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Substance use disorders (SUD) can lead to serious health problems, and there is 
a great interest in developing new treatment methods to alleviate the impact of 
substance abuse. In recent years, the ketogenic diet (KD) has shown therapeutic 
benefits as a dietary therapy in a variety of neurological disorders. Recent 
studies suggest that KD can compensate for the glucose metabolism disorders 
caused by alcohol use disorder by increasing ketone metabolism, thereby 
reducing withdrawal symptoms and indicating the therapeutic potential of KD 
in SUD. Additionally, SUD often accompanies increased sugar intake, involving 
neural circuits and altered neuroplasticity similar to substance addiction, which 
may induce cross-sensitization and increased use of other abused substances. 
Reducing carbohydrate intake through KD may have a positive effect on this. 
Finally, SUD is often associated with mitochondrial damage, oxidative stress, 
inflammation, glia dysfunction, and gut microbial disorders, while KD may 
potentially reverse these abnormalities and serve a therapeutic role. Although 
there is much indirect evidence that KD has a positive effect on SUD, the small 
number of relevant studies and the fact that KD leads to side effects such as 
metabolic abnormalities, increased risk of malnutrition and gastrointestinal 
symptoms have led to the limitation of KD in the treatment of SUD. Here, 
we described the organismal disorders caused by SUD and the possible positive 
effects of KD, aiming to provide potential therapeutic directions for SUD.
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1. Introduction

Substance use disorders (SUD) are chronically relapsing conditions characterized by 
compulsive substance-seeking, lack of control in restricting intake, and the development of negative 
emotions during withdrawal (1). According to 2021 National Survey on Drug Use and Health in 
the United States, 46.3 million people aged 12 or older (16.5%) had SUD in the past year, including 
29.5 million people with alcohol use disorders (AUD) and 24 million people with drug use disorders 
(DUD), and 7.3 million people have both AUD and DUD (2). A study based on the Global Burden 
of Disease showed that the global prevalence of substance use disorders was approximately 2.2%, 
with the prevalence of AUD (1.5%) being higher than other DUD (0.8%, including cannabis 0.32%, 

OPEN ACCESS

EDITED BY

Jose Enrique De La Rubia Ortí,  
Catholic University of Valencia San Vicente 
Mártir, Spain

REVIEWED BY

Alina Arulsamy,  
Monash University, Malaysia  
Aurelijus Burokas,  
Vilnius University, Lithuania

*CORRESPONDENCE

Hua-you Luo  
 1677546296@qq.com  

Mei Zhu  
 zhumeis@163.com  

Yu Xu  
 xiaoyuer52067@qq.com

†These authors have contributed equally to this 
work

RECEIVED 22 March 2023
ACCEPTED 13 July 2023
PUBLISHED 27 July 2023

CITATION

Kong D, Sun J-x, Yang J-q, Li Y-s, Bi K, 
Zhang Z-y, Wang K-h, Luo H-y, Zhu M and 
Xu Y (2023) Ketogenic diet: a potential 
adjunctive treatment for substance use 
disorders.
Front. Nutr. 10:1191903.
doi: 10.3389/fnut.2023.1191903

COPYRIGHT

© 2023 Kong, Sun, Yang, Li, Bi, Zhang, Wang, 
Luo, Zhu and Xu. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Review
PUBLISHED 27 July 2023
DOI 10.3389/fnut.2023.1191903

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2023.1191903%EF%BB%BF&domain=pdf&date_stamp=2023-07-27
https://www.frontiersin.org/articles/10.3389/fnut.2023.1191903/full
https://www.frontiersin.org/articles/10.3389/fnut.2023.1191903/full
https://www.frontiersin.org/articles/10.3389/fnut.2023.1191903/full
mailto:1677546296@qq.com
mailto:zhumeis@163.com
mailto:xiaoyuer52067@qq.com
https://doi.org/10.3389/fnut.2023.1191903
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2023.1191903


Kong et al. 10.3389/fnut.2023.1191903

Frontiers in Nutrition 02 frontiersin.org

opioids 0.29%, amphetamines 0.10%, and cocaine 0.06%) (3). SUD is a 
significant contributor to the global burden of disease (4, 5). Deaths 
from SUD are increasing, rising from approximately 284,000 deaths in 
2007 to 352,000 in 2017, creating a global health threat (6). Commonly 
abused substances include alcohol, opioids, stimulants, etc., which cause 
damage to various systems of the body, mainly the nervous system (7) 
and the immune system (8), etc. In addition, they often lead to metabolic 
disorders (9, 10). Many treatments for SUD are available, including 
non-pharmacological treatments, such as cognitive-behavioral therapy, 
and pharmacological treatments, such as drug replacement therapy 
including methadone, buprenorphine, or naltrexone maintenance (11). 
However, a radical cure for SUD usually means abstaining from 
substance abuse and dependence, but relapse is common and a radical 
cure for such disorders has not yet been discovered. Similar to other 
chronic conditions like heart disease or asthma, the treatment goal for 
SUD is typically not a radical cure but rather managing it as a chronic 
condition through a combination of complementary methods (12). 
However, the efficacy and sufficiency of SUD treatment strategies are 
affected by a multitude of factors. Firstly, SUD entails the interaction of 
multiple factors encompassing physical, psychological, and social 
domains; thus, a comprehensive treatment approach must account for 
these multifaceted dimensions. Second, there is individual variability in 
SUD, requiring individualized treatment plans. Third, different 
substance use disorders, such as alcohol and drugs, have specific 
treatment strategies and require targeted programs. Fourth, some 
individuals may encounter barriers to accessing appropriate treatment, 
such as limited medical resources, thereby impeding their ability to 
receive effective care. Furthermore, there exist challenges pertaining to 
individuals with SUD themselves; for example, an estimated 94% of 
individuals with SUD aged 12 or older in the United States do not receive 
any form of treatment, and almost all those who do not receive treatment 
at a specialty facility believe they do not need treatment (2). SUD 
remains severely undertreated, and it is estimated that only 11% of 
substance use individuals in need of treatment received appropriate care 
in the United States (13). Treatment of SUD is a long-term process, and 
it may be more effective to consider SUD as a chronic disease and to treat 
them in combination with multiple supporting approaches.

The ketogenic diet (KD) is a diet with a reduced proportion of 
carbohydrates and a relatively increased proportion of fat (14). KD 
causes a fasting-like effect and puts the body into a state of ketosis. 
Normally, carbohydrates are converted to glucose as the main source of 
energy for the brain. However, in the absence of carbohydrates, the 
body begins to look for alternative sources of energy (15), namely from 
acetyl coenzyme A producing excess ketone bodies, including 
acetoacetate, β-hydroxybutyric acid (BHBA), and acetone. This process 
is called ketogenesis (16). Unlike pathological keto acidosis, ketosis is a 
physiological mechanism, as these ketone bodies can be efficiently used 
without excessive concentrations (17). In the past, KD has been widely 
and successfully used in the treatment of epileptic disorders and obesity 
(18, 19). In addition, there has been increasing evidence in recent years 
of the therapeutic potential of KD in other diseases, such as diabetes 

(20), Alzheimer’s disease (21), Parkinson’s disease (22), cancer (23), 
autism (24), multiple sclerosis (25), and headache (26). Most of them 
were neurological disorders, suggesting a potential role for the ketogenic 
diet in these disorders (27). Recent research has found that KD may also 
have a positive effect on SUD, mainly in the treatment of AUD (28). In 
addition, cocaine-related animal studies have shown that KD decreased 
cocaine-induced stereotyped responses in rats, and also disrupted the 
sensitization of ambulatory responses (29). Here, we summarize the 
current studies on the treatment of SUD by KD (Table 1). These have 
led to a further understanding of the therapeutic potential of KD.

KD may be effective as a potential adjunctive therapy for SUD 
treatment. Importantly, it may have targeted protective effects. Here, 
we  summarized the possible positive effects of KD in reducing 
carbohydrate intake, ketosis status, neuroprotection, protecting glial 
cells, reducing inflammation, and regulating gut microbiota, against 
the negative effects caused by SUD (Figure 1). However, there are few 
relevant studies besides AUD, and the role of KD in the treatment of 
SUD has not been clarified. Although SUD treatments exist, current 
treatment strategies are still not effective and sufficient, and there is a 
clear need for more effective treatments (13). The purpose of this 
review is to evaluate the viability of KD as a potential therapeutic 
option, to provide potential directions for future treatment of SUD, 
and to alleviate the suffering caused by SUDs to individuals, as well as 
the huge toll they take on a social level.

2. Ketogenic diet decreases the intake 
of carbohydrates

Since the nutritional status of the SUD population usually appears 
abnormal (36), some studies have evaluated the dietary patterns of this 
population. The results show that SUD, particularly opioid use 
disorder, such as heroin use, and treatment with methadone, are 
strongly associated with increased consumption of sugar or sweets 
(37–40). These people preferred sucrose-rich foods to protein-and 
fat-rich foods (37). Similarly, cocaine and alcohol abusers also 
preferred higher concentrations of sucrose and highly sweet foods 
(41–43). And after withdrawal, the dietary patterns improved (38). It 
has been shown that excessive intake of carbohydrates, whether 
monosaccharides (glucose and fructose), disaccharides (sucrose), or 
polysaccharides (starch and glycogen), can injure human health (44). 
Sugar intake is also associated with increased vulnerability to SUD. By 
analyzing data from 17 countries worldwide, sugar and sweetener 
supply quantity were significantly and positively associated with 
anxiety disorders, mood disorders, impulse control disorders, and 
SUD (45). Patients undergoing bariatric or weight loss surgery have a 
higher incidence of substance use disorders, which may be attributed 
to the intake of high-sugar/low-fat foods or foods with a high glycemic 
index (46). In addition, sweet liking status predicts an increased risk 
of having alcohol-related problems in young adults (47). Likewise, 
there is similar evidence in animal experiments. For example, high 
saccharin intake rats are a well-recognized model of vulnerability to 
drug abuse. High saccharin rats are more likely to consume sweets and 
cocaine and are more vulnerable to the negative emotional effects of 
morphine withdrawal (48, 49). Excessive sucrose intake disrupts 
reward processing and reduces the reward value of sucrose in rats (50). 
Mice fed a 10% sucrose solution for 4 weeks showed greater locomotor 
responses to acute cocaine use compared to mice consuming standard 

Abbreviations: AUD, alcohol use disorders; BHB, β-hydroxybutyric; CPP, conditioned 

place preference; DA, dopamine; DUD, drug use disorders; GABA, γ-aminobutyric 

acid; IL, interleukin; KD, ketogenic diet; MOR, mu-opioid receptor; NAc, nucleus 

accumbens; NLRP3, nucleotide-binding domain-like receptor protein 3; ROS, 

reactive oxygen species; SUD, substance use disorders; TNF, tumor necrosis factor.
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food and water (51). Therefore, this particular dietary preference 
should receive attention, and exploring the reasons for increased sugar 
consumption and the mechanisms underlying the association between 
sugar intake and SUD may provide potential information to 
improve health.

The sweet taste preference of the SUD population makes it 
tempting to wonder whether their increased preference and 
consumption of sugar are associated with changes in gustatory 
responses. However, several studies on taste perception in SUD 
populations have shown different results, making it unclear whether 
SUD causes changes in taste perception that give rise to a preference 
process for sugar (52–54). These differential results may be attributed 
to the small sample size of the experiment, as well as differences in 
gender, age, education level, and income of participants. In addition, 

there are methodological differences between studies in terms of 
sucrose pleasantness and intensity measurements.

Importantly, the neural circuits associated with sugar intake may 
be similar to SUD. The mu-opioid receptor (MOR) is a G protein-
coupled receptor that is associated with pain perception. It is not only 
a major target for heroin or other opioids, but also for most non-opioid 
substances of abuse, such as alcohol, cocaine, and nicotine (55, 56). 
Interestingly, several studies suggest a link between sugar or sweet 
foods intake and MOR. In rodent models, MOR knockout or 
antagonism leads to reduced hedonic responses to sweet stimuli and 
consumption of sweet solutions or sucrose (57–59). Similarly, in 
humans, morphine stimulation of MOR increased the pleasure of the 
sucrose solutions (60). In contrast, a MOR inverse agonist, 
GSK1521498, selectively reduced sensory hedonic ratings and intake 

TABLE 1 Clinical and preclinical studies reporting the effect of the KD on SUD.

Substance Clinical/preclinical Methods of KD Major outcome References

Clinical study

Alcohol Patients with AUD (Standard American diet, 

n = 14; KD, n = 19)

80% fat, 15% protein, and 5% 

carbohydrates; 3 weeks

Reduced alcohol craving and 

withdrawal symptoms (needed 

less benzodiazepines)

(28)

Preclinical study

Alcohol Male OF1 mice (alcohol oral self-

administration paradigm)

90.5% kcal from fat, 0.3% kcal from 

carbohydrates and 9.1% kcal from protein; 

6.7 kcal/g; 4 weeks

Decreased oral ethanol self-

administration

(30)

Alcohol Male Wistar rats (alcohol self-administration) 5% of calories was from protein, 2% was 

from carbohydrates, and 93% was from fat; 

8 weeks

Reduced alcohol consumption (28)

Alcohol Male Sprague Dawley rats (alcohol oral gavage 

for 6 days)

93% calories from fat, 5% from protein, 2% 

from carbohydrate; 10 days

Decreased alcohol withdrawal 

symptoms (“rigidity” and 

“irritability”)

(31)

Alcohol Male C57BL/6NTac mice (intermittent alcohol 

exposure for 3 weeks using liquid diet)

93% calories from fat, 5% from protein, 2% 

from carbohydrate; 3 weeks

Decreased alcohol withdrawal 

symptoms (convulsions and 

anxiety-like behavior)

(32)

Cocaine Sprague–Dawley rats (daily intraperitoneal 

injections of 15 mg/kg cocaine for 1 week, were 

drug free for a subsequent week, and then 

received a final challenge injection of 15 mg/kg 

cocaine)

93% kcal from fat, 2% kcal from 

carbohydrates and 5% kcal from protein; 

5 weeks

Decreased cocaine-induced 

stereotyped responses; disrupted 

sensitization of ambulatory 

responses

(29)

Cocaine Male OF1 mice (intraperitoneal injections of 

10 mg/kg cocaine induced CPP procedure)

90.5% kcal from fat, 0.3% kcal from 

carbohydrates and 9.1% kcal from protein; 

8 or 10 weeks

Reduced the number of sessions 

required to extinguish the drug-

associated memories and blocked 

the priming-induced 

reinstatement.

(33)

Cocaine Male C57BL/6J (intraperitoneal injections of 

10 mg/kg cocaine induced CPP procedure; 

after extinction for 3 weeks, the mice received 

a priming dose of 7.5 mg/kg cocaine and 

underwent a reinstatement test)

90.5% kcal from fat, 0.3% kcal from 

carbohydrates and 9.1% kcal from protein; 

3 weeks

Disrupted cocaine CPP 

reinstatement

(34)

Oxycodone C57BL/6J mice (oxycodone self-

administration)

93.4% fat, 4.7% protein, and 1.8% carbs; 

4–14 days

Increased oxycodone-induced 

locomotor activity and enhanced 

antinociceptive effects of 

oxycodone; decreased oxycodone 

self-administration in male mice

(35)

KD, Ketogenic diet; SUD, substance use disorders; AUD, alcohol use disorders.
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of high-sugar foods (61). MOR in the nucleus accumbens (NAc) may 
partially mediate the motivation and hedonic experience of sucrose 
consumption (62). Specifically, the rostrodorsal quadrant of the NAc 
contains an opioid hedonic hotspot that mediates the enhancements 
of sucrose “liking” (63). Also, this is important for the 
endocannabinoid-enhanced preference for sucrose (64). Suggesting 
the interdependence of opioid and cannabinoid signaling in enhancing 
taste hedonic.

Another important neural circuit is the dopaminergic system. 
The dopaminergic system is a key regulatory component of behavior 
associated with SUD. Almost all known addictive substances can 
cause a significant increase in dopamine (DA) release and activate 
reward areas in the brain (65, 66). The effects of substances of abuse 
include direct activation of DA neurons, increased DA release, 
blockade of DA reuptake, and DA neuron de-inhibition (67). 
Excessive DA signaling may regulate gene expression and modify the 
synaptic function and circuit activity (68). In addition, the substance 
of abuse act on the nucleus accumbens DA signaling, inducing 
glutamatergic-mediated neural adaptations in the DA striatal-
thalamo-cortical and limbic pathways (69). These effects eventually 
lead to substance addiction. It has been shown that intermittent 
sucrose use and drug abuse are similar in that both can repeatedly 
increase extracellular DA in the NAc shell (70). And this sucrose-
induced DA release in the NAc may be  sucrose concentration-
dependent (71).

Sucrose consumption may lead to pathophysiological 
consequences similar to those produced by substance abuse (72). 
High-fat and high-sugar diet alters glutamate, DA, and opioid 
signaling in the dorsal striatum of mice. Specifically, a high-fat and 
high-sugar diet increased the α-amino-3-hydroxy-5-methyl-4-
isoxazole-propionic acid – to – N-methyl-D-aspartic acid receptor 
current ratio in medium spiny neurons and prolonged spontaneous 
glutamate-mediated currents, increased DA release and slower DA 

reuptake in the striatum, and reduced MOR-mediated synaptic 
plasticity (73). In this study, both high fat and high sugar were added 
to the diet, and it is not clear which of these factors played a major 
role. However, Study shows that sucrose intake reduces the availability 
of MOR and DA D2/3 receptors in the porcine brain (74). In addition, 
in rats, casual exposure to 1% sucrose for 3 weeks resulted in altered 
MOR and D1/D2 receptor mRNA and protein expression in the NAc 
(75). And repeated sucrose intake decreased the density of DA D2 
receptors in the striatum (76). Thus, sucrose may alter the neural 
circuits that encode reward and enhance the SUD drive.

The SUD and increased sugar intake appear to be a vicious cycle 
due to similar neural circuits and altered neuroplasticity. Sensitivity to 
one substance may lead to cross-sensitization to another substance. 
For instance, amphetamine treatment produced psychomotor 
sensitization and accelerated the subsequent escalation of cocaine 
intake (77), and nicotine-sensitive animals may consume more alcohol 
(78). Hence, increased sugar intake may also cause sensitivity to 
SUD. Reducing sugar intake may be an important complement to the 
treatment of SUD. And the very low carbohydrate intake of the 
ketogenic diet may offer help for this potential treatment (Figure 2A). 
However, the role of the KD in SUD treatment by lowering 
carbohydrate intake is largely unknown. Conversely, for example, fat 
consumption was also associated with the DA and opioid signaling 
pathways in the hypothalamus (79). Therefore, the improved effect of 
KD with low-carbohydrate and high-fat intake in the neural circuits 
of addiction remains to be investigated.

3. Ketogenic diet and glutamate/
GABAergic system

DA is critical for acute reward and the onset of addiction, but 
the later stages of addiction are primarily related to glutamatergic 

FIGURE 1

Possible positive effects of ketogenic diet against the negative effects caused by SUD. GABA, γ-aminobutyric acid; SUD, substance use disorders; ROS, 
reactive oxygen species.
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projections. Dysregulation of glutamate, an excitatory 
neurotransmitter, leads to changes in neuroplasticity, which 
reduces the value of natural rewards, decreases cognitive control, 
and promotes compulsive drug-seeking (80–82). Imbalance in 
glutamate homeostasis is a key neurometabolic feature of SUD. By 
a proton magnetic resonance spectroscopy protocol, it was found 
that basal glutamate concentrations in the NAc were significantly 
lower in cocaine addicts and that glutamate levels increased 
during cue-induced cravings in cocaine-addicted individuals 
compared to baseline (83). Changes in relapse behavior induced 
by activation or inhibition of glutamate receptors suggest that 
glutamate may be  the major mediator of substance-seeking 
behavior recovery. For example, stimulation of group II 
metabotropic glutamate receptor and blockade of group 
I  metabotropic glutamate receptor could prevent relapse of 
cocaine, heroin, nicotine, and alcohol (84–90).

The rapid elevation and release of DA in the voxel nucleus are 
important causes of the reward response in addiction which can 
be antagonized by increasing γ-aminobutyric acid (GABA) levels 
(91). Diminished GABA signaling leads to increased susceptibility 
to SUD. For example, the excitatory signal from the 
entopeduncular nucleus to the lateral habenula is limited by 
GABAergic cotransmission, but during cocaine withdrawal, the 
presynaptic vesicular GABA transporter is reduced, resulting in a 
decrease in this inhibitory component and causing relapse. And 
stress-induced relapse can be prevented by restoring GABAergic 
neurotransmission (92). GABA release in DA neurons is 
dependent on the GABA synthesis pathway mediated by aldehyde 
dehydrogenase 1a1 and decreased it leads to increased alcohol 
consumption and preference (93). In addition, exposure to 

morphine blocks the long-term potentiation of GABA-mediated 
synaptic transmission and may contribute to the development of 
addiction (94).

KD may alleviate SUD by decreasing glutamate and increasing 
GABA. A similar example is that KD significantly increased the level 
of GABA in cerebrospinal fluid in children with refractory epilepsy 
(95). Previous studies have shown that KD treatment increases GABA 
levels in the hippocampus of the rat brain (96). The possible 
mechanism is that KD may limit the availability of oxaloacetate in the 
aspartate aminotransferase reaction, allowing more glutamate to enter 
the glutamic acid decarboxylase reaction and produce GABA (97). KD 
also produces ketone body carbon which is metabolized to glutamine, 
the basic precursor of GABA, in addition to the increased 
consumption of acetate in ketosis, which is converted to glutamine via 
astrocytes in the brain (97). Relatively, the glutamate level in the brain 
of rats receiving KD was reduced (98). It has also been proposed that 
KD intervention for anxiety and depression in Alzheimer’s Disease 
may related to the modulation of the glutamatergic neurotransmission 
system (99). Acetone and BHB act as glutamate inhibitors in the 
N-methyl-D-aspartic acid receptor receptor (99, 100). Evidence 
suggests that acetoacetate inhibits glutamate release and another 
mechanism by which KD reduces glutamate is that Cl-activates 
vesicular glutamate transporters, while increased ketone bodies, 
especially acetoacetate, inhibit vesicular glutamate transporters by 
competing with Cl−, thereby inhibiting glutamate release (101) 
(Figure 2B). Overall, KD leads to an enhanced conversion of glutamate 
to glutamine, which permits a more efficient removal of glutamate and 
conversion of glutamine to GABA (102). These evidences provide 
rationale for the treatment of SUD by the glutamate/
GABAergic system.

FIGURE 2

The ketogenic diet (KD) may have beneficial effects on substance use disorders (SUD) by altering dietary intake and changing metabolic status. (A) KD 
may alleviate the vicious cycle caused by SUD and sugar intake. (B) KD may alleviate SUD-induced glutamate/GABAergic disorders by decreasing 
glutamate and increasing GABA. (C) Ketone bodies produced by KD may alleviate impaired glucose metabolism and increased ketone body 
requirements due to SUD. MOR, mu-opioid receptor; DA, dopamine; GABA, γ-aminobutyric acid.
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4. Ketogenic diet increases ketone 
metabolism

The KD creates a special metabolic state that changes the energy 
metabolism, which is dominated by glucose metabolism in the brain, 
to ketone body metabolism. Because of this particular state of energy 
metabolism that develops, the KD may be  more effective in the 
treatment of AUD. The effects of alcoholism on brain glucose and 
acetate metabolism were assessed by positron emission tomography, 
and brain glucose metabolism was found to be reduced and acetate 
uptake was increased during alcoholism, suggesting that increasing 
acetate concentration through a KD may have therapeutic benefits for 
AUD (103). And several preclinical and clinical studies have provided 
a partial basis for this. KD decreased the rigidity and irritability 
symptoms and reduced convulsions and anxiety-like behaviors during 
the alcohol withdrawal (31, 32). And KD reduces alcohol consumption 
in alcohol-dependent rats (28). Mice exposed to a ketogenic diet 
exhibited an overall reduction in ethanol consumption during stable 
ketosis, while gene expression analysis revealed several changes in the 
DA, adenosine, and cannabinoid systems (30). In addition, ketogenic 
diet-induced fibroblast growth factor 21 administration significantly 
reduced sweet taste and alcohol preference in mice and sweet taste 
preference in cynomolgus monkeys, and was associated with reduced 
DA concentrations in the NAc (104). Human studies on AUD have 
shown that patients who received KD experienced decreased 
withdrawal symptoms, required less benzodiazepines, had reduced 
cravings for alcohol, and exhibited increased reactivity to alcohol cues 
in the dorsal anterior cingulate cortex (28). However, a case report 
showed that prolonged KD combined with alcohol intake can disrupt 
glucose homeostasis and lead to significant hypoglycemia (105), 
suggesting that counseling patients about alcohol intake during the 
KD is necessary.

During alcohol abuse, the demand for ketone bodies in the 
brain increases, and adaptation to repeated alcohol intake occurs, 
while acetate levels decline during withdrawal, and 
supplementation of ketone bodies through a KD may alleviate 
withdrawal symptoms due to the sudden shift in metabolic status 
(106). These may be the mechanisms by which the KD alleviates 
AUD. It is worth noting that several studies have shown that other 
substance use disorders also exist with impaired brain glucose 
metabolism. For example, regional cerebral glucose metabolism 
was lower in both opioid withdrawal and methadone maintenance 
subjects than in control subjects (107, 108). Cocaine and nicotine 
reduce brain glucose metabolism (109, 110). During 
methamphetamine abuse and withdrawal, glucose metabolism is 
reduced in several brain regions including the thalamus, striatum, 
and frontal lobes (111–113). The prevalence of impaired cerebral 
glucose metabolism suggests that KD may have beneficial effects 
by changing the major energy metabolism of the brain in SUD 
(Figure 2C).

5. Neuroprotective effects of the 
ketogenic diet

Mitochondria is an important organelle for energy production 
and is also involved in a series of processes of signaling and cell death. 
During oxidative metabolism and various cellular reactions, 

mitochondria produce reactive oxygen species (ROS), associated with 
the function of the mitochondrial electron transport chain. Due to the 
lack of adequate antioxidant systems, the brain and nervous system 
are easily affected by oxidative stress (114). Impaired mitochondrial 
redox homeostasis, such as oxidative stress due to excessive ROS 
production and impairment of antioxidant function, can cause 
mitochondrial dysfunction and the onset of the cell death cascade, 
leading to neuronal damage (115, 116). And oxidative stress can cause 
free radicals to attack nerve cells, leading to neurodegeneration (117). 
Substance abuse causes widespread neurotoxicity, mainly related to 
mitochondrial dysfunction and oxidative stress (118). In response to 
the dopaminergic neural activation induced by substances of abuse, 
such as heroin (119, 120), methamphetamine (121, 122), and cocaine 
(123), the mitochondrial respiratory chain is rapidly activated, leading 
to mitochondrial dysfunction, such as decreased mitochondrial 
membrane potential, mitochondrial DNA, and mitochondrial 
proteins, and increased cytochrome c release, resulting in increased 
ROS and oxidative stress (124).

KD is neuroprotective and, importantly, its primary activity may 
be associated with improved mitochondrial function and reduced 
oxidative stress (125). KD, especially BHBA, inhibits dynamin-related 
protein 1-mediated mitochondrial fission (126). Dynamin-related 
protein 1 is a GTPase that interacts with the mitochondrial fission 
protein Fis1 to induce mitochondrial fission, which produces ROS and 
activates nucleotide-binding domain-like receptor protein 3 (NLRP3) 
inflammasome (127, 128). Detection of mRNA and protein levels 
showed that KD or ketone bodies can improve mitochondrial 
biogenesis and bioenergetics through the peroxisome proliferator-
activated receptor γ-coactivator-1α – sirtuin 3 – uncoupling proteins 
2 axis, and uncoupling proteins upregulated by mitochondrial 
respiration can reduce the production of ROS and oxidative stress 
(129, 130). Similarly, enhanced mitochondrial biogenesis was verified 
by define of gene expression patterns in rat hippocampus at 3 weeks of 
KD (131). 3-week KD increased glutathione biosynthesis in rat 
hippocampal mitochondria, enhanced mitochondrial antioxidant 
status, and protected mitochondrial DNA from oxidant-induced 
damage (132). BHBA and acetoacetate reduce glutamate-induced free 
radical formation by increasing the nicotinamide adenine dinucleotide 
(+)/ nicotinamide adenine dinucleotide hydrogen ratio and 
strengthening mitochondrial respiration (133), and prevent 
mitochondrial permeability transition and oxidative injury (134, 135). 
In addition, KD reduces the release of mitochondrial cytochrome c, 
thus achieving a neuroprotective effect (136). These findings provide 
a wealth of evidence for a possible neuroprotective role of KD in SUD 
(Figure 3A).

Inflammation is another important factor in neurodegeneration, 
which may lead to the production of neurotoxic mediators (137). 
Many substances of abuse can lead to increased inflammation, mainly 
characterized by upregulation of pro-inflammatory cytokine levels, 
such as tumor necrosis factor (TNF)-α, Interleukin (IL)-1, and IL-6 
(138–140). In addition, neuroinflammation in SUD can also 
be  induced by the activation of toll-like receptor 4 receptors and 
NLRP3 inflammasome (141–143). Cytokines have been shown to 
influence host behavior (144). Inflammation appears to lead to 
persistent changes in basal ganglia and DA function, as shown by lack 
of pleasure, fatigue, and psychomotor slowing. And inflammation also 
leads to reduced neural responses to hedonic rewards, reduced DA 
metabolites, and increased reuptake and decreased turnover of 
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presynaptic DA (145, 146). In SUD, inflammatory responses may 
contribute to drug-induced rewards and drug relapse. An interesting 
example is that cannabidiol may reduce METH relapse by improving 
cytokine expressions, such as IL-1β, IL-6, IL-10, and TNF-α (147).

Evidence suggests that KD reduces inflammation in a variety of 
diseases. KD activates peroxisome proliferator-activated receptor 
gamma to inhibit cyclooxygenase-2-dependent pathways and thereby 
suppress neuroinflammation in the mouse model of epilepsy (148). 
Inflammation is a key secondary pathological process in spinal cord 
injury, and KD attenuates inflammation, including reduced nuclear 
factor-kappa B pathway and expression levels of TNF-α, IL-1β, and 
interferon-γ (149). In colorectal tumor-bearing mice, the ketogenic 
formula suppressed systemic inflammation associated with tumors, 
such as lowering plasma IL-6 levels (150). In a demyelination mouse 
model with neuroinflammation, KD treatment inhibits the activation 
of pro-inflammatory glial cells and decreases the production of 
pro-inflammatory cytokines, including IL-1β and TNF-α, in addition 

to significantly reducing histone deacetylase 3 and NLRP3 (151). 
Histone deacetylases alter chromatin structure and accessibility, 
impairing memory function and synaptic plasticity (152). In a mouse 
model of Alzheimer’s disease, a 4-month KD reduced 
neuroinflammation, decreased microglia activation, and thus 
improved cognitive function (153). Single-cell RNA sequencing of 
adipose-resident immune cells showed that KD expanded 
metabolically protective γδ T cells and suppressed inflammation 
(154). The results suggest that KD mostly alleviates inflammation by 
reducing pro-inflammatory cytokine levels and plays a beneficial role 
in different diseases (Figure 3B). However, there are also contrary 
evidence suggesting the complexity of KD regulation of inflammation. 
One study evaluated postprandial responses in 17 men after 
transitioning from a baseline diet to an isocaloric KD and found 
increased markers of inflammation (155). Hyperketonemic diabetic 
patients have significantly higher levels of TNF-α and IL-6 than 
normoketonemic diabetic patients (156, 157). Short-term use of 

FIGURE 3

Potential mechanisms of neuroprotective effects of ketogenic diet (KD) in substance use disorders (SUD). (A) KD may alleviate mitochondrial 
dysfunction and oxidative stress caused by SUD. (B) KD may alleviate inflammation caused by SUD. Drp1, dynamin-related protein 1; PGC1-SIRT3-
UCP2, peroxisome proliferator-activated receptor γ-coactivator-1α – sirtuin 3 – uncoupling proteins 2; NAD (+)/NADH, nicotinamide adenine 
dinucleotide (+)/nicotinamide adenine dinucleotide hydrogen; TNF, tumor necrosis factor; IL, interleukin; NLRP3, nucleotide-binding domain-like 
receptor protein 3; IFN, interferon; NF-κB, nuclear factor-kappa B; HADC3, histone deacetylase 3; PPAR γ, peroxisome proliferator-activated receptor 
γ; COX-2, cyclooxygenase-2.
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exogenous ketone supplements increases blood BHBA but leads to 
increased markers of NLRP3 inflammasome activation including 
caspase-1 and IL-1β secretion (158). In addition, it was found that 
high concentrations of BHB induced an increase in pro-inflammatory 
signals such as TNF-α, IL-6 and IL-1β (159). BHB can also mediate 
inflammation by promoting neutrophil adhesion through inhibition 
of autophagy (160). Therefore, it is crucial to measure ketosis levels, 
such as BHB levels, to properly evaluate the impact of KD.

According to the above results, KD may play an important 
protective role in SUD-mediated neurological damage mainly by 
protecting mitochondria and reducing oxidative stress and 
inflammation. However, different strategies, such as the timing of 
intervention, need to be considered during the KD.

6. Glial cells in the ketogenic diet

Glial cells account for about half of the central nerve cells, and they 
influence the formation and function of the neural system (161). Glial 
cells regulate neurotransmission, synaptic connections, and neural 
circuits, which can influence brain function and behavior in SUD 
(162–164). In the past, microglia were usually thought of as phagocytes 
in the central nervous system; however, in fact, recent studies have 
revealed that microglia are important participants in central nervous 
system homeostasis, and their dysregulation causes neurological 
diseases (165, 166). Microglia may regulate neuronal function and 
be  associated with the development of SUD. Chronic high-dose 
alcohol intake induces reactive gliosis and may increase the risk of 
dementia (167). In contrast, depletion of microglia reduced alcohol 
consumption in mice, decreased anxiety-like behavior, and reduced 
GABA and glutamate receptor-mediated synaptic transmission in the 
central nucleus of the amygdala (168). Morphine withdrawal in mice 
leads to microglia adaptations and reduced glutamatergic transmission, 
resulting in reduced synaptic excitation and social behavior (169). 
Many substances of abuse cause neurological dysfunction by activating 
microglia. For example, cocaine may activate microglia by 
downregulating miR-124 targeting kruppel-like factor 4 and toll-like 
receptor 4 signaling, which may contribute to cocaine-induced 
synaptic plasticity (170, 171). Methamphetamine activates the NLRP3 
inflammasome in microglia and promotes the processing and release 
of IL-1β, resulting in neurotoxicity (142). In addition to microglia, 
another type of glial cell in the central nervous system, astrocytes, is 
also important in neurological diseases (172, 173). Interestingly, MOR 
is highly expressed in astrocytes (174). Activation of astrocyte MOR 
elevates cytosolic calcium ions, leading to rapid glutamate release, and 
further regulating neuronal activity (175, 176). The activation of 
astrocytes may be  involved in the addiction process. Studies have 
shown that glutamate released by astrocyte MOR activation enhances 
synaptic transmission and can drive conditioned place preference 
(CPP) (177). In addition, activation of astrocytes is associated with 
neuroinflammation (178, 179). For example, morphine activates 
astrocytes and promotes the production of pro-inflammatory 
cytokines (180). There are also interactions between glial cells. 
Morphine-mediated release of miR-138 from astrocyte-derived 
extracellular vesicles promotes microglia activation and further causes 
neurological dysfunction (181). Thus, glial cell disorders play a key role 
in SUD, and improving glial cell disorders may facilitate recovery 
from SUD.

In a study of normal adult rats, KD was able to alter glial 
morphology, suggesting that KD may have neuroprotective effects by 
affecting glial cells (182). In a variety of disease models, KD has played 
a similar role in reducing glial cell activation. Studies have shown that 
KD reduced the inflammatory activation of microglia in glaucoma, 
depression, and multiple sclerosis mouse models (183–185). Similarly, 
activation of reactive astrocytes can be inhibited by KD (185). BHBA 
produced by KD may play a major role in these effects. In AD mice, 
BHB reduces microglia proliferation and activation (135, 186). In 
neuroinflammatory models, BHBA promotes microglia polarization 
toward M2, which exerts anti-inflammatory effects and prevents 
depressive-like behaviors (187). In spinal cord injury, BHB inhibits 
NLRP3 inflammasome and transfers the activation state of microglia 
from M1 to M2a phenotype, reducing neuroinflammation (188). 
However, some studies have also raised questions about the central role 
of ketone bodies. For instance, the medium-chain triglyceride KD is a 
commonly used variation (189). Medium-chain fatty acids may play a 
central role in the KD, which may regulate mitochondrial metabolism 
in astrocytes and have positive effects on the brain such as accelerated 
glycolysis, enhanced lactate shuttle, and accelerated ketone body 
production (190). Thus, KD may play a neuroprotective role by 
reducing the activation of glial cells, which is crucial in the pathogenesis 
of SUD. However, there is no direct evidence that KD attenuates glial 
cell activation in SUD, and further relevant studies are necessary.

7. Ketogenic diet modulate gut 
microbiota

Human microbes are mainly found in the gastrointestinal tract, 
including bacteria, fungi, viruses, etc. Gut microbes regulate 
neurological function and behavior and are associated with many 
neurological diseases and psychiatric disorders, such as multiple 
sclerosis, Parkinson’s disease, Alzheimer’s disease, Huntington’s 
disease, and amyotrophic lateral sclerosis (191), as well as depression, 
and anxiety (192).

Although not yet clear, there is growing evidence of a strong link 
between SUD and gut microbes (193–195). A study of the gut 
microbiota composition of patients with more than 10 years of alcohol 
overconsumption showed a higher relative abundance of bacteria 
from phylum Proteobacteria and higher levels of the genera Sutterella, 
Holdemania, and Clostridium, and a lower relative abundance of 
bacteria from genus Faecalibacterium compared to control patients 
with no or low alcohol intake history (196). Decreased fecal microbial 
alpha diversity in people with AUD who actively drink alcohol, 
characterized by a decrease in Akkermansia and an increase in 
Bacteroides (197). Chronic vapor alcohol exposure mice significant 
increases in genus Alistipes and significant reductions in genra 
Clostridium IV and XIVb, Dorea, and Coprococcus (198). However, 
another study showed that alcohol led to an opposite significant 
increase in gut microbial diversity in mice, and the abundance of 
phylum Firmicutes and class Clostridiales were elevated (167). Alcohol 
overconsumption leads to changes in the composition of the gut 
microbiota and appears to cause pro-inflammatory effects. Alcohol-
induced neuroinflammation and gut inflammation in mice can 
be attenuated by reducing the bacterial load in the gut with antibiotics 
(138), suggesting that alcohol-induced inflammation may be related 
to gut bacteria. Methadone maintenance therapy leads to an imbalance 
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of key bacterial communities, mainly Akkermansia muciniphila, 
required for the production of short-chain fatty acids, mucus 
degradation, and maintenance of barrier integrity. And 
Bifidobacteriaceae was significantly increased (199). Chronic 
morphine treatment significantly alters the gut microbial composition, 
decreases the Bacteroidetes/Firmicutes ratio, and induces amplification 
of gram-positive pathogenic bacteria (200). The heroin-dependent 
mouse model had reduced gut microbial alpha diversity with higher 
levels of Bifidobacterium and Sutterella and reduced levels of 
Akkermansia compared to controls (201). Cocaine causes alterations 
in the gut microbiota of mice and is associated with the upregulation 
of pro-inflammatory mediators, such as nuclear factor-kappa B and 
IL-1β (202). In addition, methamphetamine use disorders resulted in 
altered gut microbes, increased the relative abundance of pathogenic 
gut bacteria, and decreased the relative abundance of probiotic 
bacteria in mice, which was associated with systemic inflammation 
(203, 204). Based on the above studies, it appears that different types 
of SUD lead to some similar trends in gut microbes. Typically, 
Sutterella is significantly increased in alcohol and heroin use (196, 
201), and Bifidobacterium is generally increased in opioid use (199, 
201), and Akkermansia is generally decreased in alcohol and opioid 
use (197, 199, 201). Interestingly, an increased abundance of Sutterella 
may be  associated with autism spectrum disorder (205). 
Bifidobacterium has been shown to induce the accumulation of gut 
pro-inflammatory Th17 cells (206). Akkermansia is associated with 
improved glucose homeostasis, modulation of the immune response, 
and protection of barrier function (207–209). Through mucus protein 
degradation, Akkermansia has beneficial effects on the gut barrier 
(210). Synbiotic treatment reduced the escalation and relapse to 
alcohol intake, possibly related to Akkermansia abundance restoration 
(211). However, it has also been shown that in a methamphetamine-
induced CPP rat model, increased Akkermansia is associated with 
higher CPP scores (212). In addition, chronic alcohol feeding may 
lead to an increase in Akkermansia muciniphila in mice (213, 214). 
The opposite results seem to be  related to the different types of 
substances of abuse and experimental subjects. Even so, it is clear that 
SUD causes widespread gut microbial disorders, resulting in a range 
of adverse consequences.

Gut microbial disorders resulting from SUD may also lead to 
behavior changes. Some studies have shown a close correlation 
between SUD-related behaviors and gut microbes. For example, 
dysbiosis of the gut microbiota during chronic alcohol exposure was 
strongly associated with alcohol-induced behaviors, and a decrease in 
the Adlercreutzia spp. was positively associated with alcohol preference 
and negatively associated with anxiety-like behavior (215). 
Methamphetamine-altered gut microbial composition is associated 
with depressive-like behavior (216). There is growing interest in using 
fecal microbiota to treat people with SUD. Through the treatment of 
fecal microbiota transplantation (FMT), the important role of gut 
microbes is revealed. In a double-blind randomized clinical trial, FMT 
from a donor enriched in Lachnospiraceae and Ruminococcaceae 
caused favorable gut microbial changes in patients with AUD-related 
cirrhosis and reduced alcohol craving and consumption (217). And a 
variety of addiction-related behaviors were shown to be associated 
with Lachnospiraceae and Ruminococcaceae (218). Gut microbes 
influence the development of morphine dependence, while FMT may 
reduce opioid withdrawal responses (219). In addition, transplantation 
by specific probiotics may also affect SUD-induced behavioral 

responses. For example, Lactobacillus rhamnosus probiotic can reduce 
cocaine-induced behavioral responses (220). Interestingly, 
transplantation of SUD-associated gut microbes into normal controls 
would result in behavioral changes similar to those associated with 
SUD. For instance, transplantation of gut microbiota from AUD 
patients into mice induced a decrease in BHBA metabolism that may 
be associated with social impairment and depression in AUD (221). 
Similarly, transplantation of gut microbes from alcohol-fed mice to 
healthy controls triggered anxiety behaviors similar to those induced 
by alcohol withdrawal (222). Thus, SUD alters gut microbes and 
induces related behaviors, suggesting that the gut microbiota may 
be an important regulator of SUD susceptibility.

Changes in gut microbiota associated with KD have been 
demonstrated to play a beneficial role in a variety of diseases. 
Importantly, the general decrease in Akkermansia in SUD may 
be reversed by KD. For example, in epilepsy, KD provides epilepsy 
protection by increasing the relative abundance of Akkermansia and 
Parabacteroides and by increasing the ratio of Bacteroidetes/Firmicutes, 
similarly, transplantation of KD-associated gut microbiota and 
treatment with Akkermansia and Parabacteroides also provide epilepsy 
protection in control mice (223, 224). In AD, KD also increased the 
relative abundance of beneficial gut microbiota (such as Akkermansia 
muciniphila and Lactobacillus) and decreased the relative abundance 
of pro-inflammatory microbiota (such as Desulfovibrio and 
Turicibacter) and improved metabolic conditions. They reduced the 
risk of Alzheimer’s disease and improved Alzheimer’s disease 
biomarkers in cerebrospinal fluid (225, 226). In colitis, 16 weeks of KD 
increases Akkermansia abundance, protects the gut barrier, and 
alleviates inflammation (227). Moreover, KD was able to reduce gut 
pro-inflammatory Th17 cell accumulation by inhibiting the growth of 
Bifidobacterium (206, 228). This may be part of the anti-inflammatory 
mechanism of KD.

However, some researchers have also raised concerns about the 
negative impact of KD on gut microbiota and health. In children with 
severe epilepsy, KD resulted in a significant decrease in the relative 
abundance of Bifidobacteria as well as E. rectale and Dialister, and an 
increase in the relative abundance of E. coli, indicating a decrease in 
the abundance of health-promoting fiber-consuming bacteria (229). 
Similarly, KD pre-treatment for 1 month resulted in an increase in gut 
pathogenic bacteria and a decrease in beneficial bacteria in 
inflammatory bowel disease mice, which increased gut and systemic 
inflammation, disrupted the gut barrier, and exacerbated colitis (230). 
These different outcomes resulting from KD may be attributed to 
different populations, diseases, and treatment protocols. The exact 
reasons need to be further explored, given that different gut microbial 
alterations have been observed in different diseases. However, 
certainly, KD may partially regulate gut microbial dysbiosis caused by 
SUD, such as Akkermansia dysbiosis.

8. Limitations

Various effects of KD may be  beneficial for recovery from 
SUD. However, there are few reports of KD being used for the 
treatment of SUD besides AUD. Also, some researchers have shown 
concerns during the application of KD in neurological diseases, such 
as decreased appetite, increased risk of malnutrition, and the 
occurrence of some adverse effects (231). Common KD adverse effects 
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include metabolic abnormalities, gastrointestinal symptoms, kidney 
stones, and slow growth in children (232). However, most of these 
adverse effects were evaluated in children. Even so, KD should 
be  applied with caution in people with SUD, as this particular 
population often suffers from multisystem disorders such as the 
increased risk of malnutrition (36) and gastrointestinal symptoms (233).

9. Conclusion

The successful exploration of the KD in other neurological 
disorders suggests a positive role in SUD that still cannot be ignored. 
It may play a positive role in the improvement of various disorders 
caused by SUD, especially the reduction of sugar intake, alteration of 
metabolic processes, improvement of neural circuits associated with 
substance addiction, neuroprotective effects, improvement of glial 
cell activation, and modulation of gut microbiota (Table  2). In 
conclusion, there are potential therapeutic implications of the KD in 
SUD, but many problems remain. Further preclinical studies and 
clinical randomized controlled trials are needed to investigate and 
improve strategies for KD, such as optimization of the timing of 
interventions and nutrient composition, to assess the suitability, 
effectiveness, and safety of KD in the treatment of SUD.
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TABLE 2 Pathology of SUD and potential targeted benefits of KD.

Pathology of SUD Substance Potential targeted benefits of KD

Sugar consumption↑ Opiate (37); Heroin (38); Methadone (39); Cocaine (41); Alcohol (42, 43) Carbohydrates intake↓ (May improve the neural 

circuits that encode reward)

Neurotransmitter imbalances (Glutamate/

GABAergic system dysfunction)

Cocaine (83–85); Heroin (86); Nicotine (87); Alcohol (88–90); 

Methamphetamine (234)

Glutamate↓, GABA↑ (95–98, 101, 102)

Brain glucose metabolism↓;  

Acetate uptake↑

Alcohol (28, 30–32, 103); Opiate (107); Methadone (108); Cocaine (109); 

Nicotine (110); Methamphetamine (111–113)

Ketone metabolism↑ (15, 16)

Neuronal damage Heroin (119, 120); Methamphetamine (121, 122, 124); Cocaine (123) Neuroprotection (mitochondrial function↑; 

ROS↓; oxidative stress↓) (125, 126, 129–136)

Inflammation↑ Alcohol (138); Morphine (139); Cocaine (140); Methamphetamine (147); 

Heroin (235); Methadone (236)

Inflammation↓ (148–151, 153, 154)

Glial cell dysfunction Alcohol (167, 168); Morphine (169, 180, 181); Cocaine (170, 171); 

Methamphetamine (142); Heroin (237)

Glia cell inflammatory activation↓ (135, 182–188)

Gut microbiota disorders Alcohol (138, 167, 196–198, 211, 213–215, 217, 221, 222); Methadone 

(199); Morphine (200, 219); Heroin (201); Cocaine (202); 

Methamphetamine (203, 204, 212, 216)

Modulate gut microbiota (206, 223–228)

↑: increased; ↓: decreased; SUD, substance use disorders; KD, ketogenic diet; GABA, γ-aminobutyric acid; ROS, reactive oxygen species.
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