiers: LR, SVM, RF, DT, and XGB.
These algorithms were selected because of their apparent inductive
tendencies and capacity to explore complex relationships between
variables, including nonlinear patterns. A cross-validation scheme
was applied to avoid potential overfitting problems (36). For this,
a 5-fold cross-validation was performed with the training dataset
as inner cross-validation for hyperparameter determination (37)
and outer cross-validation performance evaluations. We randomly
split the K-NHANES dataset into two parts: 70% as the training
dataset and 30% as the test dataset for internal validation. A grid
search with cross-validation (GridSearchCV) was used to fine-
tune each model to increase the model efficiency and obtain the
best possible result. The classifiers were trained using different
combinations of parameters. The training dataset (70% of the entire
dataset) was randomly split into k (5) stratified folds that preserved
the relative proportion of the two classes (non-depression and
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TABLE 1 Characteristics of depression patients datasets.

No. Variable name Non-depression
N = 4,031

Depression
N = 773

OR (95% CI) P-value Abbreviation

1 Gender

Female 2,204 (54.68%)a 516 (66.75%) 1.55 (1.30–1.83)

2 Age 53.20± 17.24 49.38± 17.51 0.98 (0.98–0.99) <0.001

3 Income <0.001 INCM

High 1,050 (26.05%) 153 (19.79%) 1.00

Middle low 1,022 (25.35%) 196 (25.36%) 1.32 (1.04–1.68)

Middle high 1,013 (25.13%) 172 (22.25%) 1.30 (0.97–1.74)

Low 946 (23.47%) 252 (32.60%) 1.85 (1.42–2.41)

4 Education level 0.003 EDULV

No school 71 (1.76%) 26 (3.36%) 2.37 (1.35–4.14)

Elementary school 421 (10.44%) 105 (13.58%) 1.36 (0.85–2.18)

Middle school 360 (8.93%) 80 (10.35%) 1.25 (0.76–2.05)

High school 1,529 (37.93%) 224 (28.98%) 1.18 (0.77–1.81)

2/3 Years college 453 (11.24%) 113 (14.62%) 1.65 (1.08–2.52)

College 962 (23.87%) 190 (24.58%) 1.24 (0.78–1.97)

Graduate school 233 (5.78%) 35 (4.53%) 1.00

5 Occupation OCCU

No 2,706 (67.13%) 367 (47.48%) 1.95 (1.64–2.32)

6 Marriage

Yes 3,330 (82.61%) 562 (72.70%) 1.00 MARRY

No 701 (17.39%) 211 (27.30%) 1.93 (1.56–2.38)

7 Economic status ECONSTAT

Yes 2,706 (67.13%) 367 (47.48%) 0.51 (0.43–0.61)

8 Body mass index 24.02± 3.50 24.27± 4.17 1.00 (0.98–1.03) 0.897 BMI

9 Quality of life 0.97± 0.08 0.88± 0.16 4.46 (3.63–5.47) <0.001 QOL

10 Family history FHIS

Yes 2,621 (65.02%) 516 (66.75%) 1.29 (1.07–1.56)

11 Exercise

Yes 3,490 (86.58%) 634 (82.02%) 0.77 (0.59–1.00) EXC

12 Drinking

Yes 3,542 (87.87%) 686 (88.75%) 1.27 (0.98–1.66) DRK

13 Smoking

No 2,590 (64.25%) 466 (60.28%) 1.00 SMK

Past 885 (21.95%) 134 (17.34%) 0.86 (0.68–1.11)

Current 556 (13.79%) 173 (22.38%) 1.61 (1.26–2.04)

14 Sleeptime wk. 7.01± 3.29 6.34± 3.75 0.75 (0.71–0.81) <0.001 SLPWK

15 Sleeptime wd. 7.53± 3.36 7.01± 3.94 0.89 (0.83–0.94) <0.001 SLPWD

16 Self-recognition

stress

<0.001 SRS

Feels little bit 2,574 (63.86%) 278 (35.96%) 0.06 (0.04–0.09)

Not little 695 (17.24%) 32 (4.14%) 0.02 (0.01–0.03)

(Continued)
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TABLE 1 (Continued)

No. Variable name Non-depression
N = 4,031

Depression
N = 773

OR (95% CI) P-value Abbreviation

Feels a lot 676 (16.77%) 326 (42.17%) 0.25 (0.17–0.37)

Feels very much 86 (2.13%) 137 (17.72%) 1.00

17 Stress recognition

rate

<0.001 SRR

Less stress 3,269 (81.10%) 310 (40.10%) 1.00

High stress 762 (18.90%) 463 (59.90%) 6.20 (5.19–7.40)

18 Suicide attempt

No 4,024 (99.83%) 755 (97.67%) 0.07 (0.03–0.17) SUA

19 Health status <0.001 HS

Bad 2,910 (72.19%) 688 (89.00%) 1.00

Middle 946 (23.47%) 73 (9.44%) 0.31 (0.24–0.42)

Good 175 (4.34%) 12 (1.55%) 0.25 (0.12–0.52)

20 Chronic disease CHRD

No 2,507 (62.19%) 429 (55.50%) 0.87 (0.72–1.04)

21 Cancer

No 3,953 (98.06%) 755 (97.67%) 0.97 (0.55–1.72)

22 Energy 1,824.55± 817.05 1,744.28± 923.94 1.00 (1.00–1.00) 0.057

23 Water 960.30± 559.66 904.21± 589.02 1.00 (1.00–1.00) 0.185

24 Protein 68.19± 38.55 62.90± 35.67 1.00 (0.99–1.00) 0.013

25 FAT 44.82± 35.18 42.80± 34.66 1.00 (1.00–1.00) 0.269

26 Carbohydrate 266.93± 107.17 256.33± 118.06 1.00 (1.00–1.00) 0.103 CRBHDR

27 Fiber 24.79± 13.24 22.77± 14.55 0.99 (0.98–1.00) 0.019

28 Energy quintile 2.02± 1.41 1.88± 1.42 0.80 (0.60–1.05) 0.104 QENERGY

29 Water quintile 2.03± 1.40 1.85± 1.47 0.78 (0.58–1.06) 0.116 QWATER

30 Protein quintile 2.03± 1.41 1.86± 1.43 0.73 (0.55–0.99) 0.042 QPROTN

31 FAT quintile 2.01± 1.42 1.95± 1.40 0.99 (0.72–1.36) 0.964 QFAT

32 Carbohydrate

quintile

2.02± 1.40 1.88± 1.46 0.74 (0.58–0.94) 0.016 QCARBO

33 Fiber quintile 2.05± 1.40 1.76± 1.45 0.61 (0.47–0.79) 0.002 QFIBER

aData are mean± SD values except were indicated otherwise; n/N (%), Figures in parentheses are percentages.

Bold values denote statistically significant at p < 0.001.

depression). The k−1 subset was used for training, and one subset
was used for testing. Each fold was utilized once as a test set
before we moved on to the next, whereas the other remaining
folds were temporarily combined to create a training set for model
creation. This was repeated 10 times to use all possible training and
test set combinations. Optimal hyperparameters were determined
according to the best area under the curve (AUC) in the validation
set (see Supplementary Table 1 for selected hyperparameters).
Finally, the performance of the models was evaluated on the
holdout testing set using the tuned hyperparameters. The test set
provided independent validation, demonstrating the model’s ability
to generalize unseen data. This scenario allows all data points to be
classified and validated while maintaining a separate training set.

A schematic graphic overview of the work process of grid search
with cross-validation of the proposed supervised machine learning
formulas for disease detection is shown in Figure 1.

2.3.1. Logistic regression
Logistic regression (LR), another technique from the field

of statistics borrowed by ML, is the process of modeling the
probability of a discrete outcome given an input variable (38).
The outcomes were measured using a dichotomous variable.
LR is a transformation of linear regression using the sigmoid
function, which obtains a linear combination of variables and
then applies them to a nonlinear sigmoidal function. LR is a
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FIGURE 1

Overview of the machine learning workflows for prediction of depressive disorder.

valuable analysis method for classification problems rather than a
regression model, and it attempts to achieve reliable performance
with linearly separable classes and can also be generalized to
multiclass classification.

2.3.2. Random forest
Random forest (RF) is a supervisedML algorithm that is widely

used in classification and regression tasks and has recently been
applied to engineering practice (39). It is also one of the most
widely used algorithms owing to its simplicity and diversity. It uses
ensemble learning, which constructs a set of classifiers, instead of
one classifier, to provide solutions to complex problems. Each node
tests a particular feature, and the tree leaves represent the output
labels. The final result is obtained by aggregating the outputs from
all the leaves, which is a powerful technique that combines many
classifiers to solve complex problems. It consists of many individual
decision trees that operate as ensembles. Each tree in the RF gives
a class prediction, and the class with the most votes becomes the
prediction of our model.

2.3.3. Decision trees
Decision trees (DTs) are one of the most used machine learning

algorithms. They are used for both classification and regression
(40). A DT is a support tool with a tree-like structure that models
the probable outcomes and possible consequences by providing
conditional control statements. They include branches representing
the decision-making steps that can lead to favorable results. In the
generated decision tree, each leaf node represents a class label of
the target variable, and each internal node corresponds to a feature
at each stage. The constructed DT is a binary tree built using a
classification algorithm called classification and regression trees

(CART). DTs are among the best learning algorithms based on
various learning methods. They boost predictive models in terms of
accuracy, ease of interpretation, and stability. These tools are also
effective in fitting non-linear relationships because they can solve
data-fitting challenges, such as regression and classification.

2.3.4. Support vector machine
This method involves determining the class of data points by

appropriate hyperplanes in a multidimensional space (41). Using
SVM, we aim to find a hyperplane that separates cases of two
categories of variables that take up neighboring clusters of vectors,
one on one side and the other on the other side. The support
vectors are those that are closer to the hyperplane. The training and
test data were used in the SVM. The training data are broken up
into target values and attributes, and SVM produces a model for
predicting the target values for the test data.

2.3.5. XGBoost
XGBoost is a DT-based ensemble ML algorithm that uses

a gradient-boosting framework (42). It is also one of the most
commonly used algorithms for prediction problems involving
unstructured data (images, text, etc.). Artificial neural networks
tend to outperform all other algorithms and frameworks. However,
when it comes to small-to-medium structured/tabular data, DT-
based algorithms are now considered the best in class.

2.3.6. Evaluation metrics
To evaluate the performance of a binary classification model,

selecting the appropriate metrics based on the requirements
of the user is highly important. The performance of the ML
models was comprehensively measured using different widely used
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metrics, including accuracy (ACC), recall (REC), precision (PREC),
F1 score, the area under the receiver operating characteristic
curve (AUROC), and the area under the precision-recall curve
(AUPRC). Predictive values were also demonstrated in a two-by-
two confusion matrix. For the metric definitions, we used the
following abbreviations: true positive (TP), true negative (TN),
false positive (FP), and false negative (FN), and then calculated the
corresponding values for each metric. A TP is a positive depression
outcome in which the model correctly predicts the depression class.
Similarly, a TN is an outcome in which the model correctly predicts
the non-depressive class. An FP is an outcome in which the model
incorrectly predicts a non-depression class as a depression class.
An FN is an outcome in which the model incorrectly predicts a
depression case as a non-depression case. The equations for these
metrics are as follows.

Accuracy (ACC) is the ratio of the overall correctly predicted
samples to the total number of examples in the evaluation dataset.

ACC =
Correctly classifieds samples

All samples
=

TP + TN

TP + FP + TN + FN

Recall (REC), also known as the sensitivity or true positive rate
(TPR), is the ratio of correctly predicted positive cases from all
samples assigned to the actual positive cases.

REC =
True positive samples

samples classified positive
=

TP

TP + FN

Precision (PREC) is the ratio between correctly predicted
positive samples in all samples assigned to the positive class.

PREC =
Samples correctly classified

samples assigned to class
=

TP

TP + FP

F1 score (F1) is generally defined as the harmonic mean of
precision and recall, which penalizes extreme values of either.

F1 = 2×
precision× recall

precision× recall
=

2× TP

2× TP + FP + FN

The receiver operating characteristic (ROC) curve is a valuable
metric showing the performance of a classification model at
all classification thresholds (43). It is widely used in binary
classification and has two parameters. The area under the precision-
recall curve is a valuable metric for classifying imbalanced data
(44). We took advantage of the Eli5 and PDP for global and local
interpretable model-agnostic explanations (LIME) and SHapley
Additive exPlanations (SHAP) libraries for local explainability
to make the “Black Box” ML models explainable by assigning
weights to different features, which signifies their importance
in classification.

2.4. Statistical analysis

The programming work for this study was performed in Python
programming language (version 3.9) (45). All data pre-processing
and analysis were carried out using Pandas (46), NumPy (47),
Python libraries for data manipulation and analysis, and Scikit-
learn (48), a Python module integrating a wide range of ML

algorithms. We performed all analyses on 24 cores of an Intel(R)
Xeon(R) Gold 5118 CPU @ 2.30 GHz, RAM 128 GB (Intel
Corporation, Santa Clara, CA, USA) running Windows 10 Pro.

3. Results

3.1. Data description

The general characteristics of the study population are
summarized in Table 1. The study population comprised 2,084men
(40.19%) and 2,720 women (59.81%). Compared with individuals
with depression, participants without depression tended to be
older (53.20 ± 17.51 and 53.20 ± 17.24 years, respectively).
Regarding stress-related variables, the depression group had a
higher percentage (59.90%) of high stress than the non-depression
group. Regarding sleep markers, participants with depression had
lower scores than the non-depression group, and this trend was

the same for income and quality-of-life variables. Nutrient dietary
variables were found to be statistically different between the groups,
with the depression group showing slightly lower scores than the

non-depression group. Further details are provided in Table 1.

3.2. Data exploration

When dealing with data, an exploratory analysis must
be performed. At the outset of each data analysis process,
investigators engage in “data exploration,” during which they
characterize datasets via data visualization and statistical methods
(49). Exploratory data analysis techniques such as clustering
and correlation can be used to identify the underlying structure
and fundamental correlations between variables in the data.
Data visualization is an essential element in data exploration
analysis (50). To effectively explore the two datasets generated
from the K-NHANES database, two well-known analyses
were performed: a population distribution conducted by the
uniform manifold approximation and projection (UMAP)
technique (51) and the Pearson correlation analysis between
variables (52). In this study, we sought to quantitatively
compare the K-NHANES database population frequencies
determined by UMAP-guided dot-plot-based visualizations.
The ability of this approach to accurately define population
space distribution is vital for establishing its general validity.
Figure 2 depicted a graphical representation of the K-NHANES
database sample in the two-dimensional space projected by
UMAP. The results demonstrate the full complexity of depression
diagnostics, as illustrated by visualizing the outcome space of
non-depression and depression from our data using the UMAP
method (Figure 2).

Analyzing correlations is a vital step in data analysis and ML
tasks. It allows data scientists to understand the possible patterns
and connections between two variables or a group of variables and
helps in choosing better models (53). This method is widely applied
in medical analysis (54). To further analyze the collected variables
in the datasets, a heat map of the Pearson correlation coefficients
between the variables was constructed (Supplementary Figure 1).
Pearson correlation coefficient helps to represent the relationship
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FIGURE 2

Visualization of non-depression and depression space with the UMAP method. Each dot represents a patient in a two-dimensional space, and its

color represents the group. Blue dots (0) represent non-depression people and green dots (1) represent patients’ depression. (A) Original dataset, (B)

quantile-based dataset, (C) test set from the original dataset, (D) train set from the original dataset, (E) test set from the quantile-based dataset, and

(F) train set from the quantile-based dataset.

between two and/or a group of features (52). It also measures the
strength of the correlation between variables together. The obtained
results show that all variables had a good range of correlation
and the dataset was free of multicollinearity, with only a few
variables having a slightly strong correlation with each other.
Two stress-related variables have a highly negative correlation
value. The same pattern also concerns the correlations between
marriage and age, smoking, and gender. All these variables are
essential parameters in depression disease occurrences (55–57).
Additionally, this synergic relationship might help increase the
accuracy of the machine learning prediction rate. Chronic disease
was also found to have a positive correlation with age, which has
been highlighted in different studies (58, 59). All nutrition-related
features have a positive correlation together. Variable correlation is
further illustrated in Supplementary Figure 1.

The correlation between the predictor variables and target
outcomes was also investigated. Figure 3 shows the Pearson
correlation coefficients for the target variables. It was demonstrated
that the low-stress recognition rate, in a positive way, and the self-
recognition of stress, in a negative way, have the highest correlation
with depression outcomes. In addition, health status and life quality
showed strong positive and negative correlations of at least 29 and
33, respectively, with the target outcome. Drinking, smoking, fat
quantiles, and fat intake also showed a lower correlation with the
target outcomes. Although drinking is positively correlated with
patient outcomes, controversy exists over the drinking variable,
which is negatively related to depression outcomes. All nutrition
variables were negatively correlated with depression; however,

among them, fiber quantile, fiber, and protein were the top three
highly correlated diet-based features with depression. This is in
line with the results of other reports in which the low protein
intake groups had a significantly higher risk of depression than
the standard protein intake groups (60–62). Several studies have
demonstrated a potential relationship between depression and
dietary fiber intake, in which an increased intake of total dietary
fiber is associated with a lower likelihood of depression (63, 64).

3.3. Comparison of model performance

Table 2 presents the comparison results of the ML algorithms
on the K-NHANES datasets (original and quantile-based). In the
original dataset, the results indicated that among all classification
models, except the DT algorithm, all models demonstrated high
predictive performance, with AUCs ranging between 81 and 85%.
The RF model achieved the highest AUC (84.96%), followed by the
LR (84.22%) and the XGB (84.17%). However, theDTwas the worse
classifier, with 69.77% AUC. There were significant differences
between the classification performance of the algorithms (one-
way ANOVA; F = 100.45; p < 0.001). Regarding accuracy, XGB
predicted depression with the highest accuracy (86.18%), followed
by the RF (84.76%) and the SVM (79.50%). The algorithms’
classification performance exhibited noteworthy variations (one-
way ANOVA; F = 51.56; p < 0.001).

In the presence of imbalanced classes, accuracy metrics will not
provide sufficient performance measures. Therefore, in addition
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FIGURE 3

Features correlating with target: (A) All variables, (B) nutritional default variables, and (C) nutritional quantile-based variables.

to AUC, the harmonic mean of recall and precision (F1 score)
was applied as an additional performance measure for the selected
ML algorithms. The F1 score obtained by LR (53%) was the
best in predicting depression, followed by the RF (51.69%) and
the SVM (48.18%). Simultaneously, the DT model reported the
lowest performance for depression classification, with a 46.03% F1
score. There were significant differences between the classification
performance of the algorithms (one-way ANOVA; F = 11.73;
p < 0.001). The XGB classifier achieved the highest precision
rate (61.39%), and the LR model with the best recall score
(75.95%). The AUC performance of the quantile-based nutrition
features values indicated a slight increase compared to the
original nutrition features values. The XGB algorithm obtained

the most accurate prediction for depression with an AUC of
85.34%. The RF algorithm came second with a prediction AUC
rate of 85.30%, followed by the LR algorithm with an AUC
rate of 84.03%. There were significant differences between the
classification performance of the algorithms (one-way ANOVA; F
= 90.13; p < 0.001).

Model performances measured by accuracy revealed the XGB
classifier as the best model with 86.02% accuracy, followed by RF
with 84.02% accuracy. There were significant differences between
the classification performance of the algorithms (one-way ANOVA;
F = 40.44; p< 0.001) (see Supplementary Table 2 for more details).
Additionally, the XGB classifier achieved the highest precision rate
(59.71%), the LR model with the best recall score (75.23%), and
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TABLE 2 Performance measures analysis for the di�erent machine learning models.

Models Accuracy Precision Recall F1-score AUC

Original

DT 75.14 (74.19, 76.09) 35.03 (33.61, 36.46) 68.45 (66.06, 70.83) 46.03 (44.67, 47.39) 69.76 (67.14, 72.37)

LR 78.64 (77.89, 79.39) 41.15 (39.26, 43.03) 75.95 (74.25, 77.66) 53.00 (51.40, 54.59) 84.22 (80.24, 88.19)

XGB 86.18 (85.59, 79.39) 61.39 (58.73, 43.03) 38.40 (36.07, 77.66) 46.53 (44.60, 54.59) 84.17 (80.89, 88.19)

RF 84.76 (84.21, 85.30) 52.29 (49.95, 54.63) 52.75 (50.30, 55.21) 51.69 (50.04, 53.34) 84.96 (80.31, 89.61)

SVM 79.50 (78.94, 80.07) 40.58 (38.97, 42.19) 60.41 (58.33, 62.49) 48.18 (46.80, 49.56) 80.40 (75.33, 85.47)

Quantile

DT 75.13 (74.22, 76.04) 36.26 (35.01, 37.52) 70.71 (68.66, 72.75) 47.98 (46.75, 49.20) 74.97 (68.28, 81.67)

LR 78.35 (77.67, 79.03) 40.60 (38.92, 42.29) 75.23 (73.56, 76.90) 52.40 (50.95, 53.84) 84.03 (80.13, 87.93)

XGB 86.02 (85.44, 79.03) 59.71 (57.43, 42.29) 40.30 (38.07, 76.90) 47.49 (45.79, 53.84) 85.34 (82.36, 87.93)

RF 84.02 (83.45, 84.58) 50.14 (47.87, 52.41) 59.14 (56.60, 61.68) 53.85 (52.49, 55.21) 85.30 (80.92, 89.69)

SVM 79.67 (79.17, 80.18) 39.60 (37.90, 41.30) 51.02 (48.75, 53.28) 44.10 (42.75, 45.46) 77.53 (74.14, 80.92)

Values reported as mean (95% confidence interval).

AUC, Area under the ROC Curve; DT, Decision Tree; LR, Logistic Regression; XGB, Extreme Gradient Boosting; RF, Random Forest; SVM, Support Vector Machine.

RF achieved the best F1 score (53.85%). Overall, the results seen
in the quantile-based datasets indicate that they may have the
potential for use in research investigations. However, only accuracy
metric performance showed a slight decrease when using quantile-
based nutrition features values compared to original values. The LR
model’s recall was best among all models in either quantile-based or
original nutrition datasets.

In ML, the learning curve is a widely used diagnostic tool
to demonstrate how well a model will perform in response to
changes in the number of training samples. These curves plot the
training and test performances of a sample of training examples
by incrementally adding new training examples. It is possible
to determine whether more training instances result in a higher
validation score using the learning curves. Additionally, this metric
can be used to diagnose underfit, overfit, or good fit models. The
learning curve of the training and test accuracy for different sizes of
data points is shown in Supplementary Figure 2. It can be observed
that the training and test performances converged for an increasing
number of training samples. The graph generated by XGBoost
indicates that the predictor is somehow overfitted because of the
increasing gap between the training and test curves with a similar
example used for both datasets. As soon as the training metrics
improve, the validation metrics worsen. For the SVM models, the
test metrics were slightly enhanced as soon as the training metrics
worsened. Based on the plot, LR performed better with increasing
samples in all cases. Generally, the narrower the gap, the lower the
variance. The addition of new training instances to the RF model
is likely to lead to better models. The validation curve did not
plateau at the maximum training set size. It still has the potential
to decrease and converge toward the training curve, similar to the
convergence observed in the linear regression case.

The results obtained from the predictive models were further
investigated using receiver operating characteristic (ROC) and
precision-recall (PR) curves. The ROC curve shows the relationship
between the rates of TP and FP. The ROC curves for the
different types of depression ML classifications are presented in

Figures 4A, B. This visualization revealed that the RF model for
depression prediction performed better, with an area under the
curve (AUC) of 86%. This indicates that the model had more TPs
and fewer FPs. In contrast, the worst performance was exhibited
by the SVM and DT models for depression disorder, with an AUC
of 81%. We can see that the AUC values are similar when we
use a dataset with quantile-based variables. PR curves and the
areas under them are widely used to summarize the performance
of ML classifier results, particularly when evaluating classifiers on
imbalanced datasets. This curve represents the tradeoff between
the proportion of positively labeled examples that are truly
positive (precision) and the ratio of correctly classified positives
(recall). Although they have been successfully applied to a wide
range of medical problems and have demonstrated significant
advantages in recent years (65, 66), their strength in depression
disorders has so far been mostly unexplored. When comparing the
prediction performance using the PRC-AUC (Figures 4C, D), the
XGB classifier demonstrated a higher ability to distinguish patients
with depression (minority class) than the RF and LR classifiers with
49 and 50% in original and quantile-based databases, respectively.
The RF model represents the second-best model in the original
database (39%) and LR in the quantile-based dataset (38%).

To further investigate the depression detection model on the
K-NHANES dataset, we compared the ML classifier discrimination
threshold to differentiate between depression and non-depression
cases by plotting the discrimination threshold using the package
called Yellowbrick (67). The threshold plot is a plot of the various
precision, recall, and F1 scores across different thresholds when
predicting depression in the dataset. The plot supported the process
of determining which threshold would be the optimal choice. A
visualization of the precision, recall, and F1 score, concerning the
classifier discrimination threshold, is shown in Figure 5. Generally,
the DT plot is set at 50%; however, a comparison of the DT plot
below and the original one shows that the optimal thresholds for
LR, XGB, and RF were 59, 14, and 42%, respectively. However,
for the quantile-based dataset, the optimal threshold was slightly
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FIGURE 4

ROC curves and precision-recall PRC curve of top three machine learning models. (A) ROC curves for the original dataset, (B) ROC curves for the

quantile-based dataset, (C) PRC curves for the original dataset, and (D) PRC curves for the quantile-based dataset.

higher than that of the original datasets; LR, XGB, and RF had
thresholds of 60, 26, and 49%, respectively. Surprisingly, all models
in the two datasets also boosted the same queue rate (∼20%).

To complement the results presented in this work, we provide
details regarding the performance of the ML models in terms of
the confusion matrices. Figure 6 shows the confusion matrices that
allowed us to assess the performance of ML for the classification of
depressive disorders. The horizontal axis represents the target class
outcomes and the vertical axis represents the predicted class in the

test dataset. XGBoost predicted the non-depression group with the
highest accuracy and the depression group with the lowest accuracy
when trained from scratch, and it correctly classified 98% of non-
depression cases. In contrast, the depression group had the highest
classification accuracy with LR achieved an excellent classification
of both classes, with 78% in the non-depression group and 79% in
the depression group. The results from the quantile-based dataset
demonstrated a slight improvement in the non-depression group
in the RF and LR classifiers.
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FIGURE 5

Interpolated precision-recall-F1 curve. The vertical dotted lines indicate the recall at which the curves achieve optimal precision.

The calibration curve is a linear relationship between the
independent and dependent variables using a least squares method
(68). The data are split into groups called “bins.” The y-axis
shows the number of positive cases in each bin, while the x-axis
shows the probability that the classifier predicted. The more closely
the generated calibration curve approaches the standard line, the
more closely the model’s predictions align with the actual class
distribution in the dataset. Assessing the calibration performance

of risk prediction models based on machine learning algorithms
receives attention in the medical field (69–71). Figure 7 shows
the reliability curve of the classifier. The results revealed that the
calibration slope from the models with the quantile-based dataset
was closer to the intercept, which indicates a better predictive
ability for the scaled version of the database. Regarding classifier
comparison, XGB models are better calibrated than the RF and LR
models for the original or quantile-based datasets.
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FIGURE 6

Confusion matrix of top three models on original and quantile-based datasets: Each of the confusion matrices are visualized as a color-coded heat

map. It can be observed that all the plotted confusion matrices have darker cells for the diagonal elements. This indicates that more data are being

predicted correctly to their respective label. Conversely, the o�-diagonal elements with light shades indicate misclassifications done by the models.

3.4. Model explanation and interpretability
of depression prediction

3.4.1. Explanation of the model at the global level
Clinically, ML-based models seem promising; however, their

interpretability has generally been overlooked. Recently, there has
been a growing movement to make ML models more transparent,
with a primary focus on opening-up black box algorithms based
on post hoc model-agnostic methods, namely, feature importance,
to enable the user to understand the model (72–76). Feature
importance and visualization are important and widely used
analysis methods in ML for calculating relative importance scores.

By calculating the scores for each feature, clinicians can determine
which features contribute the most to the predictive power of
the model for disease diagnosis. It is mainly applied in clinical
and biomedical areas because of the simplicity and interpretability
of feature ranking and risk analysis (77–79). We performed
permutation importance methods to evaluate variable ranking. The
permutation importance score compares the significance of each
characteristic to one that has been uniformly distributed, thereby
eliminating the possibility of bias (80).

Additionally, this score is generated using test data, which
provide amore accurate representation of the behavior of themodel
when responding to new input data. Recently, permutation-based
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FIGURE 7

Calibration curve of top three models on original and quantile-based datasets.

feature importance has been introduced to the interpretability of
machine-learning models (77). The importance of each feature is
calculated using Eli5 (81). Eli5 is a Python library that obtains
the global feature contribution toward the prediction. It works for
regression and classificationmodels and supports all Scikit-learning
algorithms. As shown in Figure 8, quality of life achieved a higher
rank for all ML models. Protein and fat, as nutritional indicators,
appeared repeatedly at the top of the positive and negative rankings.
This phenomenon confirmed that nutrition is a significant risk
factor for depressive disorders. For the RF model, stress-related
features had strong negative effects on depression prediction. For

the XGB model, among the nutritional factors, carbohydrates
demonstrated the lowest ranking for the prediction of depression.
For both the RF or XGBoost model, BMI, QWATER, and sleep time
revealed a robust negative ranking. Most importantly, the feature
ranking between the quantile-based dataset and the original-based
nutrition value dataset revealed different rankings. For the best-
performing classifiers in terms of accuracy (XGB), marital status,
gender, and occupation are the second, third, and fourth most
important features, respectively; however, in the quantile-based
nutrition dataset, this ranking was replaced by HS, QFiber, and
QProtein. For the best-performing classifiers in terms of AUC
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FIGURE 8

Feature contribution analysis performed by ELI5 for the classification of the depression model of the top three machine learning models. (A) LR

model for the original dataset, (B) XGB model for the original dataset, (C) RF model for the original dataset, (D) LR model for the quantile-based

dataset, (E) XGB model for the quantile-based dataset, and (F) RF model for the quantile-based dataset.
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(RF), occupation, protein, HS, and gender stand in place of
the second, third, and fourth, respectively, while in the quantile
version dataset, their places are changed to fourth, seventh, and
eighth, respectively. These changes in variable ranking are also
true for contributors with negative importance. In addition to the
nutrition-based variables, some demographic and common risk
factors also significantly contributed to depression prediction, such
as marriage, sleeping time, gender, and smoking. Occupation and
marital status were ranked as essential factors causing depression
by most models, reflecting the relationship between them and
depressive disorders.

A partial dependency plot is another effective global
interpretability method for understanding the relationship
between variables and predictions. In ML, the marginal impact
of one or two variables on the predicted outcome may be shown
using a partial dependence plot (82). As illustrated in Figure 9,
depression prediction decreased when the energy increased. The
predicted depression tends to decrease with increasing energy
values in the RF models. In contrast, in the XGBoost model,
the expected depression tended to improve with an increase in
the energy level. The RF and XGBoost models demonstrated the
same trend in water consumption values for the final depression
prediction. In the PD plot for proteins, the trend was no longer
upward as the value increased from 100 in the RF model. However,
in the XGBoost model, depression prediction was high, at 45, and
a dramatic decrease was revealed afterward. Once the fat values
became ∼80, the prediction performance of RF improved; and
height did not contribute to the overall age prediction (specified
with the partial dependence of 0).

3.4.2. Explanation of the model at the individual
level

Explainable AI (XAI) has been a central focus of AI
investigations owing to the critical need to establish algorithmic
transparency. Explanation of the model at the individual level
facilitates an understanding of how themodel arrived at a particular
prediction for a specific instance, which can improve its adoption
and effectiveness in various fields. We next used LIME and SHAP
force plots of nutritional features to illustrate their overall impact
on the depression prediction model in individual patients.

LIME (83) is a local interpretation procedure that can be
applied to any black-box ML model to provide a localized
explanation for a single prediction. LIME is based on the simple
but innovative principle of creating a new dataset of perturbed
samples and retrieving the corresponding predictions from the
black box model. LIME then assigns greater weight to altered
samples and uses the weighted sample to construct an interpretable
model. SHAP (SHapley Additive exPlanations) is a well-known
framework that can be used for explaining the output of models
at the individual level (84, 85).

As shown in Figure 10, the overall predicted probability of
depression classification of two representative patients is illustrated
in the LIME and SHAP plots. The RF model depression probability
of patient 18 as an actual positive instance was reasonably high
(0.64) due to positive conditions, including 0.91 < QOL ≤ 100,
0.00 < OCCU ≤ 1.00, 7.45 < SLPWD ≤ 8.00. The SHAP force

plot illustrated similar findings of key features, plus protein and
water (Figure 10A). In contrast, for patient 12, as an actual negative
instance, the RF model predicted probability for non-depression
was favorably high (0.83) due to many positive conditions: 0.91<
QOL≤ 100, SRR≤ 0.00, 0.00 < SRS≤ 3.00, HS≤ 2.00, MARRY≤

1.00, 7.45< SLPWD≤ 8.00. The SHAP force plot illustrated similar
findings of key features, plus fiber, water energy, and carbohydrate
(Figure 10B).

For the XGB classifier model, the depression probability of
patient 18 as an actual positive case was relatively low, at only
51% due to the impact of variables including 0.91 < QOL ≤ 100,
SRS ≤ 2.00, 0.00 < SRR ≤ 1.00, SLPWK ≤ 6.00, HS > 3.00, 0.00
< OCCU ≤ 1.00, 7.45 < SLPWD ≤ 8.00, MARRY > 1.00, and
CANCER ≤ 0.00. The SHAP force plot illustrated similar findings
of key features (Figure 10C). Conversely, for patient 12, as an
actual negative instance, the XGB classifier predicted probability
for non-depression at 55% with the impact of several key features,
including 0.91 < QOL ≤ 100, SRR ≤ 0.00, 2.00 < SRS ≤ 3.00,
SLPWK ≤ 6.00, CANCER ≤ 0.00, OCCU ≤ 0.00, MARRY ≤ 1.00,
7.45 < SLPWD ≤ 8.00, and 1.00 < GENDER ≤ 2.00. The SHAP
force plot illustrated similar findings of key features plus BMI and
HS (Figure 10D). These explanations at the individual level are
consistent with those at the feature level and should furthermitigate
the black box concern.

4. Discussion

In summary, this study aimed to investigate the diagnostic
ability of the ML-based algorithm in differentiating between
individuals with depressive and non-depressive disorders. The
evaluation of this ML study was based on a high-quality, large-scale
EHR dataset from the K-NHANES database. Integrating a large-
scale dataset to validate the proposed ML framework is of great
importance in this research. This study presents an explainable
ML method to aid clinical decision support enhanced by
hyperparameter optimization in depression prediction (Figure 1).
We evaluated the effectiveness of several ML algorithms for
predicting depression outcomes based on a combination of 27
clinical and nutritional factors. Overall, the variables selected for
the prediction model were the most clinically common and readily
available, and showed efficient interpretability and consistency with
clinical experience, further proving the reliability of the model.
This also indicates that our model can be applied to countries
and regions with relatively limited medical resources. Two original
and quantile-based datasets were generated from the K-NHANES
database. In the original dataset, we used the default values of all
variables, whereas, in the quantile-based dataset, we converted the
nutritional variable values to their quantile version. Normalization
methods such as quantile normalization are crucial for high-
dimensional data processing (86). Another finding of this study is
the feasibility of quantile-based features that can be used tomonitor
decision-making patterns after implementing a classification and
risk prediction model. For example, it was observed that there were
only minor changes in learned decisions, suggesting that quantile-
based features could even be extended to evaluate depression
classification. The altered quantile-based dataset results also have
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FIGURE 9

Partial dependence plots for the original dataset: (A) RF model and (B) XGBoost model. The partial plots show the dependencies of depression

prediction change on each of the nutritional variables.
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FIGURE 10

LIME and SHAP explanation plots of two representative individuals, patients 12 and 18. (A) Random forest model for an actual positive instance, (B)

random forest model for an actual negative instance, (C) XGBoost model for an actual positive instance, and (D) XGBoost model for an actual

negative instance.

potential feasibility for use by ML-based algorithms and could be
transferred to other datasets and tasks.

Well-established visualization methods for interpreting high-
dimensional depression data are scarce. To the best of our
knowledge, this is the first study on ML to predict depression
outcomes using nutritional and clinical data in an interpretable
manner. We demonstrated generalizable applications of UMAP to
provide informative insights into how an individual is distributed
in the dataset. Visualizing the space of non-depression and
depression data revealed substantial overlap, making classification
a challenging task for ML classifiers. This may highlight the
complexity of diagnosing depression (Figure 2). Correlations
between variables were identified using Pearson correlation.
The correlation between predictors and target variables was
also investigated. The correlation coefficient of the 33 variables
with depression also demonstrated the feasibility of ML to
efficiently define complex relationships between multiple risk
factor predictors and depression outcomes. Correlated variables
are common in high-dimensional data. The correlation analysis in
this study demonstrated that the generated datasets were free of
collinearity and that the correlations between the variables were
standard. Low-stress recognition with health status rate variables
and self-recognized stress with quality-of-life variables were highly
correlated (Supplementary Figure 1). All dietary variables were
found to be negatively correlated with depression. The strongest
correlation was found between depression and the fiber quantile,
fiber, and protein (Figure 3). This is in line with the results
of other reports that showed that low protein intake groups
had a significantly higher risk of depression than the standard

protein intake groups (60, 61). Several studies have demonstrated a
potential relationship between depression and dietary fiber intake,
in which an increased intake of total dietary fiber is associated with
a lower likelihood of depression (63).

In this study, GridSearchCV was conducted to tune the
hyperparameters of the classifiers, thus amplifying the classification
performance. Although the use of the grid search with cross-
validation technique requires higher computational costs, it is
essential for evaluating the ML model performance. At the same
time, there are risks of overfitting and problems with model fitness
(87). Cross-validation is a fundamental method used to minimize
overfitting and create better-fittingmodels (88). Several widely used
classification measures, such as ACC, PREC, REC, AUC, ROC
curve, and PRC curve, were generated to compare and visualize
the performance of the algorithms. The classification results
showed that the well-optimized approach achieved a promising
performance. We found that the performance of XGBoost and RF
in predicting depression was high in terms of accuracy and AUC,
respectively, whereas a relatively low accuracy was observed for
the SVM model (Table 1). Specifically, we evaluated our proposed
method against a widely used baseline method on the same dataset
and obtained a baseline score of 77%. Our proposed method
achieved a significantly higher score of 85%, demonstrating the
superiority of our approach.

We compared our results with two previous studies that
achieved RCO values of 86% and AUC of 77%, respectively. Our
study achieved an 86% ROC curve score for both the original
dataset and the quantile-based dataset using the RF model, which
is similar to the first study. Additionally, our study achieved an
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AUC value of 84.96% with the RF model on the original dataset
and an 85.34% with the XGB model which is noticeably higher
than the previous study. One important aspect of our study is that
our datasets had a higher positive class ratio than the previous
two studies. Specifically, our datasets had a positive class ratio of
16.09%, while the positive class ratios of the previous studies were 7
and 2%, respectively. This higher positive class ratio is an important
finding as it suggests that our datasets had a higher prevalence
of depression cases compared to the previous studies. Another
important aspect of our study is that we performed a more detailed
interpretable analysis, which can help in understanding how the
machine learning models are making predictions. Specifically,
we utilized feature importance analysis to identify the important
nutritional factors that contribute to depression prediction. This
analysis allowed us to identify which features were most predictive
of depression and how they interacted with each other.

Given that RF and XGBoost showed similar performances, we
think that fine-tuning might enable XGBoost to perform slightly
better than RF. An AUC analysis is often insufficient for comparing
predictive models, particularly in imbalanced datasets. Therefore,
we used ROC and PRC curves to evaluate the performance of
the five ML methods. Compared with other models, the RF
model exhibited better performance, with a ROC curve of 86%
for both datasets, and the XGBoost model exhibited a PRC
of 49% in the original and 50% in the quantile-based datasets
(Figure 4). LR demonstrated a lower misclassification for positive
cases when the confusion matrix was examined. However, the XGB
exhibited the worst performance (Figure 6). Although several high-
quality models exist for EHR-based depression identification, most
overlook interpretability, which is crucial for a model’s credibility.
Given that similar performances were found among LR, XGB, and
RF in this retrospective cohort study, we further evaluated their
calibration ability and decision threshold (Figures 5, 7).

To the best of our knowledge, this is the first study to use ML
to predict depression outcomes using nutritional and clinical data
in an interpretable manner. Considering the severe consequences
that might result from a poor medical diagnosis, professionals
have a solid inclination to cast doubt on AI models that fail to
provide further explanations for their decisions. While clinicians
use their clinical judgment when assessing patients, we believe
that a predictive model could offer explanations for prognosis
in a way that physicians can interpret. Thus, explainable AI
algorithms have been developed for healthcare applications (89).
This study attempted to provide the interpretability of ML models
by presenting techniques for global and local interpretations. To
address this issue, we introduced two widely used techniques, ELI5
and PDP for global interpretability, and LIME and SHAP for
local interpretation. In general, both approaches have the potential
to be equally valid depending on the application specifications.
Global interpretability approaches have the benefit that they
can be generalized over the entire population, whereas local
interpretability techniques deliver explanations at the individual
case level. In the feature importance analysis (Figure 8), the high-
ranking features in predicting depression appeared to be the QOL
among all classifiers.

Furthermore, our results showed that nutritional markers such
as protein and fat consistently ranked highly in both positive
and negative rankings. In contrast, carbohydrates had the lowest

ranking in predicting depression. The most significant implication
is that there is notable variability in the feature rankings between
the quantile-based dataset and the original-based nutrient value
dataset, which should be considered. The PDP plots further
demonstrate the expected distribution of the impact of each feature
in the superior models. With the help of PDP, the marginal effects
of nutrition-selected features were efficiently analyzed. The PDP
showed a threshold above which the probability of depression
increased. The explainable results showed relative variations in
the attribute values. For example, in the case of energy, the
predicted depression tended to decrease in the RF models with
increased energy values. In contrast, in the XGBoost model, the
expected depression tended to improve with an increase in the
energy level (Figure 9). Thus, we can conclude that interpretability
is model-dependent and should be considered when selecting
a model for prediction and classification tasks. Obtaining local
explanations is another approach that employs local explainers to
address application needs, and such amethod requires considerable
processing power. The LIME and SHAP technique provides a
representation that is both local and interpretable by illustrating the
relative differences between the variables that impact the depression
prediction model in individual patients (Figure 10).

This study has some limitations. First, this was a single-
race study, and external validation was required. Second, this
was a retrospective study, and the findings should be validated
in prospective studies. The strengths of this study are as
follows: First, we used a large cohort dataset to build an ML
model to predict depression. This could contribute to improving
the practical training and explanation of the prediction model
such that the model is closer to the actual situation of the
prediction power. Second, we used hyperparameter optimization
to build a prediction model to overcome the AI chasm, thereby
improving its performance. Third, we used a variety of ML
algorithms to select the optimal model that best fits the
dataset. Finally, we generated a transformed dataset in which
nutritional variables were converted into quantiles to facilitate
rapid detection.

5. Conclusion

This research concentrates on developing a fully automated
supervised ML-based classification system that can be used to
classify depression using an interpretable approach. The complex
nature of depressive disorders requires a large-scale study with
an efficient source of features. The extraction and selection of
nutritional features from a large-scale EHR-based system provided
well-combined features indicative of diagnosing and monitoring
depression. By doing so, well-fitted ML models can learn complex
patterns from the interactions between risk factors and achieve a
reasonable classification performance. Predicting the development
of depression risk may require a global understanding of the
fundamental risk factors for developing a depressive disorder.
To provide a high-level explanation, our interpretable approach
further identified more important risk factors that appear to be
significant in driving the risk of depression. Various interpretability
approaches may vary in their explanations of the performance of
the ML model. Clinicians need to be familiar with the differences
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between ML-based interpretability methods and determine which
works best for their specific questions. With additional work
and validation, we believe that our prediction model could
potentially contribute to an early depression diagnosis, leading to
the development of more effective preventive measures.
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