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There is an emerging interest in evaluating the presence of microplastic (MP) 
and nanoplastic (NP) residues in food. Despite their potential threat to human 
health, there is still a need for harmonized methods to evaluate and quantify their 
presence. Incomplete polymerization may occur during the production of plastic. 
Conversely, oligomers are formed during chemical, mechanical, or enzymatic 
depolymerization. Oligomers are a few nanometers in size. Recent advances in 
analytical chemistry have enabled the quantification and identification of these 
oligomers in various complex biological matrices. Therefore, we  propose that 
the specific nanosized oligomers can be considered markers for the presence of 
MPs/NPs. This advance may facilitate a broader perspective for the assessment of 
MPs/NPs exposure, leading to the evaluation of food safety and associated risks 
to humans.
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1. Background: microplastics and nanoplastics in 
food

The production of plastics for food packaging continues to increase, with more than 20 
billion kilos of total plastic demand in Europe used for packaging (1). According to a recent 
report, the most demanded plastic polymers in the food industry in Europe in 2018 were 
polypropylene (PP, 19%), high-density polyethylene (HDPE, 12%), low-density polyethylene 
(LDPE, 18%), and polyethylene terephthalate (PET, 6%) (2). Polyethylene terephthalate (PET) 
is one of the most important and widely used polymers as a food contact material, either virgin 
or recycled (3).

The small fragments derived from the degradation of plastic material, defined as 
microplastics (MP) or nanoplastics (NP), have a hidden impact on the environment, human 
health, and ecosystems (4, 5). The term “MPs” is loosely employed to refer to all of these plastic 
particles. However, the size of MPs is usually between 1 μm and 5 mm (6, 7), whereas NPs are 
particles in the nanometer range, between 1–500 nm (7). The presence of NPs in food or food 
contact materials may be intended, for example, to create biosensing devices or engineered 
functional particles.

Laboratory simulations have shown that plastic MPs and NPs can be generated by the 
fragmentation and degradation of plastic material (8) and can be  released from products 
containing them as functional components, such as textiles or cosmetics (9). Plastic-derived 
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material at the nano-and microscale has been identified in human 
lung tissue (10), placenta (11), and blood (12), although without a 
clear description of the pathways involved (13).

Assessing the risk of MPs and NPs to our health via the food chain 
requires a thorough understanding of how much of these micro-or 
nano-sized structures are leached into the environment, when and 
how they enter the food chain, where they partition, and what their 
fate is. Analytical methods such as spectroscopy, molecular imaging, 
hyphenated techniques combined with mass spectrometry such as 
time-of-flight mass spectrometry (TOF-MS), pyrolysis with GC–MS, 
light scattering, or microscopic techniques are being evaluated to 
selectively detect MPs and NPs in our food products (14). In food, the 
complexity of the matrix poses a substantial challenge to their 
detection and quantification.

When present in food, MPs and NPs are considered to 
be products of plastic degradation or cross-contamination, which can 
leach and be ingested and processed in the upper gastrointestinal 
tract (Figure 1) and further fermented by the gut microbiota (15). It 
has been recently demonstrated that insects can metabolize and 
degrade plastics through the activity of their gut microbiota (16, 17). 
The digestive tract has a very high surface area due to its absorptive 
function and provides a very efficient route for orally ingested 
particles to enter the body. In pharmaceutical science, many oral 
delivery formulations are based on polymeric nanoparticles (18), as 
they pass through the intestinal mucosa quickly and protect the 
bioactive materials from degradation by enzymes and acids during 
transit. Studies on the design of nanoparticles for oral delivery 
provide a wealth of knowledge on how to improve transport across 
the gastrointestinal and blood–brain barriers with a low risk of 
inflammation (19). The size of these particles affects their absorption, 
and sizes larger than 10 mm do not appear to readily penetrate the 
mucus layer (18).

The gastrointestinal epithelium is designed to protect us from 
foreign substances. These cells are the last barrier to absorption; they 
are cylindrical in shape and connected to each other through tight 
junctions, with a brush border membrane on top, covered by a dense 
layer of mucus. After digestion, MPs or NPs must first diffuse through 
the mucus layer and then enter the bloodstream. In a recent study, 
fluorescent-labeled model nanoparticles were used to investigate the 
effect of basic physical parameters such as size, charge, and 
hydrophobicity on the ability to cross the intestinal barrier (20). The 
physical properties of the polymeric material have an impact on 
bioadhesion, interactions with the mucus layer, and cell absorption. 
Factors such as size, negative charge, and hydrophilicity have been 
shown to facilitate the passage of nano- and microplastic particles 
through the mucus layer. Once through the mucus layer, surface 
charge and hydrophobicity are shown to improve the process of 
trans-intestinal transport (20). Trans-cellular transport of the plastic 
NPs is mostly dependent on endocytosis, whereby the particles are 
transported through the cell and released at the basolateral membrane 
(21–23). Particles smaller than 4 mm interact with the intestinal 
layer (20).

The pathophysiological consequences of acute and chronic exposure 
to MPs, NPs, and oligomers, in the mammalian system, particularly in 
humans, are still unclear. Disruptive effects of MPs and NPs have been 
extensively documented in marine invertebrates and mice (24), but not 
in humans. It has been shown that MPs and NPs cause an imbalance in 
the gut microbiome flora, with a reduction of beneficial bacteria and an 
increase in harmful bacteria (25). The latter could affect the intestinal 
barrier, and certain bacterial products or species could enter the 
bloodstream and cause damage to other tissues and organs (25). In 
addition, the continued presence of low levels of MPs and NPs in foods 
may be  increasingly harmful to individuals with an irritable bowel 
disorder due to their increased intestinal permeability.

FIGURE 1

 MP/NP formation leads to human exposure and associated risks. Consumption (ingestion, inhalation, or dermal contact) of MPS/NPs would lead to an 
in vivo chemical or enzymatic degradation leading to the formation of corresponding oligomers.
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2. Plastic oligomers are nano-sized

Low molecular weight oligomers (<1,000 Da), formed as 
by-products of incomplete polymerization during manufacturing, 
can derive from the presence of impurities in the raw materials used 
for the production of plastic materials. At the moment, no official 
definition for oligomers exists, nor is there any way to distinguish 
them from the physicochemical behavior of polymers. Furthermore, 
they can also result from the degradation and depolymerization of 
high molecular weight polymers, whether enzymatically or 
chemically (3, 26–28).

In silico calculations demonstrate that oligomers have nanosized 
dimensions. For example, using available software (ChemDraw, 
Perkin Elmer) and the online IT database Chemspider,1 it can 
be easily concluded that PET and PBT cyclic polyester oligomers, in 
addition to PS oligomers, have sizes larger than 1 nm. PET 1st cyclic 
oligomers have dimensions ranging from 0.9 nm for the dimer 
(M = 384.1 Da) to 1.6 nm for the heptamer (M = 1344.3 Da) 
(Figure 2A). Similarly, the PBT cyclic oligomers range from 1.0 nm 
(dimer; M = 440.4 Da) up to 1.9 nm (pentamer; M = 1101.1 Da) 
(Figure 2B).

The monomers styrene (Figure 2C) and acetophenone (the 
styrene oxidation product) are smaller molecules, but their 
oligomers are larger than 1 nm, as shown in Figure 2D for the 
styrene trimer. In addition, as recently reported (29), the size of 
PS oligomers may vary due to the formation of molecules of 
different sizes, such as acetophenone, 1,2-diphenylcyclobutane, 
1a-tetralin, 2,4-diphenyl-1-butene, 1,1-diphenylethylene, and 
2,4,6-triphenyl-1-hexene.

1 www.chemspider.com

Oligomers have been detected in plastics, food, and human blood 
(12, 26, 27, 30) using high-resolution mass spectrometry (HR-MS). 
These works are a step toward the development of quantification 
methods for complex matrices. However, challenges still exist for 
their identification and structural elucidation due to the lack of 
commercially available analytical standards (3).

Oligomers have been shown to migrate from virgin or recycled 
plastic packaging materials (3, 31) to food. Similarly, oligomers have 
been shown to leach onto the surface of fibers during the dyeing 
process (32). In the case of food and its packaging, recycling 
technologies may have an impact on the generation of oligomers or 
other NPs and their subsequent migration and safety, but no details 
are available in this regard. Furthermore, the presence of these 
oligomers or the formation of NPs in new biobased plastic materials 
is also unknown.

No information is available on the toxicity of oligomers except for 
limited in silico assessments for PET and PS (29, 33). In the case of 
polyesters, cyclic oligomers have only been assessed based on QSAR 
models (27). PET and PBT cyclic oligomers are already classified as 
Cramer III toxicity classes, while the corresponding linear oligomers 
are of low toxicity (Cramer I) (26, 27). As mentioned above, the 
limited availability of analytical standards limits full detection and 
quantification (28). In the case of PS oligomers, a recent IARC report 
categorizes them as potentially carcinogenic, together with their 
monomer (styrene) (34). All these considerations must certainly 
be reflected in the respective Tolerable Daily intake (TDI), based on 
the Toxicological Threshold of Concern (TTC) (35).

Oligomers are the smallest components of the NP family and can 
be readily transferred to the blood. A recent modeling study supported 
passive diffusion as the mechanism of cellular transfer for plastic 
oligomers (36). However, apart from in silico toxicological assessment, 
no in vivo or in vitro data exist on the potential effects of exposure to 
either NPs or oligomers, as they can also be considered NPs. The study 
of potential human health effects is at an early stage of development, 

FIGURE 2

Calculated dimensions with selected IT tools for (A) PET cyclic trimer; (B) PBT cyclic dimer; (C) styrene monomer; (D) styrene trimer (2,4,6-triphenyl-1-
hexene). Oligomers of PET, PBT, and PS can be considered NPs because they have molecular dimensions larger than 1 nm.
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and the assessment of human exposure is considered to be  very 
challenging. What are the main routes of exposure? The levels used in 
acute experiments are often unrealistic concentrations in the case of 
food. However, the effects of long-term exposure through food are 
largely unknown.

3. Conclusion

There is increasing evidence that humans are exposed to MPs and 
NPs; however, a more quantitative understanding is needed to assess 
the major sources of exposure. The presence of trace plastic oligomers 
in the blood raises questions regarding their potential origin, whether 
degraded plastic, MPs, or NPs. In this respect, more dedicated and 
multidisciplinary research is needed to verify the respective 
biochemical pathways involved.

Assessing the risks posed by oligomers as NPs will depend on 
addressing important questions, namely, how to calculate/measure 
oligomers/NPs released from plastics in food or the environment, 
identify their sources, evaluate how they may interact with 
themselves or with other components at the molecular or colloidal 
level, demonstrate their fate through ingestion, and identify their 
impact on human health. For this, it is essential to establish 
sensitive and selective analytical techniques to identify and 
quantify them.

Oligomers, as the smallest members of the NP family, should 
be considered markers of NP exposure. They are suitable as model 
compounds representing the presence of NPs in the respective 
materials. Specific target oligomers can facilitate the quantification 
and assessment of MPs/NPs. They can be  considered excellent 
markers to evaluate the presence of plastic depolymerization in 
food, the environment, and human biological samples. Recent 
advances in analytical methods now make it possible to assess their 
presence and better evaluate the risk of exposure. This approach 
should be encouraged to allow for progress toward a safer food 
value chain.
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