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Introduction: Excessive calorie intake and physical inactivity have dramatically

increased nutrient overload-associated disease, becoming a global public health

issue. Chimonanthus salicifolius S. Y. Hu (CHI) is a homology plant of food and

medicine in China and shows several health benefits.

Methods: This work investigated the antioxidant activity, the alleviating effects,

and the mechanism of action on diabetes and hyperlipidemia of CHI leaves.

Results and discussion: Results showed that CHI leaves infusion displayed

in vitro antioxidant activity measured by ABTS and ferric reducing antioxidant

power methods. In wild-type Kunming mice, CHI leaves infusion consumption

activated the hepatic antioxidant enzymes, including glutathione reductase,

glutathione S-transferase, glutathione peroxidase and thioredoxin reductase as

well as thioredoxin reductase 1. In alloxan-induced type 1 diabetic mice, CHI

leaves infusion ameliorated diabetic symptoms, including polyuria, polydipsia,

polyphagia and hyperglycemia, in a dose-dependent and time-course manners.

The mechanism involved CHI leaves up-regulating renal water reabsorption

associated protein – urine transporter A1–and promoting the trafficking of urine

transporter A1 and aquaporin 2 to the apical plasma membrane. Despite this, in

high-fat diet-induced hyperlipidemic golden hamsters, CHI leaves powder did not

significantly effect on hyperlipidemia and body weight gain. This might be
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attributed to CHI leaves powder increasing the calorie intake. Interestingly, we

found that CHI leaves extract containing a lower dose of total flavonoid than CHI

leaves powder pronouncedly reduced the levels of total cholesterol, triglyceride,

and low-density lipoprotein cholesterol in serum in golden hamsters fed a high-

fat diet. Furthermore, CHI leaves extract elevated the diversity of gut microbiota

and the abundance of Bifidobacterium and Ruminococcaceae_UCG-014. It also

decreased the abundance of Lactobacillus at the genus level in golden hamsters

fed a high-fat diet. Overall, CHI leaves benefit oxidative stress prevention and

metabolic syndrome amelioration in vivo.

KEYWORDS

Chimonanthus salicifolius S. Y. Hu leaves, antioxidant, metabolic syndrome, renal water
reabsorption, gut microbiota

GRAPHICAL ABSTRACT

Introduction

The overnutrition-associated diseases, including systemic
oxidative stress response, obesity, non-alcoholic fatty liver, and
type 2 diabetes mellitus induced by westernized diet patterns and
sedentary lifestyle, have become a global public health issue (1–
4). Redox homeostasis contributes to the alleviation of metabolic

Abbreviations: AHR, aryl hydrocarbon receptor; AKP, alkaline phosphatase;
ALT, alanine aminotransferase; ALX, alloxan; AQP2, aquaporin 2; AST,
aspartate aminotransferase; BSA, bovine serum albumin; C, catechin;
CDNB, 1-chloro,-2, 4-dinitrobenzene; CHI, Chimonanthus salicifolius
S.Y. Hu; CHIE, CHI leaves extract; CHII, CHI infusion; CHIP, CHI leaves
powder; DTNB, 5,5′-dithiobis (2-ni-trobenzoic acid); ECL, enhanced
chemiluminescence; EC, epicatechin; ECG, (-)-epicatechin-3-gallate;
EDTA, ethylene diamine tetraacetic acid; EGC, epigallocatechin; EGCG,
(-)-epigallocatechin-3-gallate; FBG, fasting blood glucose; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase; GPx, glutathione peroxidase;
GR, glutathione reductase; GSH, glutathione; GST, glutathione S-transferase;
HDL-C, high-density lipoprotein cholesterol; HFD, high-fat diet; HO-1, heme
oxygenase 1; H2O2, hydrogen peroxide; HPLC, high-performance liquid
chromatography; LDL-C, low-density lipoprotein cholesterol; NADPH,
nicotinamide-adenine dinucleotide phosphate; NQO1, NAD(P)H:quinone
oxidoreductase 1; Nrf2, nuclear factor erythroid 2-related factor 2; OTUs,
overlapping operational taxonomic units; PBS, phosphate buffer solution;

disturbances (5, 6). Long-term low-level oxidative stress induces
inflammatory response and aggravates metabolic syndrome.
Besides, the metabolism toxicities and secondary metabolites
of glucose and lipid strongly enhance oxidative stress, trigger
oxidative modification of biomolecules, and induce alterations in
redox metabolic regulation (5, 6). To equilibrate the oxidative stress
and maintain cellular redox homeostasis, the antioxidant defense
systems, including the thioredoxin (Trx) system comprising of Trx
and thioredoxin reductase (TrxR), the glutathione (GSH) system
comprising of GSH and glutathione reductase (GR) coupled with
glutaredoxin and the nuclear factor-E2-related factor 2 (Nrf2)
pathway intricately interact with each other (7). In addition, the
relationship is intricate between antioxidant defense systems and
glycolipid metabolism (5).

PMSF, Phenylmethanesulfonyl fluoride; PVDF, Polyvinylidene fluoride;
qPCR, quantitative polymerase chain reaction; RIPA, tissue fluid of fast
pyrolysis; RT, room temperature; RT-PCR, reverse transcriptase polymerase
chain reaction; SDS, sodium dodecyl sulfate; SGLT2, sodium-glucose
cotransporter 2; TBS-T, tris-buffered saline with 0.05% Tween 20; TC,
cholesterol; TG, triglyceride; Trx, thioredoxin; TrxR, thioredoxin reductase;
UT-A1, urea transporter-A1.
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The liver, pancreas, adipose tissue, and skeletal muscle
are affected by metabolic diseases and energy homeostasis.
Increasing evidence shows kidney participates and plays a crucial
role in maintaining glucose homeostasis. Renal-specific sodium-
glucose cotransporter 2 (SGLT2) in proximal tubules performs
approximately 90% of active renal glucose reabsorption; SGLT2
was considered a therapeutic target for anti-hyperglycemia by
promoting glycosuria, which was considered a novel therapeutic
strategy for type 2 diabetes (8–10). Though the approach aiming at
enhancing glycosuria by inhibiting renal-specific SGLT2 has been
validated effectively in diabetic patients, SGLT2 inhibitors increase
compensatory polyphagia and excessive water loss, and elevate
hematocrit and the incidence of urinary tract infection (8, 11, 12).
In addition, gut microbiota was another crucial organ involved
in maintaining the host’s health via interactions with the liver
and brain. Intestinal flora and its metabolites play an important
role in regulating energy homeostasis and host’s health (3, 13–
16). Intestinal flora is affected by calories intake, and nutrient
overload could cause gut microbiota dysbiosis, alter the metabolites
of intestinal flora and enhance the systemic oxidative stress level
and inflammatory response (3, 13, 14).

“Shi-Liang-tea” is widely consumed as a functional beverage
with a protective effect on the gastrointestinal track among some
ethnic minorities, especially She-minority in China. Its basal
resource, Chimonanthus salicifolius S.Y. Hu (CHI), a Chinese
endemic plant, belongs to the Calycanthaceae family and the
Chimonanthus Lindley genus, was approved as a new food
raw material by the National Health Commission of China in
2014. “Shi-Liang-tea” also serves as a folk medicine due to its
significant effect on eliminating food (17), strengthening the spleen,
and stopping diarrhea. It was included in concocts standard
of traditional Chinese medicine in Zhejiang Province in 2015.
As the homology of food and medicine, CHI leaves contain
various chemical ingredients, including volatile oil, flavonoids,
and alkaloid (17, 18). Furthermore, CHI leaves show numerous
biological activities, including antioxidant, anti-inflammatory,
anti-hyperlipidemia, anti-hypertensive, and anti-microbial effects
(19–22). Previous studies showed that the water extraction of
CHI leaves alleviated the lipid dysmetabolism in mice with
acute hyperlipidemia caused by intraperitoneal injection of egg
yolk and rats with hyperlipidemia caused by high-fat diets as
reflected by the decreased levels of cholesterol (TC), triglyceride
(TG) and low-density lipoprotein cholesterol (LDL-C) in serum
(23). However, no report related the regulating effects of
CHI leaves on lipid metabolism to modifying gut microbiota.
Chimonanthus nitens Oliv., pertains to Chimonanthus Lindl, has
similar ingredients to CHI (24). Chimonanthus nitens Oliv. was
reported to show hypoglycemic activity, as evidenced by the
significant inhibitory effect on α-glucosidase activity in vitro (25)
and anti-hyperlipidemic activity, as reflected by lowered levels of
TC, TG, and LDL-C in serum of diabetic mice post Chimonanthus
nitens Oliv. treatment (26). These reports mentioned above suggest
that CHI leaves may have the biological activity to modify intestinal
flora and regulate glycolipid metabolism.

Diet represents the most important modifiable factor in
preventing disease, and plant-based dietary patterns are associated
with a lower risk of metabolic syndrome and its associated disease.
It is an economical and effective strategy to alleviate the global
public health issue caused by overnutrition by dietary supplements

with natural products or their active ingredients. “Shi-Liang-tea”
(CHI) beverage is considered a healthy and safe drink with several
health benefits. The present study investigated the antioxidant
activity, anti-hyperglycemic and anti-hyperlipidemic effects of CHI
leaves and further explored the underlying mechanism of action on
diabetes and hyperlipidemia.

Materials and methods

Chemical reagents and standards

Chimonanthus salicifolius S. Y. Hu was obtained from the
Lishui Institute of Agriculture and Forestry Sciences (Lishui,
China). Rutinum, isoquercitrin, kaempferol 3-rutinoside, astragalin
and ALX were purchased from Sigma (St. Louis, MO, USA).
Epigallocatechin (EGC), catechin (C), epicatechin (EC), (-)-
epigallocatechin-3-gallate (EGCG), and (-)-epicatechin-3-gallate
(ECG) (purity > 99%) for animal treatment were obtained
from Ebeikar Tea & Extracts Co., Ltd. (Hangzhou, China).
Glutathione reductase (from Escherichia coli), GSH, nicotinamide
adenine dinucleotide phosphate (NADPH), bovine serum albumin
(BSA), 1-chloro,-2, 4-dinitrobenzene (CDNB) and 5,5’-dithiobis
(2-ni-trobenzoic acid) (DTNB) were all obtained from Sigma
(St. Louis, MO, USA). Total antioxidant capacity assay kits
with ABTS and FRAP methods were purchased from Nanjing
Jiancheng Biotechnology Co., Ltd. (Shanghai, China). Kits for
serum alanine aminotransferase (ALT), aspartate aminotransferase
(AST), alkaline phosphatase (AKP), TC, TG and LDL-C as well
as high-density lipoprotein cholesterol (HDL-C) were all obtained
from Nanjing Jiancheng Biotechnology Co., Ltd. (Shanghai, China).
The membrane of ECL Plus reagent and polyvinylidene fluoride
(PVDF) were purchased from Shanghai Bio-Rad Laboratories, Inc.
(Shanghai, China). Phenylmethanesulfonyl fluoride (PMSF) was
obtained from Sigma. Radio-Immune Precipitation Assay (RIPA)
regent and BCA protein assay kit were products of Beyotime
Biotechnology (Shanghai, China). The primary antibodies against
aquaporin 2 (AQP2) and the secondary antibody anti-rabbit IgG
were obtained from Cell Signaling Technology Inc. (Boston, MA,
USA). The primary antibody against TrxR1 was obtained from
Santa Cruz (Dallas, TX, USA). The primary antibodies against urea
transporter-A1 (UT-A1) and β-actin and the secondary antibody
anti-mouse IgG were bought from Sigma (St. Louis, MO, USA).
Other chemicals were of the highest grade available.

CHI samples preparation

Standardized CHI infusion (CHII, 1/10, w/v) was prepared by
immersing 1 g of dried CHI leaves in 10 mL hot water (100◦C) for
10 min. The CHI infusion was cooled to room temperature (RT)
in a water bath, filtrated by absorbent cotton, and stored frozen at
−80◦C. The CHII used for animal treatments (1/20 or 1/40, w/v)
were prepared by diluting the concentrated infusion (1/10, w/v)
with distilled water before use.

The dried CHI leaves were pre-crushed to a size of less than 12
mesh and then powdered using a bead mill with a millstone (CJM-
SY-A, Terada Seisakusho Co., Ltd.) for 20 h (rotational speed of 50
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to 55 rpm) to produce the matcha refer to as CHI leaves powder
(CHIP) (particle size of fewer than 18 µm). The indoor temperature
was below 20◦C, and the relative humidity was below 50%.

The CHI infusion (1/10, w/v) was prepared by immersing 1 g
of dried CHI leaves in 10 mL hot water (100◦C) for 10 min and
then was filtrated by absorbent cotton. The obtained suspension
was centrifuged at 3,000 g for 20 min, and a rotary evaporator
(Vacuum 0.1 MPa, 70) was used to concentrate the supernatant. The
concentrates were further dried (inlet temperature 135◦C, outlet
temperature 85◦C, feed speed 11 mL/min) by a spray mini-dryer
(BUCHI MINI SPRAY DRYER B-290, BUCHI Labortechnik AG,
Switzerland) refer to as CHI leaves extract (CHIE) and stored frozen
at−80◦C.

HPLC assay

To measure flavonoids of CHI, an Agilent 1260 HPLC system
equipped with a degasser, a quaternary pump, a light-tight
autosampler unit set, a thermostated column compartment, and
a 2,489 UV/Vis detector (360 nm) was employed (Agilent
Technologies, Santa Clara, CA, USA). Chromatographic
separation was achieved by an Agilent Zorbax SB-C18 column
(250 mm × 4.60 mm, 5 µm) at 30◦C. The mobile phase consisted
of (A) 0.1% aqueous phosphoric acid and (B) acetonitrile. The
gradient of solvent A was as follows: 0 min at 82% A, a linear
gradient to 70% A for 10 min, then a linear gradient to 55% A for
14 min, and held for 6 min to balance the system. The injection
volume was 10 µL, and the elution rate was 1 mL/min. Peaks
were identified by comparison of retention times with those of
standards. The major constituents of CHI leaves infusions are
shown in Tables 1, 2.

In vitro antioxidant activity analysis

Total antioxidant activities of the CHI leaves infusion (CHII)
were measured using commercial kits via FRAP and ABTS
methods, following the methods adopted by Santos et al. (27).

Animals and treatments

Kunming mice (18–20 g) were purchased from Shanghai
SLAC Laboratory Animal Co., Ltd. (Shanghai, China). Golden

hamsters (120–160 g) were purchased from Beijing Vital River
Laboratory Animal Technology Co., Ltd. (Beijing, China).
The regular chow diet (AIN-93) and high-fat diet (HFD)
were provided by Trophic Animal Feed High-Tech Co., Ltd.
(Nantong, China). All animals were housed in a room with
a temperature of 24 ± 2◦C, relative humidity of 50 ± 10%,
and 12 h light/dark cycles, and free access to food and water
ad libitum. All animal experimental protocols were reviewed
and approved by the Animal Care and Ethics Committee of
Anhui Agricultural University (ethics approval code, AAU 2018-
054).

In vivo experiments

Experiment 1
To evaluate the antioxidant capacity of CHII in vivo,

the Kunming mice were divided into four groups (n = 6),
allowed free access to water as control or CHII (1/40, CHII-
L; 1/20, CHII-M; or 1/10, CHII-H; w/v) for 1 week, and then
were sacrificed by cervical dislocation. Drinking fluids were
refreshed daily.

Experiment 2
To evaluate the ameliorating effects of CHII on diabetic

symptoms in vivo, diabetic mouse model was established through
a single intraperitoneal injection of 200 mg/kg alloxan (ALX)
to wild-type Kunming mice. One week after the ALX injection,
mice with fasting blood glucose (FBG) at the range of 12–
24 mmol/L were divided into three groups with even FBG
levels, allowed free access to water as diabetic control or CHII
(1/40, CHII-L; or 1/20, CHII-M; w/v). Wild-type Kunming mice
were used as standard control (n = 6). Drinking fluids were
refreshed daily. Mice were sacrificed by cervical dislocation after
2 weeks of treatment.

Experiment 3
To evaluate the long-term effects of CHII on diabetic

symptoms, the diabetic mouse model was established through a
single intraperitoneal injection of 200 mg/kg of ALX to wild-
type Kunming mice. One week after the ALX injection, mice
with FBG at 11–24 mmol/L were divided into two groups
with even FBG levels, and allowed free access to water as
diabetic control or CHI infusion (CHII-M, 1/20, w/v). Wild-type

TABLE 1 Flavonoids content in CHI leaves preparationsa.

CHI leaves
preparations

Flavonoids Total
flavonoids

Rutinum Isoquercitrin Kaempferol-3-O-
rutinoside

Astragalin Quercetin Kaempferol

CHII
(1/10, m/v;
mg/mL)

0.28± 0.01 0.12± 0.00 0.72± 0.03 0.00± 0.00 0.00± 0.00 0.00± 0.00 1.13± 0.05

CHIP (mg/g) 11.11± 0.05 4.76± 0.02 28.76± 0.12 0.30± 0.00 0.06± 0.00 0.32± 0.02 45.23± 0.18

CHIE (mg/g) 4.97± 0.05 1.98± 0.05 12.77± 0.11 1.33± 0.00 0.20± 0.00 0.19± 0.01 21.59± 0.10

aTotal flavonoids represent the sum of rutinum, isoquercitrin, kaempferol-3-O-rutinoside, astragalin, quercetin, and kaempferol. Flavonoids were measured with HPLC method. CHII, CHI
leaves infusion; CHIP, CHI leaves powder; CHIE, CHI leaves extract. Data are presented as mean± SEM (n = 2–3).
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TABLE 2 Catechins content in CHI leaves infusion (1/10, m/v; mg/mL)a.

Catechins Total
polyphenols

EGC C EC EGCG ECG Total catechins

Contents 1.10± 0.04 0.65± 0.02 0.03± 0.00 0.03± 0.00 0.10± 0.00 1.91± 0.07 4.96± 0.04

aTotal catechins represent the sum of epigallocatechin (EGC), catechin (C), epicatechin (EC), (-)-epigallocatechin-3-gallate (EGCG), and (-)-epicatechin-3-gallate (ECG). Catechins were
measured with HPLC method. Total polyphenol was measured with folin-ciocalteu method. CHII, CHI leaves infusion. Data are presented as mean± SEM (n = 3).

FIGURE 1

Antioxidant capacity and safety of CHII (1/10, 1/20, 1/40, m/v) in mice. Treatments were introduced in animal experiment 1. (A–D) Enzyme activity
levels of GR, GST, GPx, and TrxR in liver. (E) TrxR1 protein level in liver. (F–H) Levels of ALT, AST, and AKP in serum. (I–K) Body weight and food and
fluid intakes. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; NS, p > 0.05, compared to control. Data are presented as mean ± SEM (n = 6).

Kunming mice were used as standard control (n = 6). Drinking
fluids were refreshed daily. Mice were sacrificed by cervical
dislocation after 5 weeks.

Experiment 4
To evaluate the ameliorating effects of CHIP on hyperlipemia

in vivo, a hyperlipemic model was established through HFD in
golden hamsters. Golden hamsters were divided into four groups
(n = 8), allowed free access to the regular chow diet as standard
control, HFD, or CHIP (2% or 6% in HFD, m/m) for 9 weeks, and
then were sacrificed by cervical dislocation.

Experiment 5
To evaluate ameliorating effects of CHIE on hyperlipemia and

to evaluate regulating effects of CHIE on gut microbiota in vivo,
golden hamsters were divided into four groups (n = 8); one group
was allowed free access to the regular chow diet and water as
standard control, other groups were allowed free access to HFD
and water or CHIE (0.72% or 2.16% in drinking fluid, m/v) for
10 weeks, and then were sacrificed by cervical dislocation. Drinking
fluids were refreshed daily.

Sample preparation and biomarker
assessments

The serum was centrifuged at 6,000 g at 4◦C for 10 min.
Serum ALT, AST, AKP, TC, TG, LDL-C, and HDL-C levels were
measured using commercial kits. Fasting blood glucose levels of
mice were measured after overnight fasting on tail vein blood with
one touch glucometer (Roche Diagnostics, Mannheim, Germany).
Hepatic tissues were excised, rinsed in ice-cold saline and in
ice-cold phosphate buffer solution (PBS) at 0.15 mmol pH 7.2
containing 1 mmol ethylene diamine tetraacetic acid (EDTA), and
then homogenized in ice-cold saline centrifuged at 15,000 g and
4◦C for 15 min. Protein levels were determined by the Bradford
dye-binding assay with BSA as the standard. GR activity was
measured by the method of Carlberg and Mannervik with oxidized
glutathione as a substrate (7, 28), and presented in terms of nmol
of NADPH oxidized/min/mg protein. Glutathione S-transferase
(GST) activity was assessed using CDNB and calculated as nmol
CDNB conjugate formed/min/mg protein (29, 30). GPx and TrxR
activities were determined using the Smith and Levander method
with some modifications (31, 32). Glutathione peroxidase (GPx)
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FIGURE 2

Effect and mechanism of short-term intake of CHII (1/20, 1/40, m/v) on symptoms of diabetes in ALX-induced type 1 diabetic mice. Treatments were
introduced in animal experiment 2. (A–C) Urine output and fluid and food consumptions. (D) Fasting blood glucose. (E) AST in serum. (F,G) Enzyme
activity levels of TrxR in liver and serum. (H,I) Protein levels of UT-A1 and membrane glycosylated AQP2 in kidney. ∗p < 0.05, ∗∗∗p < 0.001, compared
to control. #p < 0.05, ##p < 0.01, ###p < 0.001, compared to ALX. NS, p > 0.05. Data are presented as mean ± SEM (n = 6–8).

activity was determined in working solution (65 mM PBS, pH
7.4 containing 2.5 mM GSH, 0.5 mM NADPH and 1.7 U/mL
GR) and 3 µL hydrogen peroxide (H2O2), and was monitored
by a microplate reader at 37◦C and absorbance value of 340 nm.
Thioredoxin reductase activity was determined in a working
solution (200 mM PBS, pH 8.0 containing 2 mg/mL DTNB,
0.2 mg/mL NADPH and 0.2 mg/mL BSA), and was monitored
by a microplate reader at 37◦C and absorbance value of 412 nm.
Glutathione peroxidase activity and TrxR activity were calculated in
terms of µmol of NADPH oxidized/min/mL serum or mg protein.

Western blot analysis

To extract total protein, livers or kidneys (0.1 g) were
homogenized in 1 mL ice-cold RIPA buffer containing 0.1 mg/mL
phenylmethylsulfonyl fluoride, and the lysates were clarified by
centrifugation (15,000 g, 10 min, 4◦C). To extract membrane
protein, kidneys (0.1 g) were homogenized in 1 mL ice-cold
membrane protein isolation buffer and then performed the
guidelines provided by the manufacturer (Beyotime Biotechnology
Co., Ltd., Shanghai, China). The total protein concentrations of
supernatants were determined by the BCA protein assay kit. Equal
amounts of protein were boiled at 95◦C for 10 min in 5 × loading
buffer, were separated through electrophoresis on a 10–15% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE),
and then were transferred to a PVDF membrane. After blocking
with 5% skimmed milk in Tris-buffered saline with 0.05% Tween
20 (TBS-T) for 2 h at room temperature (RT), the membrane was
incubated with specific primary antibody diluted in TBS-T by 200–
5,000 folds overnight at 4◦C, and then incubated with secondary

antibody diluted in TBS-T by 5,000-fold for 1 h at RT after washing
four times with TBS-T. The immunoreactivity was detected using
the ChemiDoc XRS + detection system (ECL, Bio-Rad, USA) after
being washed four times with TBS-T. The corresponding bands
were quantified by densitometry with the Quantity One R© Image
Analyzer software program (Bio-Rad).

Gut microbiota profiling

The total genome DNA of bacteria was extracted with a fecal
DNA isolation kit (MoBio Laboratories, USA) from frozen feces
according to the manufacturer’s instructions. The 16S rDNA gene
was amplified using a specific primer with the barcode (16S
V3 + V4). DNA sequencing libraries were generated using an NEB
Next Ultra DNA Library Prep Kit for Illumina (NEB, Ipswich, MA,
USA). The PCR reaction conditions consisted of 95◦C for 3 min
(1 cycle), 95◦C for 30 s and 50◦C for 30 s as well as 72◦C for
30 s (25 cycles), and a final extension at 72◦C for 10 min in the
presence of Fast Hifidelity Polymerase and Phusion R© High-Fidelity
PCR Master Mix with GC Buffer (New England Biolabs Co., Ltd.,
Beijing, China). Paired-end sequencing of the PCR products was
performed on a NovaSeq6000 at LC-Bio Technologies Co., Ltd.
(Hangzhou, China).

Statistical analysis

The data were expressed as mean± standard error of the mean
(SEM), and compared using one-way analysis of variance post hoc
Tukey or Dunnett test as appropriate. All statistical analyses were
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FIGURE 3

Effect and mechanism of long-term intake of CHII (1/20, m/v) on symptoms of diabetes in ALX-induced type 1 diabetic mice. Treatments were
introduced in animal experiment 3. (A–C) Urine output and fluid and food consumptions. (D) Fasting blood glucose. (E) Level of ALT in serum.
(F) Enzyme activity of GPx in liver. (G,H) Protein levels of membrane glycosylated UT-A1 and AQP2 in kidney. ∗p < 0.05, ∗∗∗p < 0.001, compared to
control. #p < 0.05, ##p < 0.01, ###p < 0.001, compared to ALX. NS, p > 0.05. Data are presented as mean ± SEM (n = 6).

performed using GraphPad software (Prism version 5, San Diego,
CA, USA). The correlation coefficient of gut microbiota at the
genus level was performed with Pearson correlation analysis (SPSS
software, version 20, IBM, Armonk, NY, USA). A p-value lower
than 0.05 was considered to be statistically significant.

Results

Flavonoids content and antioxidant
activities of CHII in vitro and in vivo

The High-performance liquid chromatography (HPLC)
profiling of three preparation samples demonstrated the presence
of flavonoids in CHI leaves, which mainly include rutinum,

isoquercitrin, kaempferol-3-O-rutinoside, astragalin, quercetin,
and kaempferol (Table 1). In addition, catechins components were
identified by HPLC in CHII sample (Table 2). The FRAP and ABTS
assays were used to assay CHII’s total antioxidant activity in vitro.
Results showed that CHII had a dose-dependent antioxidant
property and an ABTS scavenging activity (Supplementary
Figure 1). In vivo, CHII up-regulated the levels of the hepatic
antioxidant enzyme activity, including GR, GST, and GPx
(Figures 1A–C) in a dose-dependent manner (1/40, 1/20, and
1/10, m/v) in mice. Furthermore, the high-dose CHII (1/10, w/v)
increased the levels of hepatic TrxR activity and TrxR1 protein
expression (Figures 1D, E) without a significant effect on the
levels of ALT, AST and AKP in serum, body weight, and food
intake (Figures 1F–J), but increased fluid intake (Figure 1K).
These results suggest that CHII can prevent oxidative stress-related
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FIGURE 4

Effects of CHIP (2% or 6% in diet, m/m) on hyperlipidemia in golden hamsters fed a high-fat diet. Treatments were introduced in animal
experiment 4. (A–D) Levels of TC, TG, LDL-C and HDL-C in serum. (E–G) Body weight gain and food and fluid intakes. (H–J) Enzyme activity levels
of GPx, GST and TrxR in liver. ∗p < 0.05, ∗∗∗p < 0.001, compared to control. #p < 0.05, ##p < 0.01, compared to ALX. NS, p > 0.05. Data are
presented as mean ± SEM (n = 4–8).

diseases by strengthening the antioxidant defense system without
increasing the risk of liver damage.

CHII effectively ameliorated symptoms
of diabetes in ALX-induced diabetic mice

Alloxan-induced type 1 diabetic mice were used to investigate
the alleviating effects of CHII on typical diabetic symptoms. Results
showed that CHII dose-dependently (1/40 and 1/20, m/v) improved
the diabetic symptoms, including polyuria, polydipsia, polyphagia
and hyperglycemia (Figures 2A–D), as indicated by the markedly
reduced levels of urine output, fluid and food intakes and fasting
blood glucose (Figures 2A–D) after treatment for 2 weeks. In
addition, we found that alloxan treatment significantly elevated the
level of AST in serum and suppressed the enzyme activity level
of TrxR in the liver. Of interest, both doses of CHII decreased
the level of AST in serum (Figure 2E) and increased the enzyme
activity level of TrxR in the liver and serum (Figures 2F, G).
At the molecular level, the ALX treatment significantly down-
regulated renal water resorption-associated protein – UT-A1
(Figure 2H), which should induce diabetic polyuria and polydipsia.
The medium-dose CHII prevented the down-regulation of renal
UT-A1 (Figure 2H) and enhanced the tracking of AQP2 to the
apical plasma membrane, as indicated by the increased expression
level of membrane glycosylated AQP2 (Figure 2I). A long-term

(5 weeks) experiment was conducted to confirm the ameliorating
effects of CHII on diabetic symptoms and the regulating effect
on renal water reabsorption associated proteins in ALX-induced
diabetic mice.

Again, results showed that CHII (1/20, m/v) pronouncedly
ameliorated diabetic symptoms mentioned above (Figures 3A–D),
prevented the elevation of ALT in serum (Figure 3E), enhanced
the activity of GPx in the liver (Figure 3F), and significantly,
increased the expression levels of renal membrane glycosylated UT-
A1 and AQP2 (Figures 3G, H). Based on the present results, we
conclude that CHII has a pronounced alleviating effect on diabetes.
To further investigate the influence of different preparation
forms of CHI leaves on metabolic syndrome, we explored the
ameliorating effects of CHI leaves powder and CHI leaves extract
on hyperlipidemia in golden hamsters fed a high-fat diet.

CHIP did not pronouncedly alleviate
hyperlipidemia in golden hamsters fed a
high-fat diet

The high-fat diet elevated the levels of TC, TG, LDL-C, and
HDL-C in serum (Figures 4A–D) and body weight gain (Figure 4E)
without significantly altering the food and fluid intakes (Figures 4F,
G) and the hepatic enzyme activity levels of GPx, GST and TrxR
(Figures 4H–J) in golden hamsters. Surprisingly, CHIP (2% or 6%
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FIGURE 5

Effects of CHIE (0.72% or 2.16% in drinking fluid, m/v) on hyperlipidemia in golden hamsters fed a high-fat diet. Treatments were introduced in
animal experiment 5. (A–D) Levels of TC, TG, LDL-C and HDL-C in serum. (E–G) Body weight gain and food and fluid intakes. (H,I) Levels of ALT and
AST in serum. (J,K) Enzyme activity levels of GST and TrxR in liver. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, compared to control. #p < 0.05, ##p < 0.01,
###p < 0.001, compared to ALX. NS, p > 0.05. Data are presented as mean ± SEM (n = 8).

in diet, m/m) did not provide a significant effect on hyperlipidemia
(Figures 4A–D) and body weight gain (Figure 4E), but the high-
dose CHIP significantly enhanced the hepatic enzyme activity levels
of GPx, GST and TrxR (Figures 4H–J). In addition, the high-dose
CHI leaves powder increased food intake (Figure 4F), and both
doses of CHI leaves powder significantly decreased the fluid intake
(Figure 4G).

CHIE markedly alleviated hyperlipidemia
in golden hamsters fed a high-fat diet

Interestingly, the elevated levels of TC, TG, and LDL-C
(Figures 5A–C) induced by a high-fat diet were pronouncedly
reduced (Figures 5A–C) by CHIE (0.72% in drinking fluid, m/v)
that containing the lower dose of total flavonoid compared to the
high-dose CHIP (6% in diet, m/m) (Table 1) without markedly
changed the level of HDL-C in serum (Figure 5D), body weight
gain (Figure 5E) and food and fluid intakes (Figures 5F, G)
in golden hamsters. The markedly elevated levels of ALT and
AST in serum (Figures 5H, I) indicated that a long-term high-
fat diet increased the risk of liver damage. We found that both
doses of CHIE (0.72%, 2.16% in drinking fluid, m/v) increased
the enzyme activity level of GST (Figure 5J) and reduced the
level of AST (Figure 5I) in serum. Furthermore, the high-dose
CHIE increased the enzyme activity of TrxR (Figure 5K) in the
liver.

CHIE influenced gut microbiomes in
golden hamsters fed a high-fat diet

In addition, we found that the high-dose CHIE pronouncedly
influenced the community structure and relative abundance of gut
microbiomes (Figures 6A–D). More specifically, the α-diversity
analysis of the gut microbiomes showed CHIE increased microbiota
diversity, evidenced by the elevated Chao1 index and observed
species (Figures 6A, B). The similarity and consistency of samples
were displayed with the overlapping operational taxonomic units
(OTUs) in the Venn diagram. There are 521 OTUs shared in
all groups. One thousand and 244 OTUs were identified in the
control group, and a high-fat diet increased the OTUs numbers
to 1,423. CHIE increased the OTUs numbers to 1,505 further
(Figure 6C). In addition, CHIE increased the relative abundance
of Bifidobacterium and Ruminococcaceae_UCG-014, and decreased
the relative abundance of Lactobacillus in feces at the genus level
in golden hamsters fed a high-fat diet (Figures 6E–G). Correlation
analyses between the relative abundance of the markedly altered
gut microbiota and hyperlipidemia-related parameters – TG, TC,
and LDL-C – suggested that the abundances of Bifidobacterium and
Ruminococcaceae_UCG-014 are negatively (p < 0.05) correlated
with the levels of TG, TC and LDL-C in serum (Figures 6H–
M), and the abundance of Lactobacillus is positively (p < 0.05)
correlated with the levels of TG, TC and LDL-C in serum
(Figures 6N–P).
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Discussion

Trx and GSH systems are the two well-documented NADPH-
dependent disulfide reduction pathways and serve as backup
systems for each other (33). Nrf2 pathway is known as a regulator
of redox homeostasis, whereas, TrxR1, Trx1, GST, and GPx,
as the critical components of Trx and GSH systems, are Nrf2
target genes (7, 34, 35). In addition, the activation of heme
oxygenase 1 (HO-1) and NAD(P)H: quinone oxidoreductase 1
(NQO1), the downstream genes of Nrf2, depend on the activity of
TrxR1, which has been proved with direct inhibition with TrxR1
siRNA and chemical inhibitor studies (36, 37). Nrf2 activation
via TrxR1 suppression represents a strategy shift for oxidative
injury treatment (38). Overall, there is an intricate interaction
among antioxidant defense systems. A variety of polyphenols could
induce the antioxidant defense systems mentioned above. For
instance, rutinum, astragalin, and quercetin can up-regulate the
Nrf2 pathway, as evidenced by the augmented activity of GPx,
GR, and GST (39–41) and detoxification enzyme HO-1 and NQO1
(42, 43). Isoquercitrin can activate Nrf2 pathway as reflected by
the induction of HO-1 and NQO1 (44, 45). Catechins, including
EGC, C, and EGCG, possess the capacity of Nrf2 and its target
genes activation, including TrxR1 and GPx1 (7, 46, 47). Our data
showed CHI leaves increased the levels of GR, GST, GPx, and TrxR
enzymes activity as well as TrxR1 protein in the liver (Figures 1A–
E) in healthy mice, TrxR and GPx enzymes activity in the liver and
TrxR activity in serum (Figures 2F, G, 3F) in ALX-induced type 1
diabetic mice; and GPx, GST and TrxR enzymes activity in the liver
(Figures 4H–J, 5K), as well as GST activity in serum (Figure 5J) in
golden hamsters, fed a high-fat diet. These results suggest that the
activation of Trx and GSH systems may be attributed to the high
amount of flavonoids and catechins in CHI leaves (Tables 1, 2),
and the activation of Trx and GSH systems may contribute to the
up-regulation of the upstream-Nrf2.

Numerous reports showed that the induction of antioxidant
defense systems is beneficial to oxidative damage and inflammation
response prevention, thereby, alleviating metabolic syndrome (48–
50). Besides, Nrf2 inhibits adipogenic differentiation via activation
of the aryl hydrocarbon receptor (AHR) pathway or stimulation
of GSH metabolism (51), suggesting that the enhancement of
antioxidant defense systems may contribute to ameliorating lipid
metabolic abnormality. Indeed, in the present study, we found
CHI had a protective effect on liver injury, as reflected by the
reduced levels of AST in serum (Figures 2E, F, 3E, 5H–I) in murine
with glucose or/and lipid dysmetabolism induced by ALX or high-
fat diet. In addition, CHI markedly alleviated hyperglycemia, as
evidenced by the decreased fasting blood glucose in ALX-induced
type 1 diabetic mice (Figures 2D, 3D), and hyperlipidemia, as
reflected by the reduced levels of TC, TG, and LDL-C (Figures 5A–
C) in serum in golden hamsters fed a high-fat diet, which
suggests CHI is beneficial to glycolipid dysmetabolism alleviation
in vivo. Nevertheless, the causal relationship between oxidative
stress reduction and glycolipid dysmetabolism improvement needs
further investigation.

Diabetes mellitus is a debilitating disease with multiple
symptoms, including hyperglycemia, polyuria, polydipsia, and
polyphagia in the clinic. Polyuria and glycosuria as the first
symptoms trigger polydipsia and hyperphagia to maintain water

and energy balance. However, hyperphagia could further elevate
blood glucose which induces osmotic diuresis leading to a vicious
cycle. Ultimately, these extremely exhausted pathophysiological
responses fail to alleviate advanced glycemia. Metformin, as the
first line and the most commonly prescribed drug, possesses
significant advantages in hypoglycemic efficacy, high safety and
low cost for the therapy of T2DM (52–55). However, metformin
exhibits a weak diabetic polydipsia alleviation effect (56, 57).
Rosiglitazone, another anti-diabetes oral drug, can cause serious
fluid retention, plasma volume expansion, and large body weight
gain in humans and db/db mice (58–61) though pronouncedly
alleviated the polydipsia in diabetic animals (58–61). Overall,
there are various side effects in currently available anti-diabetic
drugs, leading to an incongruously low proportion of patients
achieving glycemic goals with single or multiple anti-diabetic
agents. Therefore, it is of great significance to search for natural
products with glycolipid regulatory ability from natural products
pool being enriched with bioactive compounds and acting as a
crucial role in drug discovery for the prevention or improvement of
metabolic syndrome. In this study, we found CHI leaves improved
diabetic symptoms, including polyuria, polydipsia, polyphagia, and
hyperglycemia, as reflected by the decreased levels of urine output,
fluid and food intake as well as fasting blood glucose (Figures 2A–
D, 3A–D) after treatment for 2 or 5 weeks. These results suggest
that CHI leaves can ameliorate typical symptoms of diabetes,
especially polyuria and polydipsia, rapidly and persistently without
observable side effects.

The kidney maintains glucose and body fluid homeostasis,
and reabsorbs 99% of raw urine (about 180 L) produced
by healthy adults per day. Renal water reabsorption-associated
proteins, including UT-A1 and AQP2, regulated by PKC-α via
phosphorylation of UT-A1 at Ser494 and AQP2 at Ser256 or
dephosphorylation of AQP2 at Ser261 (62–67), in medullary
collecting ducts play an important role in maintaining body water
homeostasis via promoting renal water reabsorption and urine
concentration (68, 69). For instance, lack of urea transporter UT-
B adaptively increased the expression of AQP2 in UT-B null mice
(69). AQP2 and UT-A1 proteins were up-regulated in the renal
medulla collecting duct in diabetes for fighting against urine-
concentrating defect (68, 70). And the down-regulation of AQP2
and UT-A1 pronouncedly elevated the urine output in lithium-
induced nephrogenic diabetes insipidus (71). We hypothesized that
it is a crucial strategy for blocking glucose-induced osmotic diuresis
by activating renal water reabsorption-associated proteins in
diabetes with symptoms of polyuria and polydipsia. Indeed, in this
work, we found CHI leaves could quickly and markedly alleviate
diabetic polyuria and polydipsia in a dose-dependent manner
within 2 weeks post-treatment in diabetic mice (Figures 2A, B), and
the mechanism involved in the enhanced renal water reabsorption
associated protein UT-A1 and the increased trafficking of AQP2
to the apical plasma membrane (Figures 2H, I). These bioeffects
above mentioned and the responses of renal UT-A1 and AQP2
to CHI leaves consumption were also observed in the long-term
experiment in diabetic mice (Figures 3A–D, G, H). The unique
biological activity of CHI leaves on up-regulating renal water
reabsorption-associated proteins suggests that CHI leaves may act
as a dietary supplement for ameliorating diabetic polyuria and
polydipsia.
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FIGURE 6

Effects of CHIE on gut microbiota in golden hamsters fed a high-fat diet and the correlation analyses between relative abundance of gut microbiota
and hyperlipidemia core parameters. Treatments were introduced in animal experiment 5. (A) Chao1 index of alpha-diversity. (B) Observed OTU
number. (C) Petal analysis of OTU. (D) Relative abundance of gut microbiota at the genus level (top 30). (E–G) Relative abundance of
Bifidobacterium, Ruminococcaceae_UCG-014 and Lactobacillus at the genus level in feces. (H–P) Correlation analyses between the relative
abundance of Bifidobacterium, Ruminococcaceae_UCG-014, and Lactobacillus with the levels of TG, TC or/and LDL-C in serum. ∗p < 0.05,
compared to control. #p < 0.05, compared to HFD. NS, p > 0.05. Data are presented as mean ± SEM (n = 4).

Several reports showed that polyphenols, including green tea
polyphenol preparation and epicatechin, reduced the fluid intake
in diabetic mice (72, 73). However, the active ingredients activate
renal water reabsorption-associated proteins are still unclear,
because these reports mentioned above related their results to

the reduced fasting blood glucose and glucose-induced osmotic
diuresis. Until recently we demonstrated that EGCG pronouncedly
up-regulated renal water reabsorption-associated proteins involved
in urine concentration and reduced urine output (74), which
suggested EGCG can block glucose-induced osmotic diuresis via
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FIGURE 7

Schematic diagram showing the underlying mechanisms of CHI leaves consumption on ameliorating metabolic syndrome.

up-regulating renal water reabsorption associated proteins because
urine output is positively correlated with fluid intake (74). Since
a limited amount of EGCG in CHI leaves infusion (0.03 mg/mL,
1/10, m/v) (Table 2), certain phytochemicals other than EGCG
in CHI leaves infusion are involved in the up-regulation of
renal water reabsorption associated proteins. This requires further
investigation and the evidence mentioned above suggests the
water-soluble polyphenols in CHI leaves infusion should be an
essential clue.

Bifidobacterium and Ruminococcaceae_UCG-014 are known
as probiotics. Bifidobacterium participates in the alleviation of
oxidative stress (75) and the production of short-chain fatty
acids (SCFAs) in the gut (76), and shows glycosidic activity
in enhancing the bioavailability of isoflavone in vivo (77, 78).
Ruminococcaceae_UCG-014 is beneficial SCFAs-producing bacteria
(79), which was reported to affect relieving high-fat diet-induced
obesity (80), type 2 diabetes in rats (81) and dextran sodium sulfate
induced homeostasis imbalance of host health in mice (82). We
found high-fat diet markedly decreased the relative abundance
of Bifidobacterium and Ruminococcaceae_UCG-014 at the genus
level in feces, but CHI leaves extract effectively prevented the
reduction of these probiotics (Figures 6E, F). Lactobacillus is
beneficial bacteria for promoting digestion, maintaining intestinal
flora homeostasis and preventing metabolic syndrome (83, 84).
Interestingly, reports show high-fat diet or nutrient overload
increases the abundance of Lactobacillus in the gut (85, 86), which
might be attributed to the fact that excessive calory is beneficial to
the proliferation of Lactobacillus. In this study, we found high-fat
diet pronouncedly increased the relative abundance of Lactobacillus
at the genus level; CHI leaves extract prevented the alteration
(Figure 6G). In addition, correlation analyses showed that the
abundances of Bifidobacterium and Ruminococcaceae_UCG-014
are negatively correlated with the levels of TG, TC and LDL-C
in serum (Figures 6H–M), and the abundance of Lactobacillus
is positively correlated with the levels of TG, TC and LDL-C in
serum (Figures 6N–P), which suggested CHIE reprogrammed gut

microbiota contributed to the alleviation of hyperlipidemia that
induced by a high-fat diet.

Food intake affects energy homeostasis seriously and calorie
consumption is one of the significant determinants for metabolic
outcome. In this study, we found CHII blocked glycosuria-
caused calorie loss and compensatory polyphagia (Figures 2A,
C, 3A, C) via promoting urine concentration (Figures 2A, 3A)
by up-regulation of renal water reabsorption associated proteins
(Figures 2H, I, 3G, H), thereby, as a consequence, hyperglycemia
was alleviated pronouncedly (Figures 2D, 3D) in alloxan-induced
diabetic mice. CHIP did not help hyperlipidemia in golden
hamsters fed a high-fat diet (Figures 4A–C), which could be
attributed to the increased food intake (Figure 4F). However,
CHIE effectively improved hyperlipidemia (Figures 5A–C) by
modified gut microbiota (Figures 6A–G) though CHIE did not
significantly alter the calories intake in golden hamsters fed a high-
fat diet (Figure 5F). This suggests that food consumption and gut
microbiota are essential factors that should be considered when
analyzing and interpreting the bioeffects and outcome of metabolic
syndrome. Since different preparation forms may produce other
biological effects (87), the present results suggested that CHIE
may be a better form than CHIP for alleviating hyperlipidemia.
Besides, in the present study, CHII, CHIE, and CHIP designed
separate experiments, but proved the same hypothesis, which may
not rigorous enough. Using three samples in one experiment to
illustrate the same question will be more convincing. We stated this
as the limitation of our experimental design.

Conclusion

In summary, CHII showed strong antioxidant activity; as
evidenced by the total antioxidant and free radical scavenging
capacities measured by the FRAP and ABTS methods in vitro and
the activated antioxidant defense systems–Trx and GSH systems–in
liver and serum post CHII consumption in mice. CHII effectively
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alleviated diabetic symptoms, including polyurine, polydipsia,
polyphagia and hyperglycemia, by up-regulating renal water
reabsorption associated protein involved in urine concentration–
AQP2 and UT-A1–and promoting tracking of these proteins to the
apical plasma membrane in alloxan-induced diabetic mice. CHIE
significantly reduced the levels of TC, TG, and LDL-C in serum
by increasing the diversity of intestinal flora and the abundance
of probiotics in the gut in golden hamsters fed a high-fat diet.
Taken together, CHI leaves can effectively prevent oxidative stress
by activating the antioxidant defense systems, improve diabetes by
up-regulation of renal water reabsorption proteins and ameliorate
hyperlipidemia via modifying gut microbiota (Figure 7), which
suggests CHI leaves or their extract may be as prebiotics for
preventing overnutrition-associated disease, including oxidative
stress and metabolic syndrome, if these bioeffects mentioned above
could be observed in humans.
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