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To valorise the bioactive constituents abundant in leaves and other parts of 
medicinal plants with the objective to minimize the plant-based wastes, this study 
was undertaken. The main bioactive constituent of Andrographis paniculata, an 
Asian medicinal plant, is andrographolide (AG, a diterpenoid), which has shown 
promising results in the treatment of neurodegenerative illnesses. Continuous 
electrical activity in the brain is a hallmark of the abnormal neurological conditions 
such as epilepsy (EY). This can lead to neurological sequelae. In this study, 
we used GSE28674 as a microarray expression profiling dataset to identify DEGs 
associated with andrographolide and those with fold changes >1 and p-value 
<0.05 GEO2R. We obtained eight DEG datasets (two up and six down). There was 
marked enrichment under various Kyoto Encyclopaedia of Genes and Genomes 
(KEGG) and Gene Ontology (GO) terms for these DEGs (DUSP10, FN1, AR, PRKCE, 
CA12, RBP4, GABRG2, and GABRA2). Synaptic vesicles and plasma membranes 
were the predominant sites of DEG expression. AG acts as an antiepileptic agent 
by upregulating GABA levels. The low bioavailability of AG is a significant limitation 
of its application. To control these limitations, andrographolide nanoparticles 
(AGNPs) were prepared and their neuroprotective effect against pentylenetetrazol 
(PTZ)-induced kindling epilepsy was investigated using network pharmacology 
(NP) and docking studies to evaluate the antiepileptic multi-target mechanisms of 
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AG. Andrographolide is associated with eight targets in the treatment of epilepsy. 
Nicotine addiction, GABAergic synapse, and morphine addiction were mainly 
related to epilepsy, according to KEGG pathway enrichment analysis (p < 0.05). 
A docking study showed that andrographolide interacted with the key targets. 
AG regulates epilepsy and exerts its therapeutic effects by stimulating GABA 
production. Rats received 80 mg/kg body weight of AG and AGNP, phenytoin and 
PTZ (30 mg/kg i.p. injection on alternate days), brain MDA, SOD, GSH, GABAand 
histological changes of hippocampus and cortex were observed. PTZ injected rats 
showed significantly (***p < 0.001) increased kindling behavior, increased MDA, 
decreased GSH, SOD, GABA activities, compared with normal rats, while treatment 
AGNPs significantly reduced kindling score and reversed oxidative damage. 
Finally, we conclude that the leaves and roots of A. Paniculata can be effectively 
utilized for its major bioactive constituent, andrographolide as a potent anti-
epileptic agent. Furthermore, the findings of novel nanotherapeutic approach 
claim that nano-andrographolide can be  successfully in the management of 
kindling seizures and neurodegenerative disorders.

KEYWORDS

andrographolide, andrographolide nanoparticles, pentylenetetrazol, antikindiling, 
antioxidant, network pharmacology

Introduction

Food and medicinal plants are abundant in phytochemicals and 
bioactive components. Plant-based foods and medicinal products 
have commercial significance in agro-food, pharmaceutical and 
nutraceutical industries. However, the wastage of plant-based foods 
or bioactive substances could be  attributed to be  a major hurdle 
against the growth and sustainability of such natural resources. This 
issue can be resolved by maximizing the utilization of plant-based 
foods and medicinal constituents while minimizing their wastages. In 
medicinal practice, plant bioactives cannot be employed because of 
unsatisfactory physiological parameters or poor oral bioavailability. 
Therefore, the nanodelivery of bioactive components could thus 
maximize the medicinal/therapeutic benefits of the bioactive under 
investigations considering the safety and toxicity concerns. This is how 
biomaterials, food components and bioactive substances could have 
positive environmental impact through economic development and 
sustainability in the long run.

Medicinal plants rich in phytochemicals such as flavonoids, 
terpenoids, and coumarins have shown anticonvulsant activities in 
preclinical studies (1, 2). Andrographis paniculata (F. Acanthaceae) 
has been used in traditional medicines for curing various human 
ailments. The leaves of A. paniculata contain a diterpenoid called 
andrographolide (AG), which is the major bioactive component 
and it possesses a wide range of biological activities such as 
antioxidant, anti-inflammatory, neuroprotective, and anti-cancer 
properties. AG includes nicotine induces oxidative stress in the 
brain and protects against brain ischemia caused by dopamine-
mediated neurotoxicity and inflammation-mediated 
neurodegeneration (3–5). The instability and poor water solubility 
of AG limits its clinical application because of its low bioavailability. 
Microemulsions, cyclodextrin inclusion complexes, liposomes, 
solid-lipid nanoparticles, niosomes etc. have been developed to 

enhance AG bioavailability; however, these systems have low 
loading capacity, poor stability and modest encapsulation 
efficiency (6, 7). A nanoparticle-based approach can be used to 
enhance the absorption, bioavailability, and biodistribution of 
flavonoids. In order to increase the solubility of hydrophobic drugs 
in water, nanoparticle drug delivery systems have been extensively 
used (8).

Approximating 1% of the world’s population is affected by 
epilepsy (EY), a complex neurological disorder, with considerable 
psychological, emotional and educational implications. Generally, 
an excessive glutamate concentration or a deficiency in GABA 
concentration in the central nervous system can cause a variety of 
pathological changes, which can be related to epilepsy (9). Several 
neurodegenerative conditions (for example, Alzheimer’s disease, 
Parkinson’s disease) are associated with oxidative stress, which 
causes neuronal damage. Molecular oxygen produces reactive 
oxygen species (ROS), which are generated by activating excitatory 
amino acids and releasing glutamate, causing long-term seizures 
and neuronal death. A direct effect of free radicals on seizures is 
seen when glutamate decarboxylase and glutamine synthase are 
deactivated, leading to a disproportionate amount of both 
excitatory (glutamate) and inhibitory (GABA) neurotransmitters 
(10–12). A scarcity of successful therapies for epilepsy exists 
around the world. It is possible to develop better antiepileptic 
treatments based on natural compounds. Patients with epilepsy 
may benefit from plants as a source of seizures and comorbid 
diseases (13).

Pentylenetetrazol kindling, a chronic epilepsy investigational 
model associated with seizures and neuronal plasticity, is typical in 
providing opportunities to study progressive behavioral variations 
closely resembling clinical epilepsy (14, 15). The present study was 
aimed to utilize andrographolide (AG) and it’s nanoformulation 
(AGN) as potential antikindling agent in PTZ-induced kindling rats.
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Materials and methods

Potential targets of andrographolide

We identified the potential targets of the active compounds by 
analyzing the data collected from various databases. These include the 
TargetNet Database (TND), Comparative Toxicogenomic Database 
(CTD) (16), and Swiss Target Prediction (STP) (17). The chemical 
structures were then converted into a canonical version of SMILES 
using PubChem (17). The compound files were placed in the 
TargetNet and Swiss Target Prediction databases (16, 17). The results 
showed that the probability of a compound being produced was 
greater than 0.9. We verified that the targets were Homo sapiens using 
the UniProt database.

Epilepsy related targets and shared targets 
of andrographolide

With the help of Geo2R, the related targets of the EY can 
be retrieved. The tool is part of the GEO dataset, a collection of gene 
expression datasets. This study aimed to identify the most common 
genes, which were differentially shown in different sample groups. 
Gene chip GSE28674 has been frequently cited in literature (18, 19). 
The differentially revealed genes in the samples were identified by 
adjusting the p-values to <0.05 in analyzing the data in the geo2R 
database using Benjamini–Hochberg method. The criteria for 
determining the DEGs that should be screened were FDR > 0.05 and 
log FC > 1 (18). Furthermore, a volcano diagram was generated using 
ggplot2 and using the Venn package, the tool retrieved the related 
targets of the EY. We also performed a comprehensive analysis of 
potential targets of andrographolide.

Analysis of protein–protein interactions 
and hub targets

PPI analysis assists in identifying the hub targets related to AG on 
EY. The PPI network was constructed by using STRING with the 
“Homo sapiens” setting to retrieve the shared targets of 
andrographolide with ER (20). The network properties were analyzed 
using Cytoscape 3.7.2 software by selecting the “Analysis Network” 
function. The degree of freedom (DOF) plays an influential role in a 
PPI network because points overhead the average DOF typically play 
a significant role (21).

Kyoto Encyclopaedia of Genes and 
Genomes analysis and Gene Ontology 
enrichment

KEGG pathway enrichment analysis and GO function enrichment 
analysis were performed using DAVID with Homo sapiens as the 
selected species. Visualization was performed using the online tool 
Weishengxin (2). A threshold level of p  < 0.05 is used for all GO 
enrichment and pathway analyses. The final pathway map was created 
by combining pathways with the highest scores.

Network construction

By using Cytoscape 3.7.2 software, a primary regulatory network 
was used to construct in order to visualize the “drug–target–disease” 
correlation between AG and EY. The nodes in this network are the 
shared targets, active compounds, and pathways. The edges show how 
compounds, targets, and pathways interact.

Molecular docking

Andrographolide was retrieved from the 3D.sdf file of the 
PubChem database. Using OpenBabel-2.3, the SDF files were 
converted to pdb files, which were then converted into pdbqt files 
using AutoDock Tools (version 1.5.6) (22–24). The x-ray crystal 
structure of the gamma-aminobutyric acid receptor GABA(A)R-beta3 
(PDB ID 4COF) (25–33) was obtained from the RCSB Protein Data 
Bank. MGL AutoDock Tools were used to prepare the protein, 
including removing crystal water and ligands and adding Kollman 
charges and polar hydrogen atoms. The PDB structured proteins were 
transformed to the pdbqt format utilizing Autodock. Ten distinct 
poses of the ligand molecules were acquired after docking with target 
proteins (x, y, z = 34.55, 56.37, 23.86) by employing AutoDock Vina’s 
standard settings (34–39). The Biovia Discovery Studio was chosen to 
illustrate ligand-protein interactions (40–47).

Preparation of andrographolide 
nanoparticles

An antisolvent (n-hexane) was added to absolute ethanol (15 mg/
mL) to obtain the nanosuspension of andrographolide. The n-hexane 
to ethanol ratio was 10:1 to facilitate the process of nanosuspension. 
Subsequently, the nanosuspension of the medication was placed into 
a round-bottom flask and rotated at 90 rpm at a temperature of 40°C 
and a pressure of 300 mbar, and the solvent was then removed using a 
rotary evaporator. Next, the solid in the flask was evaporated and dried 
(48). The particle sizes of the prepared AGN and AG particles were 
measured at an angle of 900° using the dynamic light 
scattering technique.

Animals

The albino Wistar male rats were weighed between 150–200 
grams, and they were held in a room with a temperature of 25°C, 55% 
relative humidity, and a 12/12 h light/dark cycle, which complies with 
CPCSEA regulations. Experimental rats were fed with pellet diet, and 
water ad libitum. The IAEC (1725/GO/a/13/CPCSEA) evaluated and 
accepted the current experimental protocol.

Treatment protocol

Kindling induction
Rats were treated with sub-convulsant dose of PTZ (35 mg/kg/b.

wt. i.p./alternative days) until kindling was developed. The Racine 
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scale was used to monitor the intensity of seizures was monitored for 
around 30 min following each injection (49). Kindling intensity is 
monitor based on the following score:

Score 0 = No response,
Score = 1 facial and mouth jerks,
Score = 2 myoclonic body jerksor nodding,
Score = 3 forelimb clonus, rearing, hindlimb clonus, falling down 
and forelimbtonus.
Score = 4 tonic extension of the hindlimb,
Score = 5 status epilepticus and/or death.

In the study, rats with convulsions on the first day were excluded. 
When rats exhibit stage 5 seizures, they are considered fully kindled. 
The doses (50), phenytoin (51), and andrographolide (52) have been 
determined in previous studies.

Rats were divided in to five groups, each group contain 
six animals.

Group I: Received vehicle saline i.p.
Group II: PTZ (35 mg/kg/b.wt. i.p./alternative days).
Group III: Phenytoin (35 mg/kg/b.wt. i.p./daily) + PTZ (35 mg/
kg/b.wt. i.p./alternative days) treatment.
Group IV: Phenytoin (35 mg/kg/b.wt. i.p.) + AG (80 mg/kg. 
p.o) + PTZ (35 mg/kg/b.wt. i.p./alternative days) treatment.
Group V: PTZ + phenytoin (35 mg/kg/b.wt. i.p.) + AGN (80 mg/
kg.p./o) + PTZ (35 mg/kg/b.wt. i.p./alternative days).

The ends of the treated rats were executed under ether anesthesia, 
and the brains were quickly removed, cleaned with ice-cold saline, and 
subjected to estimation of malonaldehyde (MDA), reduced 
glutathione (GSH) (53), superoxide dismutase (SOD) (54), and 
gamma-aminobutyric acid (GABA) (53).

Histopathological examination

Toluidine blue and hematoxylin and eosin were used for staining 
the sections (55). The hippocampal and cortical regions of the slides 
were photographed digitally under a microscope.

Statistical analysis

The mean value and standard error of the mean (SEM) for data 
gathered from three trials is presented. A significant difference 
(p < 0.001) was identified between the kindling rats and treatment rats 
when using one-way ANOVA followed by Dunnett’s comparison test.

Results

Screening of potential targets in 
andrographolide

This study identified 423 targets of andrographolide. It is possible 
that andrographolide may have similar biological effects as 
andrographide and that when combined, these effects may 

be synergistic. The integration of all targets resulted in 371 targets 
corresponding to andrographolide.

Related targets of andrographolide and 
shared targets of andrographolide against 
epilepsy

Gene chip GSE28674 was used to examine the impact of dentate 
gyrus MRI features and hippocampal CA3 transcriptome signature in 
relation to initial precipitating injury in refractory temporal lobe 
epilepsy, including twelve normal samples (hippocampus no febrile 
seizures) and six samples (hippocampus febrile seizures). As shown in 
Figure 1A, 660 DEGs were identified between normal samples and 
disease samples using the above screening criteria of FDR > 0.05 and 
log FC > 1. To further understand andrographolide’s mechanism of 
action in treating EY, a Venn diagram (Figure 1B) was used to identify 
eight shared targets (Table  1) between 660 DEGs and 371 
potential targets.

Kyoto Encyclopaedia of Genes and 
Genomes pathway enrichment and Gene 
Ontology functional annotation analysis

Based on the GO functional annotation analysis, 11 CC terms, 
16 BP terms, and 10 MF terms predominated across the eight shared 
targets. As shown in Figure 2 and Table 2, the top five enrichment 
results are presented for each part. Synaptic transmission, 
GABAergic inhibitory synapse assembly, GABA signaling pathway, 
signal transduction, and regulation of postsynaptic membrane 
potential are closely connected to BP. Concerning CC, higher 
enrichment was found in the synapse, dendrite membrane 
(GABA-A receptor complex), postsynaptic specialization 
membrane, and plasma membrane. The main terms of EY in MF 
included benzodiazepine receptor activity, GABA-gated chloride 
ion channel activity, GABA-A receptor activity, inhibitory 
extracellular ligand-gated ion channel activity, and enzyme binding 
activities. The current analysis exhibited that these targets were 
closely associated to the activation of GABA ion channels, causing 
an influx of chloride ions and leading to hyperpolarization and 
decreased excitability.

An intensive KEGG enrichment analysis was conducted on the 
eight shared targets, targeting the anti-EY pathway of 
andrographolide, and results showed an FDR of <0.05. The outcomes 
are presented in Figure  3. The four enriched pathways were 
GABAergic synapse (hsa04727), nicotine addiction (hsa05033), 
morphine addiction (hsa05032), and the AGE-RAGE signaling 
pathway in diabetic complications (hsa04933) (Table 3). For instance, 
GABRA2 and GABRG2 appear in three pathways, indicating that 
andrographolide mainly acts by activating GABA ion channel 
receptors (Figure 4).

An enrichment analysis of andrographolide’s anti-EY pathway was 
conducted with KEGG, with FDR < 0.05. Figure  5 illustrates the 
results. The four enriched pathways were GABAergic synapse 
(hsa04727), nicotine addiction (hsa05033), morphine addiction 
(hsa05032), and the AGE-RAGE signaling pathway in diabetic 
complications (hsa04933). For instance, GABRA2 and GABRG2 
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appear in three pathways, indicating that andrographolide mainly acts 
by activating GABA ion channel receptors.

Molecular docking

Based on KEGG enrichment analysis, GABAergic synapse 
signaling pathways appear to be  a hub signaling pathway of 
andrographolide against EY. The GABRA2 and GABRG2 genes were 
related to three signaling pathways, including hsa05033, nicotine 
addiction; hsa04727, GABAergic synapse; and hsa05032, morphine 
addiction. Therefore, GABA is considered to be a prominent target of 
andrographolide in the treatment of epilepsy.

Based on molecular docking studies, andrographolide binds to the 
GABA receptor with a binding energy of −6.8 kcal/mol. It formed 

three hydrogen bonds with ASP A:89, ASP B:89, and ARG B:114, with 
distances of 5.17, 3.69, and 6.18 A°. It also interacted with LYS A:112 
via hydrophobic interactions at a distance of 5.12 A° (Figure 5). This 
suggests that andrographolide may be  an important ligand for 
controlling glucose homeostasis.

Particle size and charge of andrographolide 
nanoparticles

The andrographolide particles were found to have a size of 3587.8 nm 
(3.6 microns), indicating their large particle nature. On the other hand, 
the size of the prepared nano-andrographolide was found to be 47.9 nm 
indicating that the prepared nanoparticles were of good size. The nano-
andrographolide particles exhibited −32.3 mV charge indicating that the 
particles remained stable and free of agglomeration (Figure 6).

Effect of andrographolide nanoparticle 
treatment on pentylenetetrazol-induced 
kindling model

After three injections, PTZ-treated rats reached seizure severity stage 
5 and died. In contrast, the phenytoin +AG combination did not cause 
severe seizures in rats. Up to the ninth PTZ injection, AGN + phenytoin 
combinations were seizure-free, but the severity of the seizures increased 
following the eleventh PTZ injection. Our results agree with those of 
various studies in which PTZ was frequently used to induce seizure 
severity (56–58). In this study, the number of animals that developed 
kindling significantly decreased after AGN treatment (Tables 4–7).

A

B

FIGURE 1

Genes with differential expression in epilepsy (EY). (A) A red or blue gene represents an upregulated gene, whereas a blue gene represents a 
downregulated gene, based on the standard FDR of 0.05 and log FC > 1. (B) Potential targets of andrographolide and differentially expressed genes in 
EY.

TABLE 1 The eight shared targets between the andrographolide and 
epilepsy with FDR < 0.05 and log FC > 1.

Gene log FC FDR

DUSP10 −1.00026 0.010221

FN1 1.571008 0.014388

AR −1.1762 0.010014

PRKCE 1.284686 0.045194

CA12 1.315168 0.026297

RBP4 2.214523 0.020294

GABRG2 2.807807 0.004511

GABRA2 1.089175 0.014506
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TABLE 2 Gene Ontology (GO) enrichment analysis performed on eight common genes.

Term Description Count p-value Genes Fold 
enrichment

Bonferroni

Biological process

GO:0051932 Synaptic transmission, GABAergic 3 2.85549E−05 GABRA2, PRKCE, GABRG2 313.9565217 0.005126771

GO:1904862 Inhibitory synapse assembly 2 0.005440965 GABRA2, GABRG2 320.9333333 0.625456681

GO:0007165 Signal transduction 4 0.008137434 GABRA2, AR, PRKCE, 

GABRG2

7.599052881 0.770242346

GO:0007214 GABA signalling pathway 2 0.010135923 GABRA2, GABRG2 171.9285714 0.84019093

GO:0060078 Regulation of postsynaptic 

membrane potential

2 0.011576698 GABRA2, GABRG2 150.4375 0.877048021

Cellular components

GO:0060077 Inhibitory synapse 2 0.006139434 GABRA2, GABRG2 284.3333333 0.242041103

GO:1902711 GABA-A receptor complex 2 0.006479565 GABRA2, GABRG2 269.3684211 0.253626525

GO:0099060 Integral component of postsynaptic 

specialization membrane

2 0.009875383 GABRA2, GABRG2 176.4827586 0.360200909

GO:0032590 Dendrite membrane 2 0.010553352 GABRA2, GABRG2 165.0967742 0.379620876

GO:0045202 Synapse 3 0.010999223 GABRA2, PRKCE, GABRG2 15.73155738 0.392077144

Molecular function

GO:0008503 Benzodiazepine receptor activity 2 0.004086826 GABRA2, GABRG2 427.5227273 0.255360015

GO:0005237 Inhibitory extracellular ligand-gated 

ion channel activity

2 0.004086826 GABRA2, GABRG2 427.5227273 0.255360015

GO:0022851 GABA-gated chloride ion channel 

activity

2 0.004828345 GABRA2, GABRG2 361.75 0.294241982

GO:0004890 GABA-A receptor activity 2 0.007050064 GABRA2, GABRG2 247.5131579 0.399145455

GO:0019899 Enzyme binding 3 0.008403619 AR, PRKCE, FN1 18.0875 0.455352909

GO analysis showed 16 entries for biological processes, 11 for cell components, and 10 for molecular functions (p < 0.05). The top five entries with the most significant p-values are shown.

FIGURE 2

Bubble chart showing the relationship between KEGG pathways and associated genes.
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Effect of andrographolides nanoparticles 
on pentylenetetrazol kindling-induced 
brain oxidative biomarkers

Compared to the normal control rats, PTZ treatment had a 
significant (p < 0.001***) decrease in SOD, GSH, GABA and an 
increase in MDA levels in the rat brain. Compared to PTZ alone 
treatment and AG treatment, AGN treatment had the effect of 
significantly (p < 0.001***) increasing SOD, GSH, GABA, and reducing 
MDA levels in the brain (Figure 7).

PTZ selectively blocks the chloride ionophore complex of the 
GABA receptor. Following repeated or single administration, its 
convulsant effects affect GABAergic, adenosinergic, and 
glutamatergic systems. In this study, PTZ treatment significantly 
decreased GABA activity, whereas the combination of AGN with 
phenytoin increased GABA activity compared with AG with 
phenytoin and phenytoin treatment. In this context, PTZ has also 
been shown to activate nucleases, phospholipases, and membrane 
proteases that result in the degradation of cytoskeletal proteins, 

membrane phospholipids, and protein phosphorylation (58–60). 
After PTZ-induced seizures, significant reductionin GSH and 
SOD activity (61) and increased MDA activity (62) have been 
observed in animal brain homogenates. Reactive oxygen species 
are produced in an unreliable manner as a result of antiepileptic 
medications including phenytoin, valproic acid, and 
carbamazepine (63). Epilepsy and associated neurological 
comorbidities can be improved when these drugs are combined 
with antioxidants (64, 65). An examination of histology showed a 
decrease in cell count and cell death in the cortex, CA1 and CA3 
region of the rat’s hippocampus. The group receiving PTZ showed 
a significant increase in dead cells and a decreased density of cells 
compared with the control value. Supplementary Figures S1–S3 
showed that the phenytoin + AGN + PTZ group had significantly 
fewer dead cells and greater cell density in the hippocampus and 
cortex in comparison with the AGN group. However, the 
combination of AGN and phenytoin treatment restored cellular 
antioxidant enzymes when compared with the combination of AG 
and phenytoin treatment in the PTZ group.

FIGURE 3

Component-target-signal pathway network.

TABLE 3 Target genes in 4 signaling pathways enrichment related to EY.

Description Count p-value Genes Fold enrichment Bonferroni

hsa05033:Nicotine addiction 2 0.029076553 GABRA2, GABRG2 58.25714286 0.654331654

hsa04727:GABAergic synapse 2 0.033731908 GABRA2, GABRG2 26.18298555 0.906586848

hsa05032:Morphine addiction 2 0.045124214 GABRA2, GABRG2 25.60753532 0.911459737

hsa04933:AGE-RAGE signaling 

pathway in diabetic 

complications

2 0.05136826 PRKCE, FN1 23.30285714 0.930438835
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FIGURE 4

Mechanisms of action of andrographolide against EY.

FIGURE 5

Molecular docking interactions of andrographolide in 2D and 3D representations.

Conclusion

Based on the network pharmacology analysis, the 
andrographolide acts as an anti-epileptic agent by upregulating 

the GABA levels, and further molecular docking studies 
confirmed the same. PTZ administration revealed kindling 
development, greater oxidative stress, diminished antioxidant 
activity, augmented GABA levels, and neurodegeneration. 
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A B

C D

FIGURE 6

(A) Andrographolides particle size, (B) andrographolides particle charge, (C) andrographolides nanoparticle size, (D) andrographolides nanoparticle 
charge.

TABLE 4 Effect of PTZ (35 mg/kg).

Days PTZ inj. Score 1 
(time)

Score 2 
(time)

Score 3 
(time)

Score 4 
(time)

Score 5 
(time)

1 1
OA 4 min NO NO NO NO

DA 8 min NO NO NO NO

3 2
OA NO NO 3 min NO NO

DA NO NO 12 min NO NO

5 3
OA NO NO NO NO 3 min followed by 

death (100%)DA NO NO NO NO

TABLE 5 Effect of PTZ (35 mg/kg) + phenytoin (35 mg/kg).

Days PTZ inj. Score 1 
(time)

Score 2 
(time)

Score 3 
(time)

Score 4 
(time)

Score 5 
(time)

1 1
OA NO NO NO NO NO

DA NO NO NO NO NO

3 2
OA 3 min NO NO NO NO

DA 9 min NO NO NO NO

5 3
OA NO NO 5 min NO NO

DA NO NO 13 min NO NO

7 4
OA NO NO NO 9 min NO

DA NO NO NO 15 min NO

9 5
OA NO NO NO NO 5 min followed 

death (83.3%)DA NO NO NO NO
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However, the combination of phenytoin and andrographolide 
nanoparticles significantly reduced the seizure score (% of 
kindled animals). The above findings indicate that the potential 
anti-kindling effects of andrographolide nanoparticles may 
protect against oxidative stress and increase GABAergic activity 

in kindling seizures and thereby modulates neuroprotection in 
the cortex. Finally, we  conclude that the leaves and roots of 
A. paniculata can be effectively utilized for its major bioactive 
constituent, andrographolide as a potent anti-epileptic agent. 
Furthermore, the findings of novel nanotherapeutic approach 

TABLE 7 Andrographolide nanoparticles (50 mg/kg) + PTZ (35 mg/kg).

Days PTZ inj. Score 1 
(time)

Score 2 
(time)

Score 3 
(time)

Score 4 
(time)

Score 5 
(time)

1 1
OA 6 min NO NO NO NO

DA 10 min NO NO NO NO

3 2
OA 5 min NO NO NO NO

DA 11 min NO NO NO NO

5 3
OA NO 5 min NO NO NO

DA NO 12 min NO NO NO

7 4
OA NO 4 min NO NO NO

DA NO 15 min NO NO NO

9 5
OA NO NO 4 min NO NO

DA NO NO 16 min NO NO

11 6
OA NO NO 8 min NO NO

DA NO NO 20 min NO NO

13 7
OA NO NO NO 15 min NO

DA NO NO NO 5 min NO

15 8
OA NO NO NO 20 min NO

DA NO NO NO 7 min NO

17 9
OA NO NO NO 10 min NO

DA NO NO NO 9 min NO

19 10
OA NO NO NO NO 15 min

DA NO NO NO NO 5 min

21 11
OA NO NO NO NO 20 min

DA NO NO NO NO 7 min

NO, not observed; OA, onset of action; DA, duration of action.

TABLE 6 Andrographolide (50 mg/kg) + PTZ (35 mg/kg).

Days PTZ inj. Score 1 
(Time)

Score 2 
(Time)

Score 3 
(Time)

Score 4 
(Time)

Score 5 
(Time)

1 1
OA 5 min NO NO NO NO

DA 8 min NO NO NO NO

3 2
OA 4 min NO NO NO NO

DA 11 min NO NO NO NO

5 3
OA NO 3 min NO NO NO

DA NO 15 min NO NO NO

7 4
OA NO NO 3 min NO NO

DA NO NO 20 min NO NO

9 5
OA NO NO NO NO 10 min followed 

death (66.6%)DA NO NO NO NO
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claim that nano-andrographolide can be  successfully in the 
management of kindling seizures and neurodegenerative disorders.
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