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Background: Animal and plant protein sources have contrasting relationships 
with nutrient adequacy and long-term health, and their adequate ratio is highly 
debated.

Objective: We aimed to explore how the percentage of plant protein in the diet 
(%PP) relates to nutrient adequacy and long-term health but also to environmental 
pressures, to determine the adequate and potentially optimal %PP values.

Methods: Observed diets were extracted from the dietary intakes of French 
adults (INCA3, n = 1,125). Using reference values for nutrients and disease burden 
risks for foods, we  modeled diets with graded %PP values that simultaneously 
ensure nutrient adequacy, minimize long-term health risks and preserve at 
best dietary habits. This multi-criteria diet optimization was conducted in a 
hierarchical manner, giving priority to long-term health over diet proximity, under 
the constraints of ensuring nutrient adequacy and food cultural acceptability. 
We  explored the tensions between objectives and identified the most critical 
nutrients and influential constraints by sensitivity analysis. Finally, environmental 
pressures related to the modeled diets were estimated using the AGRIBALYSE 
database.

Results: We find that nutrient-adequate diets must fall within the ~15–80% %PP 
range, a slightly wider range being nevertheless identifiable by waiving the food 
acceptability constraints. Fully healthy diets, also achieving the minimum-risk 
exposure levels for both unhealthy and healthy foods, must fall within the 25–
70% %PP range. All of these healthy diets were very distant from current typical 
diet. Those with higher %PP had lower environmental impacts, notably on climate 
change and land use, while being as far from current diet.

Conclusion: There is no single optimal %PP value when considering only nutrition 
and health, but high %PP diets are more sustainable. For %PP > 80%, nutrient 
fortification/supplementation and/or new foods are required.
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Introduction

Historical and current nutritional transitions are coupled with 
changes in the relative contribution of dietary animal and plant 
proteins. This has been studied from hunter-gatherers to post-
agricultural societies (1), from traditional diets that enabled thriving 
civilizations to diets in post-industrialized countries (2, 3), and more 
recently, in Western countries with the emerging trend toward more 
plant-predominant diets.

Changes in plant and animal protein intake raise classic 
nutritional questions. One in particular concerns the possible risk of 
some nutrient shortage with diets too low in animal protein, since 
animal protein foods contribute significantly to the intake of 
indispensable nutrients like iron, calcium and vitamin B12, whose 
overt deficiencies have various adverse health consequences (such as 
anemia and higher risk of osteopotosis) (4, 5). However, plant 
proteins are also important for the intake of fiber and some 
indispensable nutrients (like vitamins B9 and C), which modulate 
short and long-term disease risk, and are also lower in saturated fats 
that are excessively consumed (6, 7). Beyond the relationship to 
nutrient adequacy, animal/plant proteins and their packages largely 
affect the metabolome and the microbiota and physiological 
functions that are crucial for long-term health (6, 8–10). Accordingly, 
there have been many contrasting associations reported recently 
between plant and animal protein intake and mortality, especially 
regarding cardiovascular diseases (6, 11, 12).

More globally, plant (such as legumes, nuts and whole grains) and 
animal (such as red and processed meats) protein sources have 
heterogeneous relationships to nutrient adequacy (13) and to long-
term health regarding cardiovascular diseases (9, 14–16) and cancers 
(17, 18). There is indeed a challenge for food-based dietary guidelines 
to point out what proportions of plant and animal protein foods 
should be  recommended (19, 20). However, the plant to animal 
protein ratio remains a poor, summarizing descriptor of dietary 
patterns, since two diets with the same plant to animal protein ratio 
can actually be very different (9). There is thus a need to analyze the 
overall proportion of plant protein in the diet in view of the related 
dietary profiles and their nutritional adequacy and healthiness.

Furthermore, current interest in the proportions of plant and 
animal proteins in the diet also stems from their differential 
association with environmental pressures, in particular greenhouse 
gas emissions (GHGe) and land use (21–24). Altogether, the plant to 
animal protein ratio in the diet appears central to the sustainability of 
the food systems (21, 25). This has implications for dietary guidelines 
that aim to encompass both human and planetary health (26–28).

Thus, the literature lacks an analysis of what proportion of plant 
protein in the diet (%PP, the percentage of plant protein in total 
protein intake) is adequate and, even further, what proportion is 
optimal from a unified nutrition and health perspective that also 

considers the impact on other aspects of sustainability. 
We hypothesized that %PP could be safely increased well beyond its 
current low level, but will certainly be limited by a too-low level of 
animal protein. We also hypothesized that, rather than an optimal 
value, there may be a relatively wide range of %PP values that would 
be similarly adequate, when considering only human nutrition and 
health. Here, using advanced diet modeling and optimization, 
we studied whether an optimal %PP value can be identified when 
taking into account the reference values for nutrients and the disease 
burden risks for food categories. We characterized modeled diets that 
departed as little as possible from prevailing diets at all levels of 
adequate %PP values for nutrient adequacy and long-term health to 
identify nutritional issues (i.e., limiting nutrients) and dietary levers 
(i.e., effective foods). We furthermore estimated the environmental 
pressures associated with modeled diets along the whole range of 
adequate %PP values.

Materials and methods

Input of dietary data

The data used for this study were extracted from the French 
Individual and National Study on Food Consumption Survey 3 
(INCA3) conducted in 2014–2015. The INCA3 survey is a 
representative cross-sectional survey of the French population; its 
method and design have been fully described elsewhere (29). Males 
aged 18–64 years (n = 564) and pre-menopausal females aged 18–54 
years (n = 561), not identified as under-reporters, were included in the 
present study; the final sample contained 1,125 adults 
(Supplementary Figure S1).

Dietary data were collected by professional investigators assisted 
by a standardized and validated dietary software (GloboDiet) from 
three unplanned, non-consecutive, 24 h dietary recalls spread over a 
three-week period (two weekdays and one weekend day). Portion sizes 
were estimated using validated photographs (29), and the nutrient 
contents of different food items came from the 2016 food composition 
database operated by the French Information Centre on Food Quality 
(CIQUAL) (30). Mixed foods were broken down into ingredients and 
then gathered into 45 food groups (Supplementary Table S1). For each 
sex, the nutrient content of each food group was calculated as the 
mean nutrient content of food items constituting the food group 
weighted by their mean intake by the sex considered, as previously 
described (31). All dietary data (food group consumption and nutrient 
content) relate to the total population of each sex (including 
non-consumers).

Multi-criteria diet optimization under 
constraints

Using multi-criteria optimization, we identified modeled diets 
(i.e., modeled consumptions of the 45 food groups) with a minimal 
long-term health risk and a minimal departure from the observed diet 
(taking into account cultural acceptability and inertia), under 
constraints that would ensure adequate nutrient intakes and remain 
within current consumption limits. In this context, we investigated the 
role of %PP to identify its adequate range of variations and to 

Abbreviations: ANSES, French Agency for Food, Environmental and Occupational 

Health and Safety; CIQUAL, French Information Centre on Food Quality; DALYs, 

Disability-adjusted life-years; DD, Diet departure criterion; GBD, Global Burden 

of Diseases; GHGe, greenhouse gas emissions; HR, Health risk criterion; INCA3, 

Third Individual and National Study on Food Consumption French Survey; %PP, 

Percentage of plant protein in the diet; TMREL, Theoretical minimum risk 

exposure level.
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characterize the dietary, nutritional and environmental consequences 
of these variations.

This non-linear optimization problem was performed using the 
NLP solver of the OPTMODEL procedure of SAS software version 9.4 
(SAS Institute Inc., Cary, NC, USA). Optimization was implemented 
at the population level but in males and females, separately. The 
optimized diets of males and females were then averaged to derive 
optimized diets for the adult population.

Objectives

The main optimization objective was to minimize the long-term 
health risk of the modeled diet, as assessed by the Health Risk (HR) 
criterion. The HR criterion was set to target the dietary 
recommendations from the Global Burden of Diseases (GBD) based 
on epidemiological studies about the associations between 
consumption of different food groups and risk of chronic diseases 
(32). The HR criterion thus aimed to limit the consumption of three 
unhealthy food groups or categories (red meat, processed meat and 
sweetened beverages), while promoting that of six healthy food groups 
or categories (whole grain products, fruits, vegetables, legumes, nuts 
and seeds, and milk) until their minimum risk exposure levels 
(TMREL) were reached. According to the most recent (2019) estimates 
from the GBD, TMREL values were 0 g/d for red meat, processed meat 
and sweetened beverages, and 150, 325, 300, 95, 14.5 and 430 g/d, 
respectively, for whole grain products, fruits, vegetables, legumes, nuts 
and seeds, and milk (32). In our study, the HR criterion was thus 
expressed and minimized as:
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where i  denotes the food groups to be  decreased (red meat, 
processed meat and sweetened beverages), j denotes the food groups 
to be increased (whole grain products, fruits, vegetables, legumes, nuts 
and seeds, and milk), Opt(i) and Opt(j) are the optimized 
consumptions of food groups i and j, respectively (in g/d), Max(i) is 
the upper limit of consumption of food group i (in g/d), TMREL(j) is 
the TMREL value of food group j (in g/d), DALYs(i) and DALYs(j) are 
the disability-adjusted life-years (DALYs) associated with excessive or 
insufficient consumptions of food groups i and j, respectively (in y), 
and DALYs(all) is the sum of all DALYs(i) and DALYs(j). The Max 
values used were the maximal recommended consumption of 
unhealthy foods in line with the French dietary guidelines (33): 71 g/d 
for red meat, 25 g/d for processed meat and 263 g/d (corresponding to 
the average portion size) for sweetened beverages intake. The TMREL 
and DALYs values used were issued from the most recent (2019) 
estimates from the GBD (32) adapted to our study context (by using 
sex-specific and French DALYs values, Supplementary Table S2).

We also evaluated how the modeled diets deviated from current 
diets, in order to consider inertia to changes in food consumption, 
which is one way to account for social/cultural acceptability. The Diet 
Departure (DD) criterion was defined as the sum of the squares of the 

differences between observed and optimized food group consumption, 
standardized by their observed standard deviations, as previously 
explained (31). DD was thus expressed and minimized as:
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where k is the number of food groups (n = 45), Obs(k) and Opt(k) 
are, respectively, the observed and optimized consumption of food 
group k (in g/d) and SD(k) is the current standard deviation of the 
consumption of food group k.

Constraints

During diet optimization, the total energy intake was constrained 
to stay within ±5% of its observed value. Thirty-five nutritional 
constraints were applied to ensure adequate nutrient intake in the 
male and female populations (Supplementary Table S3), based on the 
most recent reference values from the French Agency for Food, 
Environmental and Occupational Health & Safety (ANSES) (34). 
We  did not consider any constraints for vitamin D, because its 
reference value is known to be much too high to be reached by a 
non-fortified diet alone (31, 33). As the absorption of iron and zinc is 
dependent on dietary factors, the requirements were based on 
bioavailable iron and zinc calculated from the dietary intake using 
equations that predict their absorption (35–37), as detailed in a 
previous study by our group (31). This previous study had 
demonstrated that current recommendations regarding bioavailable 
iron and zinc are very constraining when trying to model healthier 
diets, these recommendations being much higher than current intakes 
(e.g., there is a current iron-deficiency anemia prevalence of 4.1% in 
French women) (31). Therefore, like in this previous study, we used 
threshold values lower than current reference values. They correspond 
to a deficiency prevalence of 5%, because such flexibility enables the 
identification of diets that are apparently healthier overall, with a 
better balance in DALYs due to less cardiometabolic disease, despite 
a higher prevalence of iron-deficiency anemia (31). In addition, to 
take into account the slightly lower digestibility of plant vs animal 
proteins regarding the nutritional constraint on protein requirement, 
a 5% penalty was applied to protein intake from plant protein food 
items, as previously described (38). As the intake of individual amino 
acids is generally adequate when the protein intake is sufficient in a 
varied diet (39), only protein requirements were considered in the 
model constraints, but we have a posteriori verified that modeled diets 
also contained adequate intakes of indispensable amino acids by using 
a database of the amino acid composition of food groups 
(Supplementary Information Text S1).

Moreover, some acceptability constraints were applied to the food 
group consumption (Supplementary Table S4). Acceptability 
constraints aimed to keep the food group intakes within the range of 
observed intakes, by bounding each food group intake between its 5th 
and 95th percentile of observed consumption in males and females 
separately. We  did not do this for the unhealthy food groups or 
categories (red meat, processed meat and sweetened beverages), for 
which a dietary constraint with an upper limit was already defined 
according to the French dietary guidelines. Another exception was 
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made for some healthy food groups (legumes and milk) that had 95th 
percentile values slightly lower than TMREL values, and for which the 
upper limit has thus been raised to their TMREL values.

Optimization strategy

We firstly aimed to determine the range of adequate %PP values 
in the diet that would ensure nutrient adequacy with a minimal long-
term health risk. This first problem of identifying the adequate %PP 
range was addressed by optimizing the HR criterion under all the 
nutritional and acceptability constraints, with an additional 
constraint on %PP that was iteratively parameterized according to a 
grid search. This grid search constraint forced the %PP value to 
be equal to x%, with x% varying from 0 to 100% by steps of 5% (or 
even 1% at the edges of the adequate %PP range). As this problem 
was often non-uniquely identifiable, leading to different solutions 
with slightly distinct dietary patterns but similar HR values (especially 
for the intermediate %PP values that allowed for a variety of food 
group combinations with a similarly null HR value), we choose to 
systematically select the dietary solution that was the most acceptable 
a priori, based on the lowest departure from the current diet. 
According to the hierarchical method in multi-criteria optimization 
(40), this second problem of diet selection was addressed in a second 
stage. This time it was done by optimizing the DD criterion under the 
constraint that HR was equal to its previously identified minimal 
value, always under all the nutritional and acceptability constraints, 
and the grid search constraint on %PP covering its previously 
identified adequate range.

Limiting nutrients and contribution of food 
groups to their intake

We conducted a dual value analysis to better characterize the 
tensions between %PP, nutrient adequacy and long-term health. 
We  reported the dual values associated with the %PP equality 
constraint and the nutritional constraints during HR optimization 
(obtained during the first problem solving, as explained above), which 
represent the potential HR gain if the limiting bound (lower or upper) 
of the considered constraint was relaxed by one unit. In order to 
compare the relative influence of nutrients, their dual values were 
standardized to represent the potential HR gain if the limiting bound 
was relaxed by 10%, to classify nutrients from the most limiting 
(higher absolute standardized dual value) to the least limiting (lowest 
absolute standardized dual value).

For the most limiting nutrients in the different modeled diets (i.e., 
nutrients with the most active constraints), we studied contributions 
of different food groups to intake of that particular nutrient in each 
modeled diet identified for each adequate %PP value (i.e., in the 
modeled diets resulting from the second problem solving, as 
explained above).

Sensitivity analysis

We also conducted a sensitivity analysis to assess the influence of 
some constraints of particular interest. We thus compared the results 

obtained when requiring the deficiency prevalence to be ≤1% rather 
than ≤5% (main model) in the nutritional constraints for bioavailable 
iron and zinc (their alternative threshold values are given in 
Supplementary Table S3), and when removing or not (main model) 
all the dietary and acceptability constraints on food group intakes.

Diet environmental impacts

Finally, to assess environmental pressures related to the observed 
and modeled diets, we  used the French agricultural life cycle 
inventory database AGRIBALYSE® v3.1; its methodological approach 
(summarized in Supplementary Information Text S2) has been 
described elsewhere (41–43). In particular, we evaluated the food-
related GHGe (in kg CO2eq, with the non-CO2 GHGe included and 
weighted according to their relative impact on warming), land use 
(referring to the use and transformation of land, dimensionless), 
water use (relating to the local scarcity of water, in m3 water 
deprivation) and fossil resource use (use of non-renewable fossil 
resources such as coal, oil, and gas, in MJ), together with a single 
environmental footprint score (dimensionless) that aggregated 16 
indicators (44).

Results

Range of adequate %PP values and 
identified tensions between %PP, nutrient 
adequacy and long-term health

The adequate %PP range compatible with nutrient adequacy was 
16–82% in males and 16–77% in females, and only the 25–70% %PP 
range was additionally compatible with a minimal health risk (HR 
criterion) for both sexes (Table 1). In this narrower range, a null HR 
value was attained by the removal of unhealthy foods (red meat, 
processed meat and sweetened beverages) and an increase in healthy 
foods (whole grain products, fruits, vegetables, legumes, nuts and 
seeds, and milk) up to or above their TMREL values (32).

Among the %PP equality constraint and the nutritional 
constraints, none were found limiting for HR minimization over the 
25–70% %PP range (Table  2). The %PP equality constraint was 
limiting only for %PP values lower than 25% (strongly) and higher 
than 70% (more moderately, due to the lower HR impact of the milk 
decrease for the highest %PP values than of the red meat increase and 
whole grain product decrease for the lowest %PP values). Nutrients 
identified as increasingly limiting as %PP decreased below 25% were 
fiber, sugar (excluding lactose), saturated fatty acids and atherogenic 
fatty acids (lauric, myristic and palmitic acids). As %PP decreased 
below 25%, it was hence increasingly challenging to maintain 
sufficient intake of fiber and non-excessive intakes of sugar and fatty 
acids (as shown by the opposite sign of their dual values), which 
resulted in dietary solutions of increasingly degraded HR values. 
Nutrients that were identified as increasingly limiting when %PP 
increased above 70% were iodine, sodium, vitamin B2, calcium, 
EPA + DHA, vitamin A and α-linolenic acid in both sexes together 
with vitamin B12 in males and bioavailable iron in females. As %PP 
increased above 70%, it was increasingly challenging to maintain 
sufficient intakes of these nutrients and a non-excessive sodium 
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intake. The other nutrients (n = 20, those not shown in Table 2) were 
never limiting over the adequate %PP range, including, of note, 
protein.

Sensitivity analysis showed that being more demanding for 
bioavailable iron and zinc (i.e., constraining their deficiency 
prevalence at ≤1% rather than ≤5% as in the main model) resulted in 
slightly restricting the adequate %PP range on the right (16–79% in 
males and 16–70% in females), and the %PP range ensuring a null HR 
value on both sides (30–65% in males and 35–45% in females) (data 
not shown). Conversely, when suppressing all the food group 
consumption limits (i.e., all the dietary and acceptability constraints) 
from the model (Supplementary Table S5), the range of adequate %PP 
values was expanded on both sides (8–94% in males and 8–92% in 
females), as was the %PP range ensuring a null HR value (16–86% in 
males and 16–84% in females), but consistently with the same limiting 
nutrients as in the main model (in particular, insufficient fiber intake 
for excessively low %PP values, or insufficient intakes of vitamin B12, 
iodine and EPA + DHA for excessively high %PP values).

Modeled diets

All the modeled diets identified (Figure 1; Supplementary Figure S2) 
were very distant from the current typical French diets, with 
departure values (DD criterion) equal to or greater than twice the 
standard deviation observed in the population. Furthermore, most of 
the modeled diets with a null HR value (i.e., in the 25–70% %PP 
range) were all about equally distant from the observed diets, with 
close DD values (differing by less than 20%) in the 35–65% %PP 

range and similar DD values (differing by less than 5%) in the 45–60% 
%PP range.

Although the energy intake remained relatively stable between 
modeled and observed diets (by construction), the total intakes of 
both animal-based and plant-based foods were increased in the 
25–70% %PP range, notably owing to the important increases in 
milk, fruits and vegetables up to or above their TMREL values 
(Supplementary Table S6; Supplementary Figure S3). Regarding plant 
products, all the modeled diets exhibited dramatic increases in fruits 
and vegetables, whole grain products and legumes and nuts. 
Regarding animal products, red and processed meats were readily 
removed as %PP increased. These meats were replaced by poultry and 
eggs, which transiently increased, the modeled diets then being meat-
free from PP% = 60%. Dairy and seafood were the only remaining 
animal products at the right end of the adequate %PP range 
(Supplementary Figure S3).

Over the entire adequate %PP range, including meat-free diets, 
the intakes of protein and of each indispensable amino acid were 
always much higher than their 98% safe intake thresholds (Figure 2; 
Supplementary Table S7; Supplementary Figure S4).

Contributions of food groups to limiting 
nutrient intakes

Regardless of their %PP value, all the modeled diets were nutrient-
adequate, in contrast with observed diets (Supplementary Table S8).

As %PP increased, it was increasingly difficult to maintain 
sufficient intakes of bioavailable iron, vitamins B12, B2 and A, and 

TABLE 1 Range of adequate values of the percentage of plant protein in the diet (%PP) and corresponding minimal values of long-term health risk (HR 
criterion) in French males and females.

Males Females

Observed 
diet

Modeled diets Observed 
diet

Modeled diets

%PP 33% 16% 20% 25–70% 75% 80% 82% 34% 16% 20% 25–70% 75% 77%

HR value 0.983 0.602 0.180 0.000 0.004 0.024 0.049 0.736 0.516 0.065 0.000 0.039 0.052

HR components:

Risk of excessive intake of unhealthy foods:

Red meat 0.236 0.211 0.065 0.000 0.000 0.000 0.023 0.207 0.347 0.000 0.000 0.000 0.000

Processed meat 0.213 0.021 0.000 0.000 0.000 0.000 0.000 0.126 0.000 0.000 0.000 0.000 0.000

Sweetened beverages 0.026 0.000 0.000 0.000 0.000 0.000 0.000 0.024 0.000 0.000 0.000 0.002 0.013

Risk of insufficient intake of healthy foods:

Whole grain products 0.213 0.195 0.000 0.000 0.000 0.000 0.000 0.157 0.090 0.000 0.000 0.000 0.000

Legumes 0.111 0.127 0.067 0.000 0.000 0.000 0.000 0.053 0.056 0.042 0.000 0.000 0.000

Fruits 0.091 0.000 0.000 0.000 0.000 0.000 0.000 0.093 0.000 0.000 0.000 0.000 0.000

Vegetables 0.033 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.000 0.000 0.000 0.000 0.000

Nuts & seeds 0.039 0.048 0.048 0.000 0.000 0.000 0.000 0.019 0.023 0.023 0.000 0.000 0.000

Milk 0.022 0.000 0.000 0.000 0.004 0.024 0.026 0.037 0.000 0.000 0.000 0.037 0.039

Values of the HR criterion and its individual components when optimizing HR under all the nutritional, dietary and acceptability constraints and an additional constraint imposing the %PP 
value according to an iterative grid search. Results are reported for the %PP values allowing model convergence (i.e., nutrient-adequate diets) for each sex (16–82% and 16–77% %PP ranges in 
males and females, respectively). Within these %PP values, those outside the 25–70% range have non-null HR values because of excessive intake of unhealthy foods and/or insufficient intake of 
healthy foods.
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iodine and calcium, owing to the decreases in the animal products that 
were their main contributors (red meat, dairy products and eggs) 
(Supplementary Figure S5). The EPA + DHA and α-linolenic acid 
intakes, which are largely insufficient in the observed diets, were made 
sufficient in all the modeled diets by increases in their main 
contributors, respectively, seafood and added fats, with difficulties to 
maintain them sufficient for the highest %PP values 
(Supplementary Figure S5). The sodium intake, which is dramatically 
excessive in the observed diets, was reduced to its upper limit in all the 
modeled diets as a result of removing processed meat and reducing 
refined grain products, with difficulties to maintain sodium not 
excessive for the highest %PP values, due to increases in some starch 
and miscellaneous foods (Supplementary Figure S5). Conversely, as 
%PP decreased, it was increasingly difficult to maintain a sufficient 
intake of fiber and non-excessive intakes of sugar and saturated fatty 
acids, due to the meat and dairy increases (Supplementary Figure S6).

Environmental impacts of modeled diets

Across modeled diets, GHGe gradually decreased as %PP 
increased until %PP = 70%, where the GHGe were ~ 50% lower 
than with the observed diet (Figure  3). Similar trends were 

observed for land use and, to a lesser extent, fossil resource use 
(Supplementary Figure S7), with 40% and ~ 20% decreases, 
respectively, from the observed to the modeled diet with %PP = 70%. 
In contrast, water use was ~25–50% higher for the null-HR modeled 
diets than for the observed diet, due to their very high levels of fruits 
and vegetables that were by far the most water-demanding food 
groups (Supplementary Figure S7). Overall, at the level of the single 
environmental footprint score that aggregated 16 indicators, the same 
trend was observed as for GHGe, with a 37% decrease in this 
aggregated score from the observed to the modeled diet with 
%PP = 70% (Supplementary Figure S7).

Discussion

Gathering all nutritional information over a large spectrum that 
covered nutrient reference values and long-term health risks, our 
study formally establishes ranges of plant protein proportion (%PP) 
for nutrient-adequate and healthy diets. One major finding is that 
there is no optimal %PP value, as we found a spectrum of similarly 
healthy diets over the 25–70% range. However, diets in the upper end 
were associated with substantially lower GHGe and overall 
environmental impact.

TABLE 2 Dual values of the active constraints identified during minimization of the long-term health risk (HR criterion) in French males and females1.

Males Females

Modeled diets Modeled diets

%PP 16% 20% 25–70% 75% 80% 82% 16% 20% 25–70% 75% 77%

%PP constraint2 −0.246 −0.081 NS 0.003 0.004 0.037 −0.166 −0.042 NS 0.004 0.017

Nutrients that are more limiting as %PP increase3

Iodine NS NS NS 0.002 0.005 0.058 NS NS NS 0.006 0.043

Sodium NS −0.023 NS −0.002 −0.005 −0.041 NS NS NS −0.006 −0.027

Bioavailable iron NS NS NS NS NS NS NS 0.096 NS 0.014 0.027

Vitamin B12 NS NS NS 0.002 0.004 0.035 NS NS NS NS NS

Vitamin B2 NS NS NS NS 0.001 0.006 NS NS NS NS 0.021

Calcium NS NS NS NS 0.001 0.009 NS NS NS 0.001 0.013

EPA + DHA NS NS NS 0.001 0.001 0.007 NS NS NS 0.002 0.009

Vitamin A NS NS NS 0.001 0.002 0.009 NS NS NS 0.004 0.001

α-linolenic acid NS NS NS 0.001 0.001 0.001 NS NS NS 0.001 0.004

Nutrients that are more limiting as %PP decrease3

Fiber 0.435 0.136 NS NS NS NS 0.332 0.077 NS NS NS

Sugar excluding lactose −0.125 −0.044 NS NS NS −0.012 −0.106 −0.030 NS NS −0.002

Saturated fatty acids −0.095 −0.074 NS NS NS NS −0.085 −0.036 NS NS NS

Atherogenic fatty acids −0.083 −0.001 NS NS NS NS −0.094 −0.006 NS NS NS

1Dual values when optimizing HR under all the nutritional, dietary and acceptability constraints and an equality constraint imposing the percentage of plant protein in the diet (%PP) value 
according to an iterative grid search. Results are reported for the %PP values allowing nutrient-adequate diets (16–82% and 16–77% %PP ranges in males and females, respectively), which 
includes those also allowing a null HR value (25–70% %PP range in both sexes). NS, not significant (<0.0001).
2For the %PP equality constraint, dual values represent the potential effect on HR of the relaxation by one unit of the limiting bound, with positive (negative) values if the lower (upper) bound 
is limiting (e.g., for %PP = 82% in males, the dual value indicates that there would be a potential HR gain of 0.037 if %PP was decreased from 82 to 81%).
3For nutritional constraints, dual values have been standardized to represent the potential effect on HR of the relaxation by 10% of the limiting bound, to classify the nutrients from the most 
limiting (higher absolute value) to the least limiting (lowest absolute value). Limiting nutrients have a positive (negative) dual value if their lower (upper) bound is limiting (e.g., for %PP = 82% 
in males, the dual value for iodine indicates that there would be a potential HR gain of 0.058 if the lower bound for iodine intake was decreased by 10%, from 150 to 135 μg/d). Only nutrients 
with an active constraint (i.e., with a non-null dual value) for at least one %PP value are presented here. For nutrients not presented in this table, dual values were always equal to zero, meaning 
that compliance with these constraints was not limiting.Atherogenic fatty acids, lauric and myristic and palmitic acids; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid.
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A wide dietary %PP range, from ~15 to 80%, was found 
compatible with providing all nutrients in adequate amounts. Our 
results do not agree with those of Vieux et al., who recently argued 

that %PP must be  <50% to ensure nutritional adequacy (45). 
However, in this diet optimization study, solutions with %PP >50% 
were rejected not because of their true intrinsic inability to meet 
nutrient requirements but because of an incorrect problem 
formulation, as we recently pointed out (46). Furthermore, by not 
analyzing how the constraints considered affected the results and 
by not identifying the limiting nutrients, this work was not 
informative about the nutritional barriers to increasing %PP, which 
was our concern here along with its other health and environmental 
impacts. In our study, as shown by sensitivity analysis, the wide 
%PP range identified as compatible with nutritional adequacy was 
slightly restrained by the considered constraints for food 
acceptability, whereas the nutritional issues identified remained 
broadly the same with or without these constraints. From a 
nutritional viewpoint, no diet with %PP < ~15% was able to provide 
enough fiber and non-excessive amounts of saturated fatty acids, 
while also satisfying all constraints for nutrient intakes and food 
acceptability. In these too-low %PP diets, inadequate fiber intake 
was due to insufficient consumption of whole grains, legumes, and 
nuts, which were the most critical plant protein sources with intakes 
below their minimum-risk exposure levels. More interestingly, 
given the ongoing dietary transition, we could not find diets with 
%PP > ~80% that would provide sufficient amounts of a large set of 
nutrients, particularly iodine, vitamin B12 (in males), bioavailable 
iron (in females), calcium and EPA + DHA. These nutrients are 
considered to be at issue in vegetarian diets (except calcium and 
iodine in lacto-ovo-vegetarian), notably calcium and B12  in 
predominantly plant-based diets (47, 48). From a dietary viewpoint, 

FIGURE 1

Daily food category consumption in the observed diets (obs) and modeled diets obtained by long-term health risk (HR) and diet departure (DD) 
minimization under imposed percentage of plant protein in the diet (%PP) in French adults. Results are reported for all the adequate %PP values 
ensuring nutrient adequacy (16–77%), which includes those also ensuring a null HR value (25–70%). The Bar charts represent the cumulative 
consumptions of food categories (black axis on the left) and the curves represent the HR and DD values (blue and pink axes on the right, respectively). 
For clarity, the 45 modeled food groups are not represented here but grouped into broader categories that are included in HR (such as red and 
processed meats) or represent other protein sources (such as poultry and seafood). Consumption of water, hot beverages, alcohol and miscellaneous 
foods are not shown for clarity. Details about food grouping and consumptions of food categories not shown here are given in 
Supplementary Tables S1, S6, respectively.

FIGURE 2

Contribution of food categories to protein intake in the observed 
diets (obs) and modeled diets obtained by long-term health risk (HR) 
and diet departure minimization under imposed percentage of plant 
protein in the diet (%PP) in French adults. Results are reported for all 
the adequate %PP values ensuring nutrient adequacy (16–77%), which 
includes those ensuring also a null HR value (25–70%). Sections inside 
the bars represent the contributions of food categories to protein 
intake (in g of protein/kg of BW/d). See Supplementary Table S1 for 
the detailed composition of food categories.
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as shown when approaching the critical value of %PP = 80%, dairy 
appeared to be key to preventing iodine and calcium shortages. 
Seafood, meanwhile, appeared critical to providing EPA + DHA 
(with oily fishes as the main source) as well as iodine and B12. Milk 
and seafood were the last remaining animal products at the highest 
%PP values, confirming their importance as healthy, nutrient-dense 
protein sources (49). Healthy plant protein sources such as legumes 
and nuts apparently could not replace milk or seafood. This is 
because they actually reached their upper allowed intake very early 
(as soon as %PP = 25% for legumes), which indicates that they 
constitute an effective dietary lever. However, even when removing 
all food intake limits (in sensitivity analysis), it remained impossible 
to obtain 100% plant-based diets because of the same nutritional 
issues (insufficient intakes of vitamin B12, iodine and EPA + DHA). 
Our findings do not indicate that vegetarian (without seafood) or 
vegan diets (without seafood and dairy) cannot be nutritionally 
adequate. It means that solutions for diets that are entirely or almost 
entirely plant-based should rely on additional food products than 
those presently consumed by the general population, including 
fortified foods (50–52). This warrants further studies about the 
potential of new foods to extend the limit of the %PP range 
identified as adequate here.

Within the wide range of nutrient-adequate %PP values, we did 
not find a single optimal diet, but a large range of diets with %PP 
from 25 to 70%. These diets were all optimal when considering their 
health value, because their food consumptions complied with 
minimum-risk exposure levels. These consisted of no red meat and 
high levels of fruits and vegetables, whole grains, legumes, nuts and 
milk, in line with dietary guidelines (53). Modeled healthy diets were 
variations of this pattern, which explains why they were also 

similarly distant from current diets. Within this healthy pattern 
spectrum, the increase in %PP was predominantly related to the 
decrease in total and animal proteins. This occurred mostly in 
poultry and eggs and, to a lesser extent, dairy. This finding aligns 
well with the current spectrum of observed diets, with plant-based 
diets being higher in plant protein but especially low in total and 
animal protein (54, 55). This could simply be ascribed to the higher 
protein density in animal protein sources compared to plant protein 
sources. Also, the nutrients identified as limiting at the borders of 
the healthy %PP range appear to be related to the nutrient density of 
animal vs. plant protein sources when expressed relative to protein 
density. However, the dietary protein amount was never limiting, 
even at the highest %PP levels. There is a growing consensus that the 
protein package and not the protein per se are important to the 
question of plant to animal protein ratio in the diet (6, 9). Likewise, 
indispensable amino acid amounts were well above reference values 
based on requirements. It is usually considered that dietary proteins, 
and in particular plant proteins tend to complement each other, 
because dietary proteins are not low in the same amino acids (56, 
57). Lysine, which is the most critical amino acid, and is specifically 
low in grains is not limiting in the diet if grains are not the main 
source of protein in the diet (39). In real diets, composed of a mix of 
different types of proteins that complement each other, sufficient 
amounts of protein appear to guarantee sufficient amounts of amino 
acids (22, 55, 58).

Distance from the prevailing diets is often used in diet modeling 
to take into account so-called cultural acceptability (59–61), also 
referred to as dietary inertia (62). In this study, healthy diets in the 
35–65% %PP range departed rather similarly from the prevailing 
diets, which are still at ~35% %PP. This confirms that the plant to 
animal protein ratio is, by itself, a poor descriptor of diet 
characteristics, and so blanket statements about the right %PP are not 
warranted. Given that modeled healthy diets ranging from 35% %PP 
(the level of the current diets in Western countries) to 65% %PP were 
all very distant from current diets, our study also shows that 
overcoming dietary inertia is required for healthy diets, irrespective 
of the plant to animal protein target ratio (63).

The GHGe and overall composite score for environmental 
pressures were lower for healthy modeled diets than observed diets, 
and all the more as %PP increased. A large body of literature has 
reported that diets which are more plant-based are associated with 
lower environmental pressure, and vice versa, whether diets were 
modeled (48, 61, 64, 65), observed (66–68) or composite (25). 
However, until our study, this relationship had not yet been shown 
according to %PP in healthy diets. In our setting, %PP was strongly 
associated with the environmental impact of healthy diets. As 
compared to the prevailing diets, lower GHGe and composite score 
are firstly explained by the removal of total red meat in all healthy 
diets, red meat accounting for ~1/3 of the pressure in prevailing 
diets. This is in line with the literature that points to red meat and 
associated sustainability concerns (65, 69). Finally, we found that 
other environmental pressures (land use and fossil resource use), 
except water use, had similar patterns of change, in line with the 
literature (21, 48). The general relationship between %PP and 
environmental pressure can mostly be  ascribed to the fact that 
animal sources are rich in protein, and that livestock breeding is 
associated with higher resource use, higher land use, and higher 

FIGURE 3

Greenhouse gas emissions (GHGe) associated with the observed 
(obs) and modeled diets obtained by long-term health risk (HR) and 
diet departure minimization under imposed percentage of plant 
protein in the diet (%PP) in French adults. Results are reported for all 
the adequate %PP values ensuring nutrient adequacy (16–77%), 
which includes those ensuring also a null HR value (25–70%). 
Sections inside the bars represent the contributions of food 
categories to GHGe (in kg CO2-eq/d), and values above the bars 
represent the relative deviation in GHGe from its observed value (in 
%). See Supplementary Table S1 for the detailed composition of food 
categories.
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GHGe (23, 70–72). Nevertheless, further investigation of the 
relationship between %PP and environmental impacts would 
require prioritizing the minimization of environmental impacts 
over that of diet departure. Therefore, we  cannot rule out the 
possibility that moderate %PP diets, if well-designed, may have as 
low environmental impacts as high %PP diets, at the cost of a larger 
diet departure.

This study has some limitations. We modeled diets according to 
changes in intakes of food groups, based on the present food repertoire 
and current intake levels in the population. Food grouping is critical in 
diet modeling (33), and food diversity and composition can change 
rapidly in Western countries, as seen by recent changes (73). A similar 
limitation applies to the assessment of a diet’s environmental impacts, 
for which also we did not consider variations related to food production 
systems (74, 75). Nevertheless, we  used a classical food grouping, 
which helps represent dietary patterns at an appropriately high level of 
detail. We  also believe that using standard/traditional foods in 
modeling provides a good starting point to evaluate the situation before 
considering changes in the food offer or food composition. Our study 
uses sources of information as background parameters, including 
references/targets for nutrients and food categories. Clearly, there are 
many uncertainties in this regard (33). Nonetheless, we believe that a 
strength of our study is our use of a conceptual framework that 
aggregates most of the state of the art knowledge in nutrition.

To conclude, we identified that the range of equally optimal %PP 
values for nutrition and health is wide (25–70%), and that all of these 
healthy diets deviate greatly from prevailing diets. From a public 
health perspective, there is no unique, optimal %PP value when 
considering nutrition and health alone. However, significant changes 
in current eating habits are nonetheless required to achieve healthier 
diets. The focus should therefore shift from protein per se to what is 
carried with protein (i.e., the nutrient package), the overall health 
value of the food groups that convey protein, as well as the efforts 
needed to move away from current Western dietary patterns (22). 
Moreover, in the higher end of the adequate %PP range, modeled 
healthy diets have a lower environmental impact and are thus more 
sustainable than other healthy diets. Thus, in current and future 
dietary transitions, environmental pressures appear to be  a more 
direct determinant than health objectives to justify increasing %PP 
levels. At %PP > ~80%, changes in food repertoire diversity, food 
composition, nutrient enrichment or nutrient supplementation are 
required for fully nutrient-adequate diets. Finally, the adequate %PP 
range may be narrower in some populations, such as the elderly, who 
may have higher protein requirements than the general adult 
population, and this would deserve further study.
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