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Berberine (BBR) is an isoquinoline alkaloid that is widely distributed in the

plant kingdom and is commonly found in Coptis chinensis Franch. It has

low bioavailability, but it can interact with gut microbiota and affect a variety

of diseases. The effects of BBR in diabetes, hyperlipidemia, atherosclerosis,

liver diseases, intestinal diseases, mental disorders, autoimmune diseases, and

other diseases are all thought to be related to gut microbiota. This review

systematically and comprehensively summarize these interactions and their

effects, and describes the changes of gut microbiota after the intervention of

different doses of berberine and its potential clinical consequences, in order to

provide a basis for the rational application of BBR in the future clinical treatment.
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1. Background

Berberine (BBR) is able to be extracted from the roots and rhizomes of a variety of
medicinal plants, such as Berberis kansuensis C.K. Schneid. (Berberidaceae), Coptis chinensis
Franch. (Ranunculaceae), Coscinium fenestratum (Goetgh.) Colebr. (Menispermaceae),
Argemone mexicana L. (Papaveraceae), and Phellodendron amurense Rupr. (Rutaceae),whose
chemical composition is an isoquinoline alkaloid (1). It is used to treat a wide range
of diseases, including tumor, endocrine diseases, cardiovascular diseases, neurological
diseases, and digestive diseases (2). Animal and clinical studies have demonstrated that BBR
promotes insulin secretion, increases insulin sensitivity, inhibits gluconeogenesis, reduces
lipid accumulation, inhibits steatosis and fibrosis, has properties that reduce inflammatory
responses and oxidative stress, and modulates the immune system [(1, 3, 4)]. Recent
advancements in microbial sequencing technology, metabolomics technology, and sterile
animal models have focused attention on the study of intestinal microecology (5). The gut
microbiota plays a crucial role in the digestion and absorption of nutrients, metabolism,
immune function, and disease development in the host. Maintaining the stability of the
intestinal microecological environment is essential for regulating the health of the host. So
it is important to keep the intestinal micro-ecological environment stable for controlling
the health of the host. In recent years, there is growing evidence that BBR can reverse the
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composition and value of gut microbiota in non-healthy state
(Tables 1, 2). Hyperlipidemia, diabetes, cancer, and inflammatory
diseases suggest an key correlation between gut microbiota and
BBR (6). But the target of BBR needs to be further investigated.
With low oral bioavailability, it may influence gut microbiota.
It is not thoroughly understood what the results of BBR for
gut microbiota is and how altered flora relate to the metabolic
benefits of BBR. This paper aims to review the role of gut
microbiota under pathological conditions after BBR treatment
in the background of fundamental studies and application of
BBR in clinical, described the modulatory effects of BBR on
the composition of the gut microbiota and its metabolites,
and discussed the interaction between gut microbiota and
BBR to provide more support for basic research and clinical
trials.

2. Methods

Two authors searched the literature published in 2022 06
through MEDLINE (PubMed), EMBASE. Using “berberine” and
“gut microbiota” as keywords, they included the literature meeting
the following criteria: patients and animal models of gut microbiota
were studied; studies were clinical trials or animal experiments of
berberine intervention; and the primary endpoints were changes
in organ function, metabolic status, and inflammatory response.
Authors conducted this study in three stages: analyzing the title
followed by the abstract and, finally, reading the full text in
detail. They were able to retrieve 170 articles from PubMed
and 286 (with 3 duplicates) from EMBASE, for a total of
124 duplicates in both databases 260 irrelevant articles were
excluded by title, and 3 systematic reviews were excluded after
reading the abstracts. 16 non-disease studies, and 15 low-quality
literature pieces were also excluded. Finally, 35 studies were
included after reading the full text. The literature had to meet
the following criteria: all clinical and basic studies on diseases
connected with intervention of gut microbiota through the BBR
active ingredient pathway, and the language of the literature was
limited to English. There were no BBR-related compounding agents
involved in the study.

3. Effect of BBR on gut microbiota in
different diseases

3.1. Diseases related to glycolipid
metabolism

Glycolipid metabolic diseases are common chronic diseases
in the clinic that have been attracting increasing attention.
Approximately 1.5 billion people worldwide have metabolism-
related diseases, making it a global public health issue (7).

It is important for BBR in treating these diseases by
affecting the gut microbiota according to the latest research.
This promotes insulin secretion, improves insulin resistance, and
inhibits lipogenesis which is associated with changes in the
composition of the gut microbiota and its metabolites [(1, 8, 9)].

3.1.1. Diabetes mellitus
Modern pharmacological studies show the importance of

gut microbiota in the developmental phases of type 2 diabetes
mellitus (T2DM) similar to that of genetic-, environmental-,
and dietary factors (9, 10). Berberine is intragastric in db/db
mice with the dosage of 136.5 mg/kg, and the proportion of
Butyricimonas, Coprococcus, and Ruminococcus bacteria producing
short-chain fatty acids (SCFAs) increases (11) (Figure 1). Short
chain fatty acids cause an increase in glucagon-like peptide-1 (GLP-
1) secretion, enhance insulin secretion and suppress glucagon
secretion to improve blood glucose levels (12). Gegen Qinlian
decoction (containing BBR as the key component) and BBR
(200 mg/kg, 22 weeks) alone enrich butyrate-producing bacteria,
such as Faecalibacterium and Roseburia, and increase the level of
SCFAs in the feces (13).

In a rat model of diabetes, intragastric administration of
berberine at a dosage of 200 mg/kg suppressed blood glucose
levels, improved glucose tolerance, and serum lipid parameters
after 6 weeks. The relative abundance of Bacteroides increases in
the BBR group, while the relative abundance of Proteobacteria and
Verrucomicrobia phyla decreases. Probiotic Lactobacillaceae are
significantly up-regulated in the BBR group and have a negative
correlation with the risk of T2DM (14).

The combined application of BBR and probiotics shows that
BBR regulates the structure and action of gut microbiota, and
Bifidobacterium potentially enhances the hypoglycemic effect
of BBR (15) (There is a significant reduction in blood glucose
in the group of BBR and the group of BBR- Bifidobacterium
combination after 16 weeks of treatment with oral BBR (0.5 g
twice daily) at 2 h postprandial compared with that in the control.
Both groups show reduced abundance of intestinal bacteria
Roseburia, including Ruminococcus gnavus and Ruminococcus,
while the abundance of Blautia increases. In addition, the
abundance of Proteobacteria dramatically increases in the
BBR group, but not in the combination group, which may
be related to the use of Bifidobacterium (15). A randomized
double-blind controlled trial enrolling 409 patients with
T2DM receiving probiotics, BBR (0.6 g/6 capsules twice daily),
probiotics + BBR, or placebo for 12 weeks after 1 week of
gentamicin pretreatment shows that glycated hemoglobin is
more significantly altered in the probiotics + BBR group
and BBR alone group compared with that in the placebo and
probiotics alone group (16). Berberine alters gut microbiota,
microbiota-associated bile acid metabolism, and blood bile
acid composition; it may exert hypoglycemic effects by
inhibiting secondary bile acid production by Ruminococcus
bromii (16).

The combination of BBR with other drugs is important in
T2DM. The use of BBR (210 mg/kg), oryzanol (33.6 mg/kg), and
vitamin B6 (7 mg/kg) for 4 weeks restores the relative abundance
of Bacteroidaceae, Clostridiaceae in db/db mice. Bacteroidaceae
and Clostridiaceae are considered to be bacteria that produce bile
acid hydrolase, and the combination improves hyperglycemia. This
effect may be connected to increased gut microbiota-mediated
deoxycholic acid (DCA) production resulting in the upregulation
of colonic TGR5 expression and glucagon-like peptide secretion,
and improved glucose, lipid, and energy metabolism in db/db
mice (17).

Frontiers in Nutrition 02 frontiersin.org

https://doi.org/10.3389/fnut.2023.1187718
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-10-1187718 July 31, 2023 Time: 12:48 # 3

Yang et al. 10.3389/fnut.2023.1187718

TABLE 1 Berberine regulates gut microbiota in animal models.

Bioassay
model

Dosage Key finding References

diabetic db/db mice 136.5 mg/kg, i.g. for 11 weeks ↑SCFAs-producing bacteria (11)

diabetic rats 200 mg/kg, i.g. 22 for weeks ↑Butyrate-producing bacteria (13)

diabetic rats 200 mg/kg, i.g. for 6 weeks ↑Bacteroides,Lactobacillaceae;↓ Proteobacteria,
Verrucomicrobia

(14)

diabetic db/db mice BBR (210 mg/kg), oryzanol (33.6 mg/kg),vitamin
B6 (7 mg/kg), for 4 weeks

↑BSH-producing bacteria (17)

diabetic rats 100 mg/kg, p.o. for 30 days+ 150 mg/kg, p.o.for
18 days

↑Akkermansiaceae, Erysipelotrichaceae, Desulfovibrionaceae; ↓
Enterobacteriaceae, Christensenellaceae, Bifidobacteriace

(18)

Hyperlipidemic rats 150 mg/kg,p.o. for 16 weeks ↓Firmicutes (22)

NAFLD rats 200 mg/kg. i.g. for 8 weeks ↑Bifidobacteria (25)

NAFLD rats 150 mg/kg. i.p. for 4 weeks ↑Bacteroides;↓Faecalibacterium prausnitzii (26)

NASH mice 100 mg/kg. i.g. for 4 weeks ↑Clostridiales, Lactobacillaceae, Bacteroidale (27)

ALD mice 10, 50, 100 mg/kg. i.g. for 33 days ↑Akkermansia muciniphila↓Pseudoflavonifractor,
Mucisirillum,Alistipes,Ruminiclostridium, Lachnoclostridium

(28)

AS mice 100, 200 mg/kg, p.o. for 4 months ↑Lachnospiraceae NK4A136group, Bacteroidales S24-7 group
(unclassified), Eubacterium

(33)

AS mice 50 mg/kg, i.g. for 12 weeks ↑Verrucomicrobia;↓Firmicutes (35)

AS mice 0.5 g/L, p.o. for 14 weeks ↑Akkermansia (36)

Colitis rats 40 mg/kg, i.g. for 7 days ↑Bacteroides,Akkermansia (41)

Colitis mice 40 mg/kg, i.g. for 7 days ↑Lactococcus;↓Mouse intestinal Bacteroides, Segmented
filamentous bacteria,Enterobacteriaceae

(42)

UC mice 40 mg/kg, i.g. for 7 days ↑Lactic acid-producing bacteria,carbohydrate hydrolysis
bacteria;↓conditional pathogenic bacteria

(43)

UC mice 100 mg/kg, p.o. for 8 days ↑Bacteroides fragilis (44)

IBS rats 200 mg/kg, p.o. for 14 days ↑SCFAs-producing bacteria; (47)

IBS rats BA-BBR 1.715 mg, i.g. for 10 days ↓ Bacteroidia, Deferribacteres, Verrucomicrobia,
Candidatus_Saccharibacteria, Cyanobacteria

(48)

CRC mice 100 mg/kg, p.o. for 10 weeks ↑SCFAs-producing bacteria;↓f_Erysipelotrichaceae,Alistipes (52)

CRC Apcmin/+ mice 500 ppm, p.o. for 12 weeks ↑Lachnospiraceae;↓Akkermansia (53)

CRC mice 7.5, 15 mg/kg, i.g. for 4 weeks ↑Lactobacillus,Dubosiella;↓Bacteroides,
Escherichia-Shigella,Akkermansia

(54)

Anxiety rats 100 mg/kg, i.g. for 4 weeks ↑Bacteroides, Bifidobacterium, Lactobacillus, Akkermansia (62)

EAU mice 100 mg/kg, i.g. for 2 weeks ↑Lactobacillus,Akkermansia,Oscillibacter,
Ruminocococaceae

(67)

GVHD mice 50 mg/kg, i.g. for 25 days ↑Actinobacteria, Bacteroidetes, Adlercreutzia, Lactobacillus,
Dorea, Sutterella,Plesiomonas

(68)

Allograft mice 200 mg/kg, i.g. for 3 weeks ↓Bacillus cereus (69)

CIA mice 200 mg/kg, i.g. for 2 weeks ↑SCFAs-producing bacteria (70)

PD mice 100, 200 mg/kg, i.g. for 24 h Enterococcus might be an interesting genus for dopa/dopamine
biosynthesis in the intestine, and BBR might promote the body

dopa/dopamine levels through the bacteria in intestine.

(71)

Periodontitis rats 120 mg/kg, i.g. for 7 weeks ↑Butyrate-producing bacteria (72)

In addition, BBR (100 mg/kg, 150 mg/kg) and combined
treatment with stachyose for 48 days can significantly
improve glucose metabolism and reshape gut microbiota in
Zucker diabetic fatty rats. Both BBR and BBR + stachyose
have increased the abundance of Akkermansiaceae,
Erysipelotrichaceae and Desulfovibrionaceae, and decreased

the abundance of Enterobacteriaceae, Christensenellaceae, and
Bifidobacteriaceae (18).

3.1.2. Hyperlipidemia
Hyperlipidemia is a condition in which the level of fat

in the blood [mainly total cholesterol (TC), triglycerides

Frontiers in Nutrition 03 frontiersin.org

https://doi.org/10.3389/fnut.2023.1187718
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-10-1187718 July 31, 2023 Time: 12:48 # 4

Yang et al. 10.3389/fnut.2023.1187718

TABLE 2 Changes of gut microbiota in clinical subjects regulated by berberine.

Bioassay model Dosage Key finding References

Hyperglycemia patients 0.5 g, bid, p.o. for 16 weeks ↑Blautia;↓Roseburia (15)

T2DM patients 3.6 g, bid, p.o. for 12 weeks BBR is mediated by the inhibition of DCA biotransformation
by Ruminococcus bromii

(16)

Hyperlipidemic patients 0.5 g, bid, p.o. for 12 weeks the baseline abundance of Alistipes and Blautia could
effectively predict the cholesterol-decreasing efficacy of BBR

(21)

postprandial lipidemia
patients

BBR (0.6 g per 6 pills, bid)+ probiotics (4 g
per 2 strips of powder, qd), p.o. for 12 weeks

Bifidobacterium breve and BBR could exert a synergistic
hypolipidemic effect on postprandial lipidemia

(24)

Schizophrenia or bipolar
disorder patients

100–300 mg/tid, p.o. for 12 weeks ↑Bacteroides;↓Firmicutes (63)

Graves patients 300 mg/tid, p.o. for 24 weeks ↑Lactococcus lactis;↓Enterobacter
hormaechei,Chryseobacterium indologenes

(66)

FIGURE 1

Berberine affects the changes of gut flora in different diseases.

(TG) and low-density lipoprotein cholesterol (LDL-C)] is
abnormally high (19). The prevalence of hyperlipidemia is
rapidly increasing due to improvements in lifestyle and the

popularity of high-calorie diets. It can suffer from an increased
risk of causing various cardiovascular diseases (20). Various
studies show that BBR has a good lipid-lowering activity;
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it significantly reduces TC, TG, and LDL-C concentrations
and enhances serum high-density lipoprotein cholesterol
(HDL-C)concentrations (1).

Berberine reduces blood lipids after 12 weeks of oral
treatment (0.5 g, twice daily) in patients with hyperlipidemia.
However, there were significant individual differences. BBR
lowers cholesterol by regulating the gut microbiota. Baseline
levels of Alistipes and Blautia accurately predict the anti-
cholesterolemia effectiveness of BBR in subsequent treatment;
the cholesterol-lowering effect of BBR is diminished in Blautia-
deficient mice (21). Berberine also alters the intestinal microbial
structure of rats on a high-fat diet., Species diversity and
flora richness were markedly reduced after 4 months of
intervention with BBR (150 mg/kg, orally). The abundance of
Christensenellaceae, Dehalobacteriaceae, Erysipelotrichaceae, and
Peptococcaceae (all Firmicutes) was significantly reduced (22).
In addition, clinical studies have shown that nitroreductase
(NR) from intestinal bacteria plays an important role in
promoting intestinal absorption of BBR. Fecal NR activity
is higher in patients with hyperlipidemia than in healthy
individuals; blood BBR and fecal NR activity are positively
correlated (23).

Berberine combined with probiotics improves postprandial
hyperlipidemia in patients with T2DM. The effect of combined
probiotic (with nine strains) and BBR treatment on postprandial
lipids was assessed in 365 T2DM subjects (24). The combination
of probiotics + BBR improves postprandial lipids (reduced TC,
LDL-C, and multiple lipid metabolites) in patients compared
with the treatment alone; this effect is associated with fecal
Bifidobacterium breve enrichment; the presence of four fadD
genes encoding long-chain acyl-CoA synthetase in Bifidobacterium
breve strains. Berberine up-regulates fadD gene expression in vitro
and further reduces the free fatty acid level in the culture
medium. This may be the basis for probiotics + BBR to reduce
the intestinal lipid uptake and blood cholesterol level of the
host (24).

3.1.3. Viscera injury related to glucose and lipid
metabolism

The improvement of glycolipid metabolism also has a certain
therapeutic effect on organ function impairment secondary
to metabolic diseases. BBR can obviously promote the above
metabolic processes, so it can ameliorate the organ function damage
caused by metabolic related diseases to a certain extent. Ecological
dysbiosis of gut microbiota is thought to underlie non-alcoholic
steatohepatitis (NASH). The relative levels of Bifidobacteria and
the proportion of Bacteroidetes: Firmicutes are restored in HFD-
fed treated mice receiving BBR (200 mg/kg/d) by gavage for
8 weeks (25). Four weeks of intraperitoneal administration of
BBR (150 mg/kg/d) alleviates HFD-induced hepatic steatosis and
histopathological changes in the intestinal mucosa. The abundance
of gut bacteria Faecalibacterium prausnitzii decreases and the
abundance of Bacteroides increases (26). Also, BBR treatment of
mice (100 mg/kg/d by gavage) for 4 weeks increases the relative
abundance of Clostridiales, Lactobacillaceae, and Bacteroidales,
which mediates the activation of intestinal Farnesoid X receptor to
alleviate NASH (27).

Berberine alters the gut microbiota environment in mice with
alcoholic liver disease treated with BBR (10, 50, 100 mg/kg)
by gavage, decreases the abundance of Pseudoflavonifractor,
Mucisirillum, Alistipes, Ruminiclostridium, and Lachnoclostridium
and increases the abundance of Akkermansia muciniphila. Among
them, Akkermansia muciniphila is essential in maintenance of the
gut barrier integrity and may induce the activation of specific
cell subpopulations with immunosuppressive functions, thereby
alleviating alcoholic liver injury (28).

Diabetes and hypercholesterolemia are high risk factors for
atherosclerosis. Atherosclerosis (AS) is often the leading cause
of cardiovascular disease due to the growth of connective tissue,
deposition of intracellular and intracellular cholesterol, fatty acids,
and calcium carbonate, accumulation of collagen and proteoglycan,
hardening and thickening of artery walls, thinning of arteries, and
loss of elasticity of the entire artery (29). In recent years, the
incidence has been on the rise and is difficult to treat [(30, 31)].
BBR improves glycolipid metabolism through the regulation of
gut microbiota, and at the same time improves the progression of
atherosclerosis. Current studies have shown that gut microbiota
is an influential factor in the development and deterioration of
AS (32). BBR can change the intestinal microbial composition
of mice (Lachnospiraceae NK4A136 group, Bacteroidales S24-7
group) (unclassified), increased abundance of Eubacterium), and
cutC/cntA gene abundance associated with trimethylamine (TMA)
production; Under anaerobic conditions in vitro, BBR inhibits
the formation of d9-TMA in a dose-dependent manner, and in
mice, BBR can significantly reduce the elevated level of TMA-
producing bacteria (33). Trimethylamine oxide (TMAO) is an
independent risk factor and initiator of Atherosclerosis (34).
Similarly, other studies show that BBR administration (50 mg/kg,
twice weekly, by gavage) reduces the expression of TMAO
and inflammatory cytokines with an increased abundance of
Verrucomicrobia and decreased abundance of Firmicutes in BBR-
treated mice (35). Akkermansia is an important bacterium in the
Verrucomicrobia phylum; its abundance increases after 14 weeks
of BBR (0.5 g/L) administration in the drinking water of ApoE−/−

mice. Meanwhile, BBR attenuates high-fat diet (HFD)-induced
metabolic endotoxemia and reduces arterial and intestinal
expression levels of inflammatory cytokines and chemokines. BBR
attenuates metabolic endotoxemia caused by a high-fat diet (HFD)
and reduces the expression of inflammatory and chemokines in
the arteries and intestines, Anti-AS and metabolic management
effects of BBR may be associated with increased abundance of
Akkermansia (36). In conclusion, regulation of gut microbiota by
BBR contributes to anti-AS, and BBR can be considered as one of
the effective drugs for the treatment of AS.

3.2. Gastrointestinal disease

3.2.1. Intestinal inflammatory disease
Inflammatory bowel disease (IBD) is a chronic inflammatory

disease of the intestine of unknown origin, and its pathogenesis
includes host genetics and immune response, gut microbiota, and
environmental stimulation (37). Dysbiosis of gut microbiota is
associated with IBD (38–40). Berberine (40 mg/kg for 7 days)

Frontiers in Nutrition 05 frontiersin.org

https://doi.org/10.3389/fnut.2023.1187718
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-10-1187718 July 31, 2023 Time: 12:48 # 6

Yang et al. 10.3389/fnut.2023.1187718

alleviates dysbiosis in rats with dextran sodium sulfate (DSS)-
induced colitis and significantly upregulates Bacteroides and
Akkermansia; both animal and Caco-2 cell models show that
BBR regulates gut microbiota by tryptophan metabolism and
activation of the tryptophan receptor (AhR) pathway to improve
the damaged intestinal barrier (41). Berberine may also prevent
and treat ulcerative colitis by regulating intestinal microecology and
protecting the intestinal mucosal barrier (UC) Berberine restores
DSS-induced colonic inflammation by modulating intestinal
microbes (42). It protects the colon by reconstructing the disrupted
epithelial barrier, regulating the expression of immune factors,
and enhancing the expression of the Wnt/β -catenin pathway.
For DSS-induced colitis, the biological barrier was repaired after
7 days of treatment with BBR (40 mg/kg/d). Berberine increases
the relative level of bacteria. Also, the expression of probiotic
bacteria Lactococcus is upregulated compared to the model group,
but the expression of conditionally pathogenic bacteria such
asmouse intestinal Bacteroides, segmented filamentous bacteria,
and Enterobacteriaceae decreases. Similar studies confirm that
BBR increases the expression of lactic acid producing bacteria
(F. rodentium and Lactobacillus) and carbohydrate hydrolyzing
bacteria (R. flavefaciens and B. pseudolongum) and decreases the
expression of conditionally pathogenic bacteria (Mucispirillum,
Oscillospira, B. uniformis, and Allobaculum) to regulate the gut
microbiota (43). In addition, BBR is significantly related to immune
homeostasis in the gut. Berberine (100 mg/kg oral) regulates the
differentiation of intestinal immune cells by affecting the growth
of Bacteroides fragilis to relieve DSS induced colitis after 8 days of
treatment (44).

3.2.2. Irritable bowel syndrome
Irritable bowel syndrome (IBS) is a functional disorder of

the intestine characterized by abdominal pain and abnormal
bowel movements (45). IBS treatment focuses on a variety
of causes, including changes to the gut microbiota, visceral
hypersensitivity, intestinal permeability, and other factors that
contribute to the disease’s pathophysiology (46). Patients with IBS
have visceral hypersensitivity; this is thought to be related to
the activity of spinal microglia. Berberine significantly alleviates
chronic water avoidance stress-induced visceral hypersensitivity
and reduces the activation of colonic mast cells and spinal
microglia in rats (47). Berberine (200 mg/kg,14 days) does not
directly inhibit LPS-induced microglia activation, but may inhibit it
through the enrichment of SCFA-producing bacteria (Anaerostipes,
Eubacterium, Lachnoclostridium, and Eisenbergiella).

Berberine has promising therapeutic effects on IBS in
combination with other drugs. Berberine and baicalin (BA)
form natural self-assemblies such as BA-BBR nanoparticles
(BA-BBR NPs) and show synergistic effects on IBS-D. The
1:1 ratio of BA:BBR was mixed to form BBR-BA NPs and
BA-BBR NPs (1.715 mg/d) followed by administration by
gavage for 10 days. The relative abundance of Bacteroidia,
Deferribacteres, Verrucomicrobia, Candidatus, Saccharibacteria,
and Cyanobacteria was significantly remarkably higher in the IBS-
D mouse model group than that in the normal group. However, BA-
BBR NP treatment reduces the relative abundance of these phyla.
BA-BBR NPs are most effective in treating visceral hypersensitivity
and diarrhea in IBS-D model mice (48).

3.2.3. Gastrointestinal tumor
Colorectal cancer (CRC) is one of the leading causes of cancer

deaths worldwide (49). The ratio of intestinal flora plays a crucial
role in the development of CRC (50). Berberine improves the tumor
microenvironment by regulating the disturbed gut microbiota (51).

Oral administration of BBR (100 mg/kg for 10 weeks) to CRC
mice significantly alters gut microbiota composition. Berberine
inhibits pathogenic species such as f_Erysipelotrichaceae and
Alistipes and increases the abundance of SCFA-producing bacteria
including Alloprevotella and Flavonifractor. Also, metabolic data
suggest that BBR can alter fecal metabolism by regulating the
metabolism of sugars, amino acids and SCFA. These fecal
metabolites are the product of the combined action of the host
and the intestinal flora (52). The important role of SCFA bacteria
was confirmed in another study. BBR significantly attenuates
CRC progression and alters the gut microbiota structure in
HFD-fed Apc min/+ mice after 12 weeks of oral treatment with
BBR (500 ppm). Berberine significantly inhibits the increase of
Verrucomicrobia at the phylum level, inhibits Akkermansia at the
genus level, and elevates the levels of SCFA-producing bacteria
(Lachnospiraceae) (53). Recent studies show that BBR prevents
p-azomethane (AOM)/DSS-induced CRC in mice by reducing
inflammatory activation and improving intestinal flora dysbiosis.
The release of inflammatory factors and cell proliferation markers
is suppressed under BBR intervention (7.5 and 15 mg/kg), and key
pathway proteins involved in the inflammatory process (p-STAT3
and p-JNK) and cell cycle regulatory molecules (β-catenin, c-Myc,
and CylinD1) have lower expression levels, AOM/DSS stimulation
results in a sharp decrease in abundance of beneficial bacteria,
Lactobacillus and Dubosiella, and an increase in abundance
of undesirable bacteria Bacteroides, Escherichia, Shigella, and
Akkermansia. Meanwhile, the use of BBR restored the ratio of
these bacteria to a relatively normal state (54). In conclusion, the
anticancer effect of BBR is achieved through its regulation of the
intestinal microbiota.

3.3. Liver disease

Liver disease is a life-threatening condition that includes
liver fibrosis, cirrhosis, and drug-induced hepatotoxicity is one
of the main reasons for mortality and morbidity all over the
world. Hepatic fibrosis is a pathological marker and precursor of
cirrhosis, and fibrosis occurs in relation to liver metabolism and
gut microbiota homeostasis (55). It is suggested that gut microbiota
can be an independent regulator of liver metabolism, affecting
the fibrosis progression as well as the regression (56). Compared
to normal mice, Germ-free mice show more severe signs of liver
fibrosis (57). These studies suggest that dysbiosis of gut microbiota
is the important driver of liver fibrosis. Berberine strengthens
the endocrine capabilities of the gut microbiota, which further
regulates the liver microenvironment and ameliorates fibrosis. The
abundance of SCFA secreting bacteria increased due to berberine
treatment (58). Short chain fatty acids are essentialin liver diseases.
For example, butyrate alleviates inflammation and liver fibrosis by
promoting anti-inflammatory cytokines including IL-4 and IL-10
and inhibits inflammatory genes such as TGF-β1 and IL-1α(59).
In addition, BBR reduces hepatotoxicity caused by pathological or
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pharmacological interventions by improving the dysbiosis of gut
microbiota (60).

Berberine has potential value in the treatment of liver diseases
by reshaping the structure of the gut microbiota, especially
by modulating the abundance of SCFA-producing bacteria (for
example, Clostridium and Bacillus) and Akkermansia muciniphila.

3.4. Mental disorder

Berberine protects the central nervous system and has been
shown to be effective in anti-depressant, anti-anxiety, and anti-
inflammatory conditions. It reduces depressive and anxious
behavior by suppressing neuroinflammation in mice under stress
(61). The anxiety model of ovariectomized rats treated with
BBR (100 mg/kg) for 4 weeks show significant improvement in
anxious behavior and increased levels of the bacterial community
metabolite equol (which has potential estrogen-like effects).
These changes may be caused by an increase in beneficial
bacteria such as Bacteroides, Bifidobacterium, Lactobacillus, and
Akkermansia (62).

Berberine modulates gut microbiota and metabolic
disturbances of patients with schizophrenia or bipolar disorder, as
well as mild olanzapine-induced metabolic disturbances (63). For
the patients with schizophrenia or bipolar disorder treated with
olanzapine for at least 9 months, followed by 12 weeks of treatment
with BBR (100–300 mg/tid), there is a remarkable decrease in
the abundance of Firmicutes while a remarkable increase in the
abundance of Bacteroides. Antipsychotic treatment can cause
changes in the gut microbiota that induce chronic low-grade
inflammation, suppress resting metabolic rates, and activate
multiple signal transduction pathways, leading to metabolic
dysfunction (64). Gut microbiota is promising for research of
antipsychotic-induced metabolic disturbances, and BBR is a
candidate for treatment.

3.5. Immune disease

Recent studies have shown that BBR has increasing importance
in immune diseases. Graves’ disease is a multisystemic syndrome
of autoimmune diseases (65). Berberine significantly upregulates
the enterobactin synthesis and restores the thyroid function
by increasing iron uptake. Methimazole alone did not affect
the gut microbiota structure of patients alone, while combined
treatment with BBR (0.3 g/three times a day) for 6 months
significantly changes the flora structure of patients, increases
the abundance of beneficial bacterium (such as Lactococcus
lactis, and decreases the abundance of disease-causing bacteria
(such as Enterobacter hormaechei,Chryseobacterium indologenes)
(66). The gut microbiota of autoimmune uveitis mice is
modified after 14 days of intragastric administration of BBR
(100 mg/kg/d). Bacteria with immunoregulatory ability (such as
Lactobacillus, Akkermansia, Oscillibacter, and Ruminococcosaceae)
are enriched and play an important for immune homeostasis
during autoimmune uveitis (67). Berberine (50 mg/kg,25 days)
was used to treat acute graft-versus-host disease mice through
gut microbiota remodeling (the abundance of Actinobacteria

and Bacteroidetes and genus Adlercreutzia, Lactobacillus, Dorea,
Sutterella and Plesiomonas were increased) and intestinal mucosal
barrier protection, inhibition of TLR4 signaling pathway activation,
and suppression of NLRP3 inflammatory vesicles and their
cytokine release (68). In addition, another study demonstrates
that BBR (200 mg/kg/d) inhibits CD8 + TCM cells by reducing
the abundance of Bacillus cereus to inhibit mouse islet allograft
rejection (69). Berberine (200 mg/kg/d for 14 days) reduces
collagen-induced arthritis (CIA) in rats by upregulating the
relative abundance of intestinal SCFA-producing bacteria (Blautia,
Buttericicoccus, and Parabacteroides) and significantly increases the
content and proportion of butyric acid (70).

3.6. Other diseases

Oral BBR (100, 200 mg/kg) increases the amount of
dopamine secretion in the brain to improve Parkinson’s disease
(PD) symptoms by enhancing tyrosine hydroxylase activity in
Enterococcus and promoting levodopa production in the intestine
of a PD mouse model (71). Similar clinical findings show that
oral administration of BBR (0.5 g, bid) for 8 weeks in 28
patients with hyperlipidemia increases the relative abundance
of blood/fecal levodopa. Meanwhile, the relative abundance of
Enterococcus increases by 11%, wherein E. faecalis and E. faecium
are dominant. Enterococcus may synthesize dopa/dopamine in the
gut, and BBR may promote dopa/dopamine levels in vivo through
intestinal bacteria. On the other hand, berberine may have the same
effect (71). Berberine treatment of osteoporosis in a ovariectomy-
periodontitis rat model for 7 weeks (120 mg/kg) results in a
significant increase in butyric acid-producing bacteria (Blautia,
norank_f_Bacteroidales_S24-7_group, and Roseburia) compared to
the control group, and the intestinal barrier integrity improves.
Berberine treatment attenuates IL-17A-related immune responses
in rats and reduces serum levels of pro-inflammatory factors; this
suggests that BBR may treat periodontal bone loss caused by
estrogen deficiency by regulating the gut microbiota (72).

4. Outlook

Gut microbiota can regulate the efficiency of BBR absorption
and utilization in vivo; meanwhile, the structure and function of
the gut microbiota will be changed due to the intervention of BBR
(9). The effect of BBR on the gut microbiota varies depending on
its dose (73). Good therapeutic effects on a variety of diseases can
be achieved by the BBR-gut microbiota axis multi-target drug in
future studies. However, BBR can cause therapeutic diarrhea, and
the treatment-emergent mild diarrhea of BBR in normal rats is
likely to be caused by ecological dysbiosis of gut microbiota (74).
The pharmacological action and clinical research of BBR requires
further investigation. Many preclinical experiments proved the
role of BBR, and some clinical experiments also show good
results. However, BBR has poor bioavailability. Therefore, attempts
were made to use different dosage forms, drug delivery systems,
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and technologies such as microcapsules, nanoparticles, and other
new drug carriers to improve its bioavailability and therapeutic
effect. Future work should involve more clinical experiments to
explore the mechanism of BBR-mediated gut microbiota regulating
various diseases and accumulate more evidence to support its early
intervention as a routine treatment.

5. Conclusion

This paper mainly describes the effects of different BBR doses
on various diseases by regulating gut microbiota. The multi-
pharmacological effect of BBR can be explained at least in part
by its regulatory role in the gut microbiota. The evidences
presented in this paper shows that the different roles of BBR
in diseases are related to the diversity of gut microbiota. In
diabetes, BBR plays a hypoglycemic role mainly through SCFA
producing bacteria and bacteria related to bile acid metabolism. In
patients with hyperlipidemia, BBR alters host lipid and cholesterol
levels by regulating lipid synthesis related microbiota. In AS, BBR
reduces the production of TMA,TMAO,inflammatory factors and
chemokines by remodeling gut microbiota, thus playing an anti-
AS role. In intestinal diseases, BBR mainly maintains the intestinal
mucosal barrier, regulates immune homeostasis, reduces visceral
hypersensitivity, and anti-inflammatory effects by altering lactic
acid producing bacteria, carbohydrate producing bacteria, and
SCFA producing bacteria. In the liver, BBR mainly alleviates liver
damage by regulating SCFA producing bacteria and FXR related
bacteria. In mental disorders, BBR plays an anti-inflammatory and
anxiety relieving role by regulating microbiota related metabolites.
In immune diseases, changes in the immune regulatory microbiota
and SCFA producing bacteria in the body after BBR intervention
play a role in regulating immunity and anti-inflammatory effects.
But the effect of BBR on gut microbiota under pathological
conditions seems to be quite different due to the large individual
differences in the composition of gut microbiota. Moreover, there
is a genetic gap between rodents and humans. Therefore, more
advanced and large-scale clinical research is required in order
to investigate the impact of BBR on the regulation of the gut
microbiota under pathological conditions.
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