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Nitric oxide modulates 
folate-mediated one-carbon 
metabolism and mitochondrial 
energy levels of peaches during 
cold storage
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Folate-mediated one-carbon metabolism (FOCM) is closely associated with 
postharvest preservation. This study investigated the effects of exogenous nitric 
oxide (NO) on FOCM, storage quality, energy metabolism, and mitochondrial 
membrane integrity in cold-storage peach fruit. In this experiment, peaches were 
soaked with 1.5 mmol L−1 S-nitrosoglutathione (GSNO) as NO donor, and the 
negative treatment (NT) solution containing 5 μmol L−1 carboxy-PTIO (c-PTIO, NO 
scavenger), 200 μmol L−1 NG-Nitro-L-arginine methyl ester (L-NAME, NO synthase-
like enzyme inhibitor), and 200 μmol L−1 sodium tungstate dihydrate (nitrate 
reductase inhibitor) and stored at 0°C. The results showed that NO decreased 
the activity of S-adenosylmethionine synthase and S-adenosylhomocysteine 
hydrolase and increased the activity of methionine sulfoxide reductase A, as well as 
the content of N5-methyl-THF, the ratio of tetrahydrofolate (THF), homocysteine, 
methionine, S-adenosylmethionine (SAM), and SAM to S-adenosylhomocysteine 
compared with the control, indicating that NO effectively increased FOCM flux by 
affecting the activity of FOCM enzymes. Meanwhile, NO increased the activities 
of H+-ATPase, Ca2+-ATPase, cytochrome c oxidase, succinate dehydrogenase, 
and the contents of adenosine triphosphate and adenosine diphosphate, and 
maintained high energy charge in peaches during storage. NO retarded the 
increase in mitochondrial permeability transition, reactive oxygen species content, 
and the decrease in mitochondrial membrane fluidity, membrane potential, and 
swelling. NT treatment exhibited the opposite results. In conclusion, these results 
suggested that NO could induce the accumulation of folate and FOCM flux and 
maintain mitochondrial energy levels, which might be responsible for maintaining 
the quality of peaches during cold storage.
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1. Introduction

Folate, a water-soluble B vitamin, mediates one-carbon 
metabolism (OCM) and plays a vital role in human health (1). Folate-
mediated OCM (FOCM) is a crucial process that provides one-carbon 
groups for various bioprocesses that are essential for cell survival and 
proliferation in plants (2). N5-methyl-THF (5MTHF), tetrahydrofolate 
(THF), homocysteine (Hcy), methionine (Met), S-adenosylmethionine 
(SAM), and S-adenosylhomocysteine (SAH) are essential substances 
that are involved in FOCM. Methionine synthase (MetH), 
S-adenosylmethionine synthetase (SAMS), S-adenosylhomocysteine 
hydrolase (SAHH), and methionine sulfoxide reductase (MSR) are the 
key enzymes involved in this cycle (3). Exogenous THF reduces the 
rates of weight loss and respiration, inhibits the production of ethylene 
and reactive oxygen species (ROS), and promotes the activity of 
antioxidant enzymes and the accumulation of antioxidant substances 
in broccoli (4). Exogenous Met alleviates cold stress and delays the 
browning of litchi fruit and broccoli during storage (5, 6). These 
findings suggest that FOCM plays an essential role in the postharvest 
preservation of fruits and vegetables.

Low-temperature storage is primarily used to extend the shelf life 
of fruits (7). In transgenic tobacco, SAMS-derived SAM is 
preferentially used for polyamine synthesis and homeostasis in vivo 
during cold domestication; this indicates that changes in SAM may 
be an early plant response to cold stress (8). The THF content in 
potatoes stored at low temperatures increased gradually with the 
storage time (9). During the postharvest storage of Honeycrisp fruits, 
the amino acid content, represented by Met, varied more with 
temperature than the sugar and organic acid contents (10); this 
suggests that changes in plant FOCM is a plant response to low 
temperatures. Nitric oxide (NO) is a reactive oxide of nitrogen that is 
ubiquitous in living organisms and plays essential roles in various 
biological processes, including delaying of fruit ripening and 
improving the quality and shelf life of fruit. NO is a critical 
gasotransmitter in fruit after harvesting (11). New evidence has 
recently confirmed the interaction between NO and folate in solution 
(12). However, information on the regulation of FOCM by NO in 
postharvest fruit remains scarce.

Peach (Prunus persica L. Batsch) is a source of vitamin B and 
shows spatiotemporal compartmentalization in terms of folate content 
among varieties, exocarp, mesocarp, and different developmental 
stages of the fruit (13). In this study, the effects of control (distilled 
water), NO treatment (exogenous NO donor), and NT treatment (NO 
inhibitor + NO scavenger) on postharvest storage quality, 
mitochondrial structure and function, and THF–SAM cycle of peach 
fruits were pharmacologically investigated to identify the regulation 
of exogenous NO in FOCM and its role in maintaining the refrigerated 
quality of peaches after harvesting.

2. Materials and methods

2.1. Plant materials and treatments

The peaches [P. persica (L.) Batsch, cv. Laishanmi] were harvested 
from a local orchard in Taian, China. S-nitrosoglutathione (GSNO), 
carboxy-PTIO (c-PTIO), NG-nitro-L-arginine methyl ester (L-NAME, 
NO synthase inhibitor), and sodium tungstate dihydrate (nitrate 

reductase inhibitor) were bought from Sigma-Aldrich. After 
precooled overnight, peaches of uniform size and color and without 
mechanical damage were selected and soaked in distilled water (as 
control), 1.5 mmol L−1 GSNO solution (as NO treatment), and the 
solution containing 5 μmol L−1 c-PTIO, 200 μmol L−1 l-NAME, 
200 μmol L−1 sodium tungstate dihydrate (as negative treatment, NT), 
respectively, for 5 min. The concentrations of c-PTIO, L-NAME, and 
sodium tungstate dihydrate were selected based on our previous 
study (14). Each treatment was repeated three times, with 100 
peaches in each replication. After drying with cool air, peaches were 
stored at 0°C (Haier horizontal refrigerated freezer converter, Model 
BC/BD-519HEM; relative humidity 70–80%) and sampled 
once a week.

2.2. Measurement of fruit quality

Firmness, the total color difference (ΔE), weight loss rate (WLR), 
electrolyte leakage (EL), and respiration rate (RR) of peaches were 
determined according to Wang et al. (15).

2.3. Measurement of mitochondrial 
membrane integrity and energy 
metabolism

Mitochondria were extracted and purified by sucrose density 
gradient centrifugation (15). The purified mitochondrial precipitate 
was resuspended in 100 mmol L−1 Tris–HCl (pH 8.5). Protein was 
quantified with Coomassie brilliant blue (16).

Mitochondrial membrane potential (MMP) was determined using 
a Cary Eclipse spectrofluorometer (Varian, America) (17). The 
reaction solution contained 0.4 ml mitochondria, 2 ml 10 mmol L−1 
Hepes-HCl (pH 7.4, containing 250 mmol L−1 sucrose, 2 mmol L−1 
MgCl2, 4 mmol L−1 KH2PO4, 100 μmol L−1 K-EGTA). The fluorescence 
changes at Ex/Em = 503/527 nm were measured. MMP was expressed 
as (∆F/Fi) s−1 mg−1 (in protein).

Mitochondrial membrane fluidity (MMF) was determined using 
a Cary Eclipse spectrofluorometer (Varian, America) (15). The 
reaction solution contained 0.1 ml mitochondria, 1.88 ml of 0.3 mol L−1 
mannitol (The solution pH was adjusted to 7.2 with 0.5 mmol-1 l KOH 
using a PHS-3C pH meter (Rex Electric Chemical, Shanghai)), and 
20 μl 5 mmol L−1 1-anilino-8-naphthalene (ANS). The fluorescence 
changes at Ex/Em = 400/480 nm were measured. MMF was expressed 
as F mg−1 (in protein).

Mitochondrial permeability transition (MPT) was measured 
using a UV-2450 ultraviolet and visible spectrophotometer (Shimadzu, 
Japan) (17). The reaction solution contained 0.1 ml mitochondria and 
1.9 ml 10.0 mmol L−1 Tris–HCl (pH 7.4, containing 125.0 mmol L−1 
sucrose, 65.0 mmol L−1 KCl, 5.0 mmol L−1 sodium succinate, 
5.0 μmol L−1 rotenone,). The change of absorbance at 540 nm was 
recorded. MPT was expressed as ∆F/F mg−1 (in protein).

Mitochondrial swelling (MS) was measured using a UV-2450 
ultraviolet and visible spectrophotometer (Shimadzu, Japan) (18). The 
reaction solution contained 1 ml mitochondria, 0.2 ml of 0.5 mmol L−1 
FeSO4, and 0.2 ml of 0.5 mmol L−1 ascorbic acid. The absorbance was 
immediately detected at 520 nm.
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Mitochondrial ROS content (MROS) was determined using a 
Cary Eclipse spectrofluorometer (Varian, America) (17). 
Mitochondria (100 μl) was mixed with 900 μl of 10 mmol L−1 Tris–HCl 
(pH 7.2) and 10 μl of 2′,7′-dichlorofluorescein ethylenediolate (DCF-
DA), and the changes of fluorescence at Ex/Em = 485/530 nm were 
measured. The MROS content was expressed as Arbitrary units mg−1 
(in protein).

The activities of mitochondrial H+-ATPase, Ca2+-ATPase, 
cytochrome c oxidase (CCO), and succinate dehydrogenase (SDH) 
were measured using a UV-2450 spectrophotometer (Shimadzu, 
Japan). One unit (U) of the enzymatic activity was defined as the 
amount of enzyme converting 1 μmol of a substrate within 1 min. The 
enzymatic activity was expressed as U mg−1 (in protein).

Mitochondrial H+-ATPase and Ca2+-ATPase activities were 
determined according to Ren, Zhu (19). Mitochondrial resuspension 
(0.15 ml) was added to 1 ml of 30 mmol L−1 Tris–HCl buffer (pH 7.5, 
containing 50 mmol L−1 KCl and 3 mmol L−1 MgSO4 or 10 mmol L−1 
CaCl2), 0.1 ml of 3 mmol L−1 adenosine triphosphate (ATP) was added 
to initiate the reaction, and the reaction was stopped at 37°C for 
30 min, followed by 0.2 ml of 30% trichloroacetic acid (TCA; w/v). The 
absorbance at 660 nm was measured.

The activity of CCO was determined by the method of Kan et al. 
(20). Mitochondria (0.15 ml) was mixed with 0.2 ml of 0.45 mmol L−1 
cytochrome c solution (cytochrome c was first configured as 
0.45 mmol L−1 aqueous solution by adding 200 mg/ml of L-ascorbic 
acid to reduce cytochrome c to A550 (reduced state)/A565 (oxidized 
state) >12) and 2 ml of buffer (pH 7.4, containing 200 mmol L−1 K3PO4 
and 2% TritonX-100 (w/v)). The absorbance was measured at 550 nm.

Mitochondrial SDH enzyme activity was determined as described 
by Ackrell et al. (21). The mitochondria (0.15 ml) were incubated at 
30°C for 5 min in a 4.1 ml reaction solution containing 3 ml of 
0.2 mol L−1 phosphate buffer (pH 7.4), 1 ml of 0.2 mol L−1 sodium 
succinate (pH 7.4) and 0.1 ml of 1 mmol L−1 sodium 2, 
6-dichlorophenol indigo (DCPIP). The reaction was started by adding 
0.33% methylthiophenazine (w/v; 0.1 ml). The rate of reduction of 
DCPIP at 600 nm was measured.

High performance liquid chromatography (HPLC; LC-20A, 
Shimadzu, Japan) equipped with a Kromasil C18 column 
(250  ×  4.6 mm, 5 μm) was used to determine ATP, adenosine 
diphosphate (ADP), and adenosine monophosphate (AMP) content 
(22). The sample (1 g) was mixed with 3 ml of 0.6 mol L−1 perchloric 
acid and then centrifuged (16,000 × g, 4°C) for 30 min. Quickly 
neutralized 1.5 ml of supernatant with 1 mol L−1 KOH to pH 6.5–6.8 
and then passed through the 0.45 μm membrane filter. Mobile phase 
A was a solution of 60 mmol L−1 K2HPO4 and 40 mmol L−1 KH2PO4 
(pH 7.0), and mobile phase B was 100% methanol (v/v). The flow rate 
was 1 ml min−1, with a gradient program as follows: 0–7 min, 0–20% 
B (v/v); 7–9 min, 20–25% B (v/v); 9–10 min, 25–0% B (v/v); 10–12 min, 
0% B (v/v). The injection volume was 20 μl, and the wavelength at 
254 nm. The adenosine energy charge (EC) was calculated as: 
[(ATP) + 0.5 × (ADP)]/[(ATP) + (ADP) + (AMP)].

2.4. Measurement of parameters in 
folate-mediated one-carbon metabolism

The measurement of MetH activity was based on the method 
described by Grabowski et  al. (23). The sample (1 g) was 

homogenized on ice with 2 ml of 20 mmol L−1 4-(2-Hydroxyethyl)-
1-piperazine ethanesulfonic acid (Hepes; containing 14 mmol L−1 
NaCl, 3 mmol L−1 MgCl2, 5% glycerol (w/v), 0.5% Igepal CA-630 
(w/v), 1 mmol L−1 dithiothreitol (DTT), 1 mmol L−1 
phenylmethylsulfonyl fluoride), and then centrifuged (12,000 × g, 
4°C) for 20 min. The enzyme extract (0.2 ml) was added to 0.8 ml of 
1 mol L−1 phosphate buffer (containing 0.02 ml of 1 mol L−1 DTT, 
0.048 ml of 4.2 mmol L−1 THF, and 0.02 ml of 0.76 mmol L−1 SAM). 
The resulting test mixture was added to 0.08 ml of 0.5 mmol L−1 
hydroxocobalamin, and the mixture was immediately pre-incubated 
for 5 min at 37°C. After initiation with 0.004 ml of 100 mmol L−1 
l-homocysteine, the reaction was incubated for 10 min at 37°C and 
then terminated with 0.2 ml of 5 mmol L−1 HCl/60% formic acid 
(w/v) and incubated for 10 min at 80°C. The change in absorbance 
at 350 nm was recorded.

S-adenosylmethionine synthetase activity was measured as 
described by Wang et al. (24). The sample (1 g) was homogenized 
on ice with 2 ml of enzyme extraction buffer containing 
50 mmol L−1 Tris–HCl (pH 7.6), 5 mmol L−1 2-mercaptoethanol, 
10 mmol L−1 MgCl2, 0.1 mmol L−1 ethylene diamine tetraacetic acid 
(EDTA) and 2% polyvinylpyrrolidone (w/v), and then centrifuged 
(10,000 × g, 4°C) for 30 min. The enzyme extract (0.4 ml) was 
mixed with 0.6 ml of 100 mmol L−1 Tris–HCl (pH 8.0, containing 
20 mmol L−1 MgCl2, 150 mmol L−1 KCl, 2 mmol L−1 ATP, 5 mmol L−1 
dithiothreitol and 1 mmol L−1 methionine). The absorbance at 
340 nm was measured.

SAHH activity was measured based on Yang et  al. (25). The 
sample (1 g) was homogenized on ice with 2 ml of precooled enzyme 
extraction buffer (50 mmol L−1 Hepes, pH 7.8, 5 mmol L−1 DTT, 
1 mmol L−1 Na2EDTA, 5 mmol L−1 ascorbic acid, 10 mmol L−1 boric 
acids, 20 mmol L−1 sodium metabisulphate and 4% 
polyvinylpyrrolidone (w/v)), and then centrifuged (12,000 × g, 4°C) 
for 20 min. The supernatant (0.2 ml) was mixed with 0.8 ml 
50 mmol L−1 HEPES-KOH (pH 7.8, containing 0.1 mmol L−1 
5,5′-Dithiobis-(2-nitrobenzoic acid; DTNB), 0.1 mmol L−1 SAH, and 
1 mmol L−1 EDTA), and incubated for 3 min at 25°C. The change in 
absorbance at 412 nm was recorded.

Methionine sulfoxide reductase A (MsrA) activity was 
determined as described by Wu et  al. (26). The sample (1 g) was 
homogenized on ice with 2 ml of 50 mmol L−1 potassium phosphate 
buffer (pH 7.5) containing 0.1 mmol L−1 EDTA, 0.3% TritonX-100 
(w/v), 4% polyvinylpyrrolidone (PVP; w/v), and then centrifuged 
(12,000 × g, 4°C) for 20 min. The supernatant was collected and used 
for the enzyme assay. The 0.1 ml supernatant was mixed with 0.4 ml 
reaction buffer (10 mmol L−1 MgCl2, 30 mmol L−1 KCl, 25 mmol L−1 
Tris–HCl, 0.5 mmol L−1 dimethyl sulfoxide, 0.1 mmol L−1 
dithiothreitol, pH 8.0) for 30 min at 37°C protected from light. After 
that, an equal volume of 4 mmol L−1 DTNB was added and further 
incubated at 37°C for 10 min. The change of absorbance at 412 nm 
was monitored.

The contents of 5MTHF, THF, Hcy, Met, SAM, and SAH were 
determined using HPLC (Shimadzu LC-20A, Japan) equipped with 
a Kromasil C-18 column (250 × 4.6 mm, 5 μm) and expressed as mol 
kg−1 (in fresh weight). The measurements of 5MTHF and THF 
contents were based on Delchier et al. (27). The sample (5 g) was 
added to 20 ml of extraction buffer containing 50 mmol L−1 K2HPO4, 
1 mmol L−1 CaCl2, 2% ascorbic acid (w/v), 0.1% β-mercaptoethanol 
(w/v), and reacted at 100°C for 15 min, then centrifuged at 12000 g 
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for 20 min. The supernatant was passed through the 0.45 μm 
membrane filter for HPLC analysis. The mobile phase was 
50 mmol L−1 KH2PO4-acetonitrile (92.5:7.5, v/v) with the flow rate at 
1 ml min−1. The column temperature was 35°C, and the injection 
volume was 20 μl.

Hcy and Met were separated on a reversed-phase C-18 column 
using o-phthalaldehyde for pre-column derivatization, followed by 
fluorescence detection (28, 29). The sample (3 g) was added to 22.5 ml 
of 0.1% HCl (w/v), water bath (100°C) for 12 h, sonication at 200 W 
for 12 h, centrifugation at 12,000 × g for 15 min, and the supernatant 
was passed through the 0.45 μm membrane filter for HPLC analysis. 
Mobile phase A was a solution of 20 mmol L−1 phosphate buffer (pH 
6.5), and mobile phase B was acetonitrile: methanol: double distilled 
water = 45:40:15 (v/v/v). The excitation and the emission wavelength 
were 350 nm and 450 nm, respectively. The flow rate was 0.8 ml min−1, 
and the injection volume was 10 μl, with a gradient program as 
follows: 0–11% B (v/v); 2–4 min, 11–17% B (v/v); 4–5.5 min, 17–31% 
B (v/v); 5.5–10 min, 31–32.5% B (v/v); 10–12 min, 32.5–46.5% B (v/v); 
12–15.5 min, 46.5–55% B (v/v). 15.5–16 min, 55–100% B (v/v); 
16–20 min, 100–11% B (v/v); 20–25 min, 11–8% B (v/v); 25–30 min, 
8–5% B (v/v); 30–40 min, 5–0% B (v/v).

The SAM and SAH contents were determined as described by She 
et al. (30). The sample (1.5 g) was mixed with 0.4 mol L−1 HClO4 for 
15 min. The crude extract was centrifuged at 16,400 × g for 30 min at 
4°C. Then the supernatant was passed through the 0.45 μm membrane 
filter for HPLC analysis. The mobile phase comprised 40 mmol L−1 
NH4H2PO4, 8 mmol L−1 1-heptanesulfonic acid sodium salt, and 18% 
(v/v) methanol (pH 3.0). The column temperature was 35°C, the flow 
rate was 0.8 ml min−1, the injection volume was 50 μl, and the 
wavelength at 254 nm. The SAM/SAH ratio was calculated as the 
methylation index (MI), indicating the methylation status.

S-nitrosoglutathione reductase (GSNOR) activity was determined 
by monitoring the oxidation of NADH at 340 nm as described by 
Sakamoto et al. (31) and expressed as U kg−1 (in protein). The sample 
(1 g) was homogenized on ice with 3 ml of extraction buffer (containing 
100 mmol L−1 Tris–HCl (pH 8.0), 1 mmol L−1 EDTA, 10% glycerol 
(v/v), 0.1% TritonX-100 (v/v)), and then centrifuged (16,000 × g, 4°C) 
for 15 min. The reaction solution contained 0.4 ml of supernatant and 
3.6 ml of the reaction mixture (containing 20 mmol L−1 Tris–HCl (pH 
8.0), 0.2 mmol L−1 NADPH and 0.5 mmol L−1 EDTA). The mixture was 
incubated for 75 s, and the reaction was started by adding 10 μl of 
100 mmol L−1 GSNO to a final concentration of 400 μmol L−1.

2.5. Statistical analysis

Each experiment was carried out with three biological replicates. 
Data were expressed as means ± standard deviations and analyzed 
using one-way analysis of variance (ANOVA) and Tukey’s test.

3. Results

3.1. Changes in the quality of peaches

With the prolonged low-temperature storage, the peach fruit 
gradually lost water and wrinkled (Figure 1A). In the third week, the 

surface of the peach fruit began to show a more obvious water loss 
and shrinkage. In the fifth week, NO treatment alleviated peach fruit 
shrinkage compared to the control, while NT treatment exacerbated 
peach fruit shrinkage.

The ΔE, SSC, WLR, and EL increased over time during cold 
storage, while the firmness gradually decreased (Figures 1B–F). The 
two respiration peaks of peaches occurred on the 1st week and the 
4th week of storage, respectively (Figure 1G). Compared with the 
control, NO treatment suppressed the increase in ΔE, SSC, WLR, EL, 
and RR and alleviated the decrease in firmness, and NT treatment 
had the opposite phenomenon. In particular, compared with the 
control, ΔE, SSC, WLR, EL, and RR of peaches treated with NO were 
significantly (p < 0.05) reduced by 2.96, 17.11, 24.79, 24.73, and 
19.02% in the 5th week, respectively. The firmness increased 
significantly (p < 0.05) by 10.26% for the NO treatment compared to 
the control. In contrast, ΔE, SSC, WLR, EL, and RR were significantly 
(p < 0.05) increased by 4.97, 6.89, 13.40, 9.37, and 9.16%, respectively, 
and firmness was significantly (p < 0.05) decreased by 7.72% in 
NT treatment.

3.2. Changes in mitochondrial membrane 
integrity and energy metabolism

The MMP, MMF, and MS of peaches gradually decreased during 
cold storage (Figures  2A,B,D), while MPT and MROS gradually 
increased (Figures 2C,E). Compared with the NO, NT treatment had 
the opposite effect. In comparison with the control, NO inhibited the 
increase of MPT and MROS and alleviated the decrease of MMP, 
MMF, and MS (Figure 2). At week 5, compared to the control, the NO 
treatment reduced MPT and MROS by 21.15 and 12.35%, and 
increased MMP, MMF, and MS by 19.63, 6.03, and 4.88%, respectively. 
In contrast, the NT treatment increased MPT and MROS by 21.59 
and 7.18% and decreased MMP, MMF, and MS by 19.14, 16.68, and 
31.25%, respectively.

The mitochondrial H+-ATPase, Ca2+-ATPase, CCO, and SDH 
enzymes activities of peaches were gradually reduced during storage 
(Figures 3A–D). Compared with the control, NO treatment inhibited 
the decline of H+-ATPase, Ca2+-ATPase, CCO, and SDH enzyme 
activities, while the NT had the opposite effect. The H +-ATPase and 
Ca2+-ATPase enzyme activities of peaches peaked at week 4 
(Figures  3A,B). In particular, the H+-ATPase and Ca2+-ATPase 
activities of NO-treated peaches peaked at week 1. Additionally, 
compared to the control, NO treatment significantly (p < 0.05) 
delayed the descent of H+-ATPase, Ca2+-ATPase, CCO, and SDH 
activities by 99.57, 16.63, 84.32, and 55.00%, NO treatment 
significantly (p < 0.05) improved H+-ATPase, Ca2+-ATPase, CCO, and 
SDH activities by 27.08, 26.72, 24.32 and 29.28% at week 1, 
respectively.

ATP and ADP contents showed peaks at weeks 1 and 4, 
respectively (Figures 4A,B). In contrast, AMP gradually accumulated 
during storage (Figure 4C). At week 5, compared to the control, the 
ATP, ADP, and EC content of peaches (Figures 4A,B,D) treated with 
NO were significantly (p < 0.05) increased by 37.52, 29.88, and 52.81%, 
and that of NT treatment significantly (p < 0.05) decreased by 38.33, 
14.35, and 41.57%, respectively.
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3.3. Changes in folate-mediated 
one-carbon metabolism and GSNOR 
activity

Over time, MetH, SAMS, and SAHH showed a trend of increasing 
and then decreasing (Figures 5A–C). MetH in NT treatment was higher 
(p < 0.05) than the control after week 2 (Figure 5A). SAMS and SAHH 
were effectively reduced by NO treatment (Figures 5B,C). In contrast, 
MsrA was significantly (p < 0.05) elevated by NO treatment (Figure 5D). 
At week 5, NO-treated MetH, SAMS, SAHH, and MsrA were 0.62, 
0.57, 0.96, and 1.27 times higher than the control, respectively. 
NT-treated MetH, SAMS, SAHH, and MsrA were 1.58, 0.82, 1.22, and 
0.84 times higher than the control, respectively (Figures 5A–D).

As shown in Figure 5E, the GSNOR activity of peaches increased 
and then decreased during storage. At week 2, the GSNOR activity of 
peaches treated with NO was significantly (p < 0.05) increased by 
84.08% compared with the control. The peak of NO treatment 
appeared at week 2 and earlier than the control. NT treatment 
consistently inhibited GSNOR activity (p < 0.05).

The contents of 5MTHF and THF accumulated gradually during 
storage (Figures 6A,B). The Hcy, Met, SAM, SAH, and MI contents of 
peaches first increased and then decreased during storage. NO 
treatment alleviated the decrease of Hcy, Met, SAM, and MI compared 
with the control, while the NT had the opposite effect (Figures 6C–G). 

In particular, Hcy and Met of peaches peaked at week 2, while SAM 
and MI peaked at week 3. In the 2nd week, NO-treated peaches of Hcy 
and Met contents were 1.26 and 2.23 times higher than the control, 
while NT treatment was 0.72 and 0.42 times that of the control. On 
week 3, SAM and MI of NO-treated peaches were 1.36 and 1.33 times 
higher than the control, while NT treatment was 0.57 and 0.51 times 
that of the control, respectively.

3.4. Correlation analysis of measurement 
indicators

There was a close relationship between quality, mitochondrial 
membrane structural integrity, energy metabolism, indicators related 
to the synthesis of methylated methyl donors, and GSNOR on week 5 
(Figure 7). For NO treatment, the storage quality (ΔE, SSC, WLR, EL, 
and RR) was significantly positively (p < 0.05) correlated with 
mitochondrial membrane integrity indicators (MMP, MMF, and MS), 
energy metabolism-related indicators (H+-ATPase, Ca2+-ATPase, 
CCO, SDH, ATP, ADP, and EC), and FOCM related parameters 
(MsrA, THF, 5MTHF, MI) and GSNOR. MI significantly (p < 0.01) 
negatively correlated with firmness, mitochondrial membrane 
integrity indicators (MMP, MMF, and MS), energy metabolism-related 
indicators (H+-ATPase, Ca2+-ATPase, CCO, SDH, ATP, ADP, and EC), 

FIGURE 1

Changes in the appearance (A) and quality (B–G) of peaches after different treatments and storage at low temperatures (0°C) for 5  weeks. The firmness 
(B), ΔE (C), soluble solids content (SSC) (D), weight loss rate (WLR) (E), electrolyte leakage (EL) (F), and respiration rate (RR) (G) of peaches during 
storage at 0°C. NO treatment, 1.5  mmol L−1 GSNO solution; NT treatment, the solution containing 5  μmol L−1 c-PTIO, 200  μmol L−1 l-NAME, 200  μmol L−1 
sodium tungstate dihydrate. Values represent the means ± SD (n = 3). Values with different letters within the same sampling time are significantly 
different (p < 0.05).

https://doi.org/10.3389/fnut.2023.1184736
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Yang et al. 10.3389/fnut.2023.1184736

Frontiers in Nutrition 06 frontiersin.org

FOCM related parameters (MsrA, THF, 5MTHF, Met, and SAM) and 
GSNOR (Figure 7A). The correlation of MI values with FOCM-related 
indicators (SAMS, THF, 5MTHF, SAH) showed an opposite trend in 
the NT treatment compared to the NO treatment (Figures  7A,B).

Compared to the control, NO treatment had more obvious increases 
in firmness, MMP, MS, H+-ATPase, Ca2+-ATPase, CCO, SDH, ATP, 
ADP, EC, MSR, THF, 5MTHF, Hcy, Met, SAM, MI, GSNOR, and more 
apparent decreases in ΔE, SSC, WLR, EL, RR, MPTP, MROS, AMP, 
MetH, SAMS, SAHH, SAH. The trend of NT treatment was opposite to 
that of NO treatment (except SAMS, Hcy, and SAM; Figure 7C).

4. Discussion

Exogenous NO significantly maintained fruit quality during 
cold storage, whereas c-PTIO and sodium tungstate decreased the 

quality (32). Firmness and ΔE influence the visual judgment of fruit 
quality. Firmness reflects the fruit’s storage resistance and is related 
to the change in WLR; ΔE reflects the degree of fruit browning. In 
this study, the increase of ΔE, SSC, WLR, and EL and the decrease 
of firmness during storage (Figures 1B–F) indicated that the degree 
of fruit suffering cold stress depended on the extension of low 
temperature (0°C) time, which was manifested by the gradual 
softening of fruits, the onset of browning, the increase of ripeness, 
the gradual loss of water and the damage of cell membranes. 
Compared with the control, NO treatment effectively suppressed 
the increase in ΔE, SSC, WLR, EL, and RR and alleviated the 
decrease in firmness (Figures  1B–G), indicating that NO could 
alleviate the cold stress induced decline in quality. In NO-treated 
peach fruit, FOCM fluxes (THF, 5MTHF, Met, SAM) were all highly 
significantly and positively correlated with storage quality (ΔE, 
SSC, WLR, EL, and RR) at week 5. GSNOR was highly significantly 

FIGURE 2

The mitochondrial membrane potential (MMP) (A), mitochondrial membrane fluidity (MMF) (B), mitochondrial permeability transition (MPT) (C), 
mitochondrial swelling (MS) (D), and mitochondrial ROS content (MROS) (E) of peaches during storage at 0°C. Values represent the means ± SD (n = 3). 
NO treatment, 1.5 mmol L−1 GSNO solution; NT treatment, the solution containing 5  μmol L−1 c-PTIO, 200  μmol L−1 l-NAME, 200  μmol L−1 sodium 
tungstate dihydrate. Values with different letters within the same sampling time are significantly different (p < 0.05).
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or significantly negatively correlated with storage quality (ΔE, SSC, 
WLR, EL, and RR; Figure 7A). This result suggests that freshness 
retention via postharvest NO treatment is closely related to FOCM.

In transgenic tobacco, MfSAMS1 expression is strongly induced 
by NO and inhibited by c-PTIO (8). Conversely, sodium 
nitroprusside (NO donor) decreased SAMS enzyme activity in 
sunflower seedling cotyledons (33). These suggest that NO-mediated 
regulation of OCM exhibits opposed effects depending on the 
species and reagent. Compared with the control, NT treatment 
decreased the 5MTHF, THF, Hcy, Met, and SAM contents, whereas 
NO treatment had the opposite effect (Figures 6A–E), suggesting 
that exogenous NO facilitates FOCM flux accumulation in peaches. 
Studies have shown that high levels of folate and Met are beneficial 
for postharvest fruits (4, 5, 34). The contents of 5MTHF, THF, and 
Met (Figures 6A,B,D) effectively increased, whereas ΔE, SSC, WLR, 
EL, and RR values decreased in NO-treated peaches (Figures 1C–G). 
Further, NT treatment reversed this effect of NO, indicating that 
exogenous NO-induced accumulation of FOCM fluxes (5MTHF, 
THF, Met) was beneficial for maintaining fruit quality (Figure 8B).

Reactive oxygen species is one of the critical parameters for 
measuring oxidative damage induced by cold stress. The mitochondrial 
permeability transition pore (MPTP) is a critical pore that controls the 
membrane permeability of the inner mitochondrial membrane. Excess 
ROS may directly oxidize sulfhydryl groups in the MPTP complex 
proteins, leading to the formation of disulfide bonds and inducing the 
opening of MPTP. A compromised mitochondrial membrane 
structure is usually characterized by sustained MPTP opening (35). In 
this study, the MPT of peaches increased continuously during cold 
storage, and NO treatment always effectively inhibited the increase in 

MPT (Figure 2C), indicating that exogenous NO could effectively 
inhibit MPTP opening induced by oxidative stress. Normal MMPs are 
prerequisites for maintaining mitochondrial oxidative 
phosphorylation and ATP production and are necessary to maintain 
mitochondrial function (36). In this study, NO treatment significantly 
alleviated the decrease in MMP and MMF compared with the control 
during storage (Figures 2A,B), suggesting that NO could stabilize 
MMP and protect MMF. FOCM flux addition (folate and Met) directly 
increased antioxidant enzyme activity and substance content (4–6). 
Over time, fruits that underwent NO treatment had higher 5MTHF, 
THF, and Met contents (Figures 6A,B,D) and lower MROS content 
(Figure 2E) than the control, suggesting that the increase in FOCM 
flux induced by NO improved the antioxidant capacity. These findings 
suggests that NO protects mitochondrial structures by mediating 
FOCM (Figure 8B). NO synthase (NOS) enzyme is a dimer that relies 
on the essential cofactor BH4 and available substrates to couple the 
oxidation of L-arginine with the reduction of molecular oxygen to 
produce NO. When the bioavailability of the substrate is limited or 
when oxidative stress is elevated, NOS dimers destabilize decoupling, 
leading to ROS production rather than NO. Cold stress may decrease 
NO bioavailability (37). 5MTHF, THF, and Met indirectly alleviate 
oxidative damage in humans and Escherichia coli by affecting 
endogenous NO synthesis and bioavailability (37, 38). This indicates 
that FOCM flux may directly or indirectly improve antioxidant 
capacity. Similar to L-NAME-induced changes, the increase in Hcy is 
accompanied by a decrease in NO. The specific impact of FOCM flux 
on NO bioavailability requires further investigation.

Folate-mediated one-carbon metabolism is essential for 
maintaining normal mitochondrial function (39, 40). Maintaining 

FIGURE 3

H+-ATPase (A), Ca2+-ATPase (B), cytochrome c oxidase (CCO) (C), succinate dehydrogenase (SDH) (D) of peaches during storage at 0°C. Values 
represent the means ± SD (n = 3). Values with different letters within the same sampling time are significantly different (p < 0.05).
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intracellular ATP content in fruits and vegetables can inhibit cold 
stress during storage (41). A study on the cold tolerance of kiwifruit 
after harvest revealed that the energy loss in fruit is serious, and the 
quality deterioration is more serious (42). H+-ATPase, Ca2+-ATPase, 
CCO, and SDH synergistically regulate the energy metabolism of the 
plant. In this study, the H+-ATPase, Ca2+-ATPase, CCO, and SDH 
activities (Figures 3A–D); the contents of ATP and ADP contents; and 
EC values (Figures 4A,B,D) gradually decreased over time, indicating 
that cold stress decreased the activities of mitochondrial respiratory 
enzymes and led to energy loss occurred. Iron–sulfur (Fe-S) clusters 
are prosthetic groups that cause mitochondrial electron transfer 
reactions (39). Synthesizing or repairing Fe-S clusters requires folic 
acid (43). Therefore, the presence of folic acid may affect mitochondrial 
oxidative respiration. Direct evidence for this has not been reported in 
plants; however, in humans, folate deficiency affects mitochondrial 
oxidative respiration (40). Compared with the control, the H+-ATPase, 
Ca2+-ATPase, CCO, and SDH activities (Figure  3); 5MTHF, THF 
(Figure 6), ATP, and ADP contents; and EC values were lower in the 
NT treatment (Figure  4). The addition of OCM (folate and Met) 
improves the efficiency of mitochondrial respiration and affects the 
cell energy metabolism (44, 45). Compared with the control, NO 
treatment effectively increased the ATP, ADP (Figure 4), 5MTHF, 
THF, and Met (Figure 6) contents; H+-ATPase, Ca2+-ATPase, CCO, 
and SDH activities (Figure 3); and EC values (Figure 4D), indicating 
that the maintenance of the energy status of peach fruit is closely 

related to the promotion of FOCM flux (5MTHF, THF, and Met) 
accumulation by exogenous NO (Figure 8B). ATP c-subunit synthase 
is modified by lysine methylation to optimize the mitochondrial ATP 
synthase function. In contrast, adenine nucleotide translocase, the 
ADP and ATP carrier to the mitochondrial membrane, is compromised 
in coupling to ATP synthesis upon methylation (46). Diminished 
methyltransferase activity due to serine starvation,the source of the 
one-carbon unit in THF, was accompanied by a significant decrease in 
ATP levels (47). These suggested that altered intracellular ATP levels 
might be a response to dynamic changes in methylation. Compared 
with the control, NO treatment effectively increased MI (Figure 6G), 
indicating that NO might achieve fresh-keeping by promoting the 
occurrence of the methyltransferase reaction and changing the 
synthesis of ATP. FOCM plays an important role in maintaining the 
stability of mtDNA. For example, it is involved in the conversion of 
deoxyuridine monophosphate, purine and formyl-methionyl-tRNA 
synthesis (48, 49). The biosynthesis of the mitochondria-encoded 
oxidative phosphorylation protein and the regulation of the cellular 
redox state are closely linked to FOCM (49). These may be how FOCM 
affects the regulation of mitochondrial function (49).

Exogenous NO can affect the activity of key enzymes of FOCM 
(33, 50, 51). Danishpajooh et al. (50) found that exogenous NO 
had an inhibitory effect on the activity of MetH. In salt-stressed 
sunflower seedlings, exogenous NO inhibits SAMS enzyme activity 
(33). Treatment with sodium nitroprusside (SNP), an exogenous 

FIGURE 4

Adenosine triphosphate (ATP) (A), adenosine diphosphate (ADP) (B), adenosine monophosphate (AMP) (C), and energy charge (EC) (D) of peaches 
during storage at 0°C. Values represent the means ± SD (n = 3). Values with different letters within the same sampling time are significantly different 
(p < 0.05).
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NO donor, alleviates the onset of CI in frozen peach fruit and 
significantly promotes MSR expression. Adding c-PTIO inhibits 
the above effects of SNP stimulation (51). Compared with the 
control, NO treatment significantly decreased MetH, SAMS, and 
SAHH activities (Figures 5A–C), and increased MsrA activities 
(Figure 5D) and 5MTHF, THF, and SAM contents (Figures 6A,B,E) 
in week 5.This suggests that exogenous NO could regulate FOCM 
flux by downregulating the enzyme activity of MetH, SAMS, and 

SAHH and upregulating the enzyme activity of MsrA (Figure 8A). 
How NO regulates FOCM requires further study.

5. Conclusion

Exogenous NO promoted the accumulation of the FOCM 
components 5MTHF, THF, Met and maintained mitochondrial 

FIGURE 5

Methionine synthase (MetH) (A), S-adenosylmethionine synthetases (SAMS) (B), S-adenosylhomocysteine hydrolase (SAHH) (C), methionine sulfoxide 
reductases A (MsrA) (D), and S-nitrosoglutathione reductase (GSNOR) (E) of peaches during storage at 0°C. Values represent the means ± SD (n = 3). 
Values with different letters within the same sampling time are significantly different (p < 0.05).
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function and energy levels during cold storage. In this process, the SAM 
content, and MI values were increased by NO. Exogenous NO could 
regulate FOCM by affecting the activity of the key FOCM enzymes 
MetH, SAMS, SAHH, and MsrA. Exogenous NO could promote 
transmethylation activity by inducing FOCM flux accumulation, which 
might be responsible for fruit preservation (Figure 8).
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FIGURE 6

N5-methyl-THF (5MTHF) (A), tetrahydrofolate (THF) (B), homocysteine (Hcy) (C), methionine (Met) (D), S-adenosylmethionine (SAM) (E),  
S-adenosylhomocysteine (SAH) (F) and methylation index (MI) (G) of peaches during storage at 0°C. Values represent the means ± SD (n = 3). Values with 
different letters within the same sampling time are significantly different (p < 0.05).
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FIGURE 7

The Pearson correlation coefficient matrix of NO treatment (A) and NT treatment (B) on postharvest storage quality, mitochondrial structural integrity, 
energy metabolism-related enzyme activity and substance content, and FOCM-related indexes of peach fruit after 5 weeks of cold storage (0°C). 
Changes in the above indicators (C). ΔE, total color difference; SSC, soluble solids content; WLR, weight loss; EL, electrolyte leakage; RR, respiration

(Continued)
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FIGURE 8

Schematic of the roles by NO on FOCM (A) and postharvest storage quality, mitochondrial structural integrity, and mitochondrial energy metabolism 
function (B) in peaches stored at 0°C. GSNO, S-nitrosoglutathione; NO, nitric oxide; ΔE, total color difference; SSC, soluble solids content; WLR, 
weight loss; EL, electrolyte leakage; RR, respiration rate; MMP, mitochondrial membrane potential; MMF, mitochondrial membrane fluidity; MPT, 
mitochondrial permeability transition; MS, mitochondrial swelling; MROS, mitochondrial ROS; CCO, cytochrome c oxidase; SDH, succinate 
dehydrogenase; ATP, adenosine triphosphate; ADP, adenosine diphosphate; AMP, adenosine monophosphate; EC, energy charge; MetH, methionine 
synthase; SAMS, S-adenosylmethionine synthetases; SAHH, S-adenosylhomocysteine hydrolase; MsrA, Methionine sulfoxide reductases A; 5MTHF, 
N5-methyl-THF; THF, tetrahydrofolate; MSO, methionine sulfoxide; Hcy, homocysteine; Met, methionine; SAM, S-adenosylmethionine; SAH,  
S-adenosylhomocysteine; MI, methylation index.

FIGURE 7 (Continued)
 rate; MMP, mitochondrial membrane potential; MMF, mitochondrial membrane fluidity; MPT, mitochondrial permeability transition; MS, mitochondrial 
swelling; MROS, mitochondrial ROS; CCO, cytochrome c oxidase; SDH, succinate dehydrogenase; ATP, adenosine triphosphate; ADP, adenosine 
diphosphate; AMP, adenosine monophosphate; EC, energy charge; MetH, methionine synthase; SAMS, S-adenosylmethionine synthetases; SAHH, 
S-adenosylhomocysteine hydrolase; MsrA, methionine sulfoxide reductases A; 5MTHF, N5-methyl-THF; THF, tetrahydrofolate; Hcy, homocysteine; Met, 
methionine; SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; MI, methylation index; GSNOR, S-nitrosoglutathione reductase. *Indicates a 
significance level of p < 0.05. **Indicates a significance level of p < 0.01.
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