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Lipids in foods are sensitive to various environmental conditions. Under light or 
high temperatures, free radicals could be formed due to lipid oxidation, leading to 
the formation of unstable food system. Proteins are sensitive to free radicals, which 
could cause protein oxidation and aggregation. Protein aggregation significantly 
affects protein physicochemical characteristics and biological functions, such 
as digestibility, foaming characteristics, and bioavailability, further reducing the 
edible and storage quality of food. This review provided an overview of lipid 
oxidation in foods; its implications on protein oxidation; and the assessment 
methods of lipid oxidation, protein oxidation, and protein aggregation. Protein 
functions before and after aggregation in foods were compared, and a discussion 
for future research on lipid or protein oxidation in foods was presented.
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1. Introduction

Nowadays, food quality has attracted a considerable amount of attention. Food components 
and products undergo many chemical reactions during food processing, transportation, and 
storage. Since many nutrients are unstable, especially lipids and proteins, investigating their 
variation from food processing to storage is essential (1, 2). Since 2003, relevant research on lipid 
or protein oxidation has rapidly increased, especially in the last 3 years, revealing that researchers 
emphasized the variation of food nutrients (Figure 1). Lipid autoxidation, a continuous free-
radical chain reaction, could cause an unstable and reactive food system, especially in meat (3). 
The free radicals in the food system could lead to protein oxidation, which could affect the 
protein structure by converting sulfhydryl to disulfide bonds (4). Lipid oxidation products could 
accelerate protein oxidation and subsequently induce protein aggregation (5). After excessive 
oxidation treatment, egg white protein aggregated, which was caused by a representative lipid 
oxidation product, 2,2′-azobis (2-amidinopropane) dihydrochloride (6).

However, research on the structural and functional change in proteins caused by lipid 
oxidation is limited (Figure 1). Oxidation could remarkably influence protein function (7). 
Protein oxidation not only affects the structure of the protein but also alters the 
physicochemical, techno-functional, and nutritional perspectives and even has critical 
implications on human health and safety (8–10). Therefore, it is essential to reveal the 
relationship between lipid oxidation and protein oxidation and its implication on proteins. 
To this end, the mechanism of lipid oxidation or protein oxidation was summarized, and 
the effect of oxidation in foods was discussed. The methods used to evaluate the impact of 
protein aggregation were also discussed.
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2. Lipid oxidation in foods

2.1. Mechanisms of lipid oxidation

Lipid oxidation is one of the leading causes of food spoilage. It refers 
to how unsaturated fatty acids in fats are slowly oxidized when exposed 
to oxygen in air, light, and metal ion. It includes auto-oxidation, 
photooxidation, and enzymatic oxidation (11). Auto-oxidation is a free-
radical chain reaction, the primary interaction between unsaturated 
fatty acids and oxygen (12). In the initiation period, oil molecules 
produce free radicals under the effect of light, heat, or metal catalysts 
(Figure 2A). The propagation period and termination period of the free-
radical chain reaction are followed (Figures 2B,C). The products of free 
radical and non-free radical reaction compounds are still free radicals. 
Only the non-free radical compounds are formed when free radicals 
react with free radicals, and the chain reaction is terminated 
(Figures  2D–F). Rancidity is triggered when lipid auto-oxidation 
accumulates to a certain degree (13). It could also produce aroma 
substances formed by large amounts of carbonyls, which contribute to 
the formation of meat characteristics and flavor (14).

Hydroperoxides are the main products of lipid auto-oxidation, and 
the oxidation of different fatty acids could produce several 
hydroperoxides (15). The hydroperoxide was formed by free radicals, 
including the removal of a hydrogen atom from the α-methylene group 
of the double bond in the lipid. In this process, allyl radicals would 
be further formed. The electrons on allyl radicals could be delocalized 
at three carbon atoms, as in oleic acid, or delocalized at five carbon 
atoms, as in linoleic acid. For oleic acid (Figure 3A), the hydrogen 
leaving on C8 and C11 penta-dienyl could generate two allylic radicals. 
Moreover, 8-, 9-, 10-, and 11-allyl hydroperoxides could be caused by 

the reaction of intermediates with oxygen (16). The linoleic acid auto-
oxidation involves doubly reactive, in which penta-dienyl radicals 
could be  formed by the allyl groups of C11 (16) (Figure  3B). The 
conjugated 9- and 13-diene hydroperoxides could be formed by the 
reaction of intermediates and oxygen. Linolenic acid could form two 
penta-dienyl radicals by abstracting hydrogen on the C11 and C14 
methylene groups (16) (Figure 3C). In addition, unsaturated fatty acids 
are active with singlet oxygen, which could increase the number of 
double bonds and make the food system unstable (17).

The degradation products of hydroperoxides depend on 
temperature, pressure, and oxygen concentration. Hydroperoxide 
cleavage could generate various volatile aromas and non-volatile 
substances (18). Some degradation products always affect the aroma 
and odor of cooked or stored meat products (19). Hydroperoxide 
degradation could generate alkoxy and hydroxyl radicals due to the 
homogeneous cleavage of OOH. The alkoxy radicals are cleaved on the 
C-C bond to form aldehydes and vinyl radicals or unsaturated 
aldehydes and alkyl radicals and then form volatile organic compounds 
such as aldehydes, alkenes, and alcohols (Figure 4). Among substances 
generated by the cleavage of alkoxy radicals, aldehydes are the essential 
critical aroma substances (20). The products formed by the cleavage 
reaction depend on the stability of the fatty acids in foods and the 
degradation products of hydroperoxide isomers (21).

2.2. Effect of lipid oxidation in foods

Lipid oxidation is vital to food quality during food processing and 
storage. The oxidation of lipids, especially in poly-unsaturated fatty 
acids, entails the generation of rancid or off-flavor, decreases the 
nutritional value, and reduces the storage period of foods (14, 22). The 

FIGURE 1

Comparison of the number of publications on “lipid oxidation,” “protein oxidation,” “lipid oxidation & protein oxidation” from 2003 to 2022. Data were 
summarized from the Web of Science.
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oxidation reactions of proteins and lipids could lower rice’s cooking, 
nutritional quality, and commodity value, including the loss of flavor, 
color, or nutrient value and functionality (23). Oxidation products 

(including primary, secondary, and tertiary oxidation products) 
accumulating to a certain extent could be detrimental to consumer 
health. In meat, the products formed by lipid oxidation, such as H2O2, 

FIGURE 2

The mechanism of lipid auto-oxidation in food. (A) is the initiation period, (B–C) are the propagation period and (D–F) are the termination period of 
lipid oxidation. In∙: the free radicals; LH: the unsaturated fatty acid molecules; LOO∙: the lipid peroxyl radical; L∙: the lipid free radicals; O2: oxygen; 
LOOH: the lipid hydroperoxides; LOOL, LL: the lipid polymers.

FIGURE 3

(A) Classical mechanism for oleic acid autooxidation. (B) Classical mechanism for linoleic acid autooxidation. (C) Classical mechanism for α-Linolenic 
acid autooxidation.
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peroxynitrite, hydroxyl radicals, and reactive aldehyde groups, play a 
role in myosin damage, further affecting the skeletal muscle 
components and lead to changes in the physical and functional 
properties of myosin (24). According to Zhou et al. (25) long-lived 
myofibrillar protein radicals were formed by oxymyoglobin oxidation 
caused partly by lipid oxidation. In addition, aldehydes, as the products 
of lipid oxidation, are closely related to the deterioration of meat color 
and flavor and muscle loss (26). Lipid oxidation occurs not only in 
animal-based foods but also in plant-based foods, thus it should not 
be ignored. Lipid oxidation could decrease rice breakdown, decreasing 
starch viscosity during storage (23). In addition, glutelin and lipid 
oxidation could affect rice quality, such as whiteness and aroma (27).

2.3. Assessment methods of lipid oxidation 
in foods

Quantitative determination of the degree of lipid oxidation could 
provide the essential technical basis for evaluating food quality. The 

existing techniques correspond to the measurement of oxidation 
products and the consequences of lipid oxidation products (Figure 5) 
(28). Choosing an appropriate measurement to study the degree of 
lipid oxidation in foods is necessary. The following methods are 
commonly selected for the primary oxidation products to analyze 
lipid oxidation. The physical methods include infrared spectroscopy 
and conjugated diene analysis, and the chemical processes include 
peroxide value (PV) measurement, xylenol orange method, and active 
oxygen method (29, 30). In addition, the primary oxidation products 
of lipid oxidation can also be detected by high-performance liquid 
chromatography, nuclear magnetic resonance (NMR), gas 
chromatography (GC), and electron spin resonance (31–33). In foods, 
the secondary products of lipid oxidation are commonly measured by 
detecting the acid value, oil stability index, and malondialdehyde 
(MDA) (29). Many methods are used to measure the acid value, 
including titration, test paper, colorimetry, chromatography, near-
infrared spectroscopy, potentiometric titration, and voltammetry (34). 
The secondary products could also be detected by GC, fluorometric 

FIGURE 4

The mechanism of aroma compounds formed during lipid oxidation.
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method, and sensory evaluation (19, 35). Besides, the lipid oxidation 
substrates, weight change, and the oxidation onset temperature are 
used (36). Several of these methods are presented in detail below.

PV is commonly used for primary oxidation products to 
determine the peroxide content in foods, especially meat (37). The 
iodometric and ferric thiocyanate methods determine the PV in 
foods, which could directly measure the degree of hydroperoxides 
formed by oxidation (38). The iodometric assay is highly sensitive and 
accurate, and it is also suitable for minimum apparatus. However, in 
this experimental method, the oxygen in the reaction solution must 
be minimized (39). Reducing the generation of substances that may 
induce hydroperoxides decomposition or react with iodine is 
necessary to take precautions when precisely analyzing the degree of 
lipid oxidation. For insect-based food, the ferric thiocyanate method 
is more straightforward than the iodometric method (40). However, 
this method is not suitable for long-term storage of meat, especially 
ground meat, because long-term storage could re-decompose the 
hydroperoxide produced in meat, which could then affect the 
accuracy of PV.

Moreover, conjugated diene analysis (28) measured at 233 nm is 
suitable for polyunsaturated fatty acid-containing foods. It could 
provide the actual values of low-density lipoprotein oxidation during 
the early stage. It is convenient and low cost, but it depends on the 
lipoproteins’ composition and size. In addition, small conjugated 
dienes are challenging to detect. In methods of detecting the secondary 
oxidation products, the thiobarbituric acid reactive substances assay 
is commonly used. The production of MDA and TBA could 
be detected at 532 nm (41, 42). This method detects meat and meat-
based products, fish and fish-based products, and edible insects. In 
addition, chromatography and fluorometric methods are sensitive, 
fast, and accurate, but they are costly to widely use (43, 44). Sensory 
analysis could provide the overall quality of food, and it could be used 
for liquid, semi-solid, and solid foods (45). However, it is limited by 
the participants and the change of time. Furthermore, the primary and 

secondary oxidation products could be determined by the p-anisidine 
value test and total oxidation index methods (46). They are simple 
calculations to test oil and oil-based products, but they are troubled 
with detecting omega-3-rich oils that contain specific flavorings (47).

3. Protein oxidation in foods

The variation of food function and deterioration caused by protein 
oxidation has recently become research highlights. For meat products, 
protein oxidation could reduce sensory characteristics, such as 
tenderness, flavor, and color, and break the functional properties, such 
as gelatinous and emulsification (48). Xia et al. (49) studied the effect 
of H2O2 concentration in the hydroxyl radical oxidation system on the 
degree of protein oxidation and the characteristics of myofibrillar 
protein gel whiteness, water holding capacity, texture properties, and 
elastic modulus. With increasing H2O2 concentration, the carbonyl 
value of myofibrillar protein increased, and the protein oxidation 
intensified. Similarly, in the hydroxyl radical oxidation system of 
Peruvian squid, when the oxidation concentration increased, more 
severe damage could be found on the myofibril structure, and water 
retention decreased (24). Peptide bond cleavage, amino acid residue 
oxidation, and disulfide bond formation are typically caused by 
protein oxidation. Therefore, protein oxidation could be reflected by 
structural or molecular weight changes.

3.1. Mechanism of protein oxidation

Protein oxidation reactions are divided into radical beginning, 
intermediate, and termination reactions. During early reactions, 
protein radicals, and hydroperoxides are generated (Figure  6A). 
Intramolecular and intermolecular radicals are then transferred into 
peptides and proteins (Figure 6B). Non-radical products are formed 

FIGURE 5

Summary of standard methods used to measure the degree of lipid oxidation.
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during the termination reactions (Figure 6C). As the protein-specific 
structure formed by polypeptide chains is composed of dehydrated 
and condensed amino acids, the variation in oxidized protein is 
connected with amino acids, such as cysteine (Cys), methionine 
(Met), and lysine (Lys). Free radicals could be caused by the radical 
transfer reaction between amino acid residues, and they could lead to 
further oxidative damage in places that are not the initial position of 
oxidized proteins (50). For aliphatic amino acids, oxidation is 
generally carried out by abstracting hydrogen at the α-carbon atom to 
form a carbon-centered radical, such as arginine (Arg) (51). Aromatic 
amino acids, such as tryptophan (Trp) and tyrosine (Tyr), are easily 
oxidized (52). In addition, for amino acids such as Trp, Tyr, and Cys, 
the metal ion-catalyzed oxidation system could deteriorate the side 
chains of amino-acid residues (53). For example, the lipid oxidation-
induced targets in Lys are lys-residue side chains (Figure 6B).

3.2. Assessment methods of protein 
oxidation in foods

In recent research, moderate protein oxidation could improve the 
functional properties of proteins. Moderately oxidized rice bran 
protein significantly changed the gut microbiota’s composition and 
improved the intestine’s barrier function (54). Moderate oxidation 
could also improve myofibrillar protein’s gelling capacities (49). 
However, highly oxidized protein shows an adverse phenomenon that 
could affect the structural characteristics, function, nutritional value, 
and even the body’s health (55). The degree of protein oxidation, 
which is caused by lipid oxidation, is often assessed by detecting the 
markers of protein oxidation. Changes in amino-acid levels induced 
by lipid oxidation products are often studied because of their high 
susceptibility. The oxidative modification of amino acids could reduce 
their bioavailability and nutritional value (56) (Table 1).

Cys is commonly used marker of protein oxidation in foods. 
Although the carbonyl content could not fully express the degree of 
protein oxidation, it could be further reflected by measuring the level 
of Cys. Under high temperatures, the free sulfhydryl content in fresh 
rice was higher than that of stored rice, and the free sulfhydryl content 
of rice decreased with protein oxidation (57). Similarly, when free 
radicals oxidize proteins, Tyr is sensitive to evaluating the oxidation 

degree. Under the action of free radicals, Tyr is oxidated to form 
di-tyrosine (58). Trp residues are also sensitive to oxidation and could 
generate an indolyl radical, which could react with Tyr or Cys residue 
(5). The fluorescence spectroscopy technique has always been used to 
detect the variation in Trp content. However, this method could not 
be used alone.

In recent research, protein oxidation could destroy protein 
secondary structure. The carbonyl group was found to be increased, 
and the sulfhydryl groups were lost in rancid rice bran (62). Otherwise, 
protein oxidation could be accelerated by lipid oxidation. Under the 
promotion of lipid oxidation, proteins’ surface hydrophobicity and 
rheological properties could change accordingly (63). Li et al. (64) 
found that with the increase in protein oxidation, the content of the 
stable secondary structure of α-helix and β-fold decreased. A trend 
that α-helix and β-fold could transfer to β-turn and the random coil 
was found, indicating that the structure of proteins has been destroyed. 
Surface hydrophobicity is one of the most critical factors in sustaining 
protein tertiary structure, and it is necessary to stabilize the protein 
structure and function (65). The molecular structure of oxidized 
protein could be folded, and the peptide tendon could break, thus 
enhancing the protein surface hydrophobicity. This phenomenon may 
be caused by inserting side chain groups of hydrophobic aliphatic and 
aromatic amino acids (66). Besides, the proteins were proven to 
be aggregated by protein oxidation (4). Protein aggregation may be a 
complete result of the formation of covalent cross-links, disulfide 
bonds, hydrogen bonds, and salt bridges. Especially under 
non-covalent interactions such as hydrophobic interaction, larger 
aggregates of proteins are formed (67).

4. Implications of lipid oxidation on 
proteins in foods

Free radicals and other small molecules, such as ketone and 
aldehyde, could be formed by lipid oxidation. The free radical reactions 
and carbonylation may be the mechanism that leads to the covalent 
binding of lipid peroxide products to proteins and lipid-induced 
protein aggregation (55). Proteins have been proven to be sensitive to 
free radicals. Protein oxidation could be induced by interacting with 
reactive oxygen species (ROS) or the by-products of oxidative stress 

FIGURE 6

The oxidation mechanism of lysine. (A), (B), and (C) are the early, mediate, and termination reactions of protein oxidation, respectively. OH∙: hydroxyl 
radical; OOH∙: peroxyl radical.

https://doi.org/10.3389/fnut.2023.1192199
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Geng et al. 10.3389/fnut.2023.1192199

Frontiers in Nutrition 07 frontiersin.org

(68). Free radicals formed by rancid rice bran could attack the main 
chain and side chain of proteins, and then protein oxygen-free radicals 
could be formed (69). The protein oxygen-free radicals induce a chain 
reaction with radicals or proteins. Subsequent oxidation of protein 
radicals could generate protein carbonylation caused by C-terminal 
decarboxylation and fragmentation in the skeleton. Crosslinking of 
myosin and light meromyosin was found in the hydroxyl radical 
generation system (55). Based on current research, protein 
carbonylation is mainly caused by the existence of amino-acid side 
chains (49). The side chains are susceptible to ROS, especially Lys, 
threonine, Arg, and proline. Besides, di-tyrosine is another possible 
crosslinking agent that may lead to protein aggregation in meat (70).

The rod sub-fragment of myosin is attacked by ROS first (71). The 
by-products of lipid oxidation, such as MDA, 4-hydroxy-2-nonenal 
(4-HNE), and acrolein (ACE), are electrophilic reagents that could 
react with nucleophilic groups in proteins. MDA could promote 
protein carbonylation and the loss of Trp fluorescence. Furthermore, 
during the oxidation of myoglobin and myofibrillar proteins, MDA 
could increase high-valent myoglobin species and reduce nonheme 
iron to affect ROS (26).

A series of reactions are induced by oxidative protein 
modifications (70), including biochemical changes and crosslinking 
formation. The biochemical changes include the variation of carbonyl 
compounds (72), emulsifying activity (67), and surface hydrophobicity 
(73). The crosslinking changes include the variation of di-tyrosine and 
disulfide bonds (74, 75). Protein oxidation could induce protein 
degradation and crosslinking (76, 77). It could also trigger various 
changes, such as modification of amino-acid side chains, peptide 

scission, structural unfolding, and protein depolymerization (78). 
Oxidized rice bran protein could accumulate oxidized products and 
decrease antioxidant enzymes, finally causing kidney injury in mice 
(79). In foods, because structure determines properties, the studies 
mainly focused on the reaction that oxidized proteins affect the 
functional properties of proteins (69) but overlooked the reaction 
mechanism of protein aggregation caused by oxidation. Therefore, the 
oxidative aggregation of proteins and their functional changes were 
described in detail.

5. Protein aggregation caused by lipid 
oxidation in foods

5.1. Effect of aggregated protein in foods

Protein oxidation could influence protein structure and change 
the protein’s original function. Table  2 summarizes the typical 
variation of protein function partially caused by oxidation. Solubility 
could become poor because the aggregated protein could form a 
compact spherical structure with accumulated disulfide bonds (84). 
For rice bran proteins, the increasing range of disulfide bonds and 
β-sheet could decrease the solubility, indicating that the proteins were 
directed to form insoluble aggregates (62). In addition, protein 
oxidation could simultaneously expose hydrophobic groups and 
facilitate protein crosslinking by hydrophobic interaction (85). The 
hydrophobic surface interactions were decreased, and the digestibility 
of pepsin and trypsin in rancid rice bran was lost (81). With the 

TABLE 1 Oxidation products of some primary amino acid monomers.

Amino acid Original structure Oxidative products Condition References

Cysteine (Cys)

Heteroatoms are 

direct targets of 

radical 

formation.

(4, 57)

Tryptophan (Trp)
Exposed to UV 

or γ-irradiation.
(58, 59)

Methionine (Met)

Heteroatoms are 

direct targets of 

radical 

formation.

(60)

Lysine (Lys) Fe3+ → Fe2+. (61)
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increasing protein oxidation, the foaming and emulsifying capacity 
decreased because of protein aggregation in rice bran (62).

In meat products, the color could be  decreased due to the 
oxidation of myoglobin to metmyoglobin, indicating a decrease in the 
shelf-life of meat products (22). Besides color variation, gel hardness 
is negatively correlated with carbonyl group contents in oxidized 
protein gels, indicating the degradation of oxidized protein gels (85). 
Similarly, tenderness and water binding capacity decreased with 
protein oxidation in pork (86), and the oxidation of protein thiols 
could lead to protein aggregation and decreased tenderness (87). The 
effect of protein aggregation has been studied in current meat 
production, such as oxygen-modified atmosphere packaging (MAP). 
Under MAP in beef, the hardness of cooked parties (88) and the 
compression force of myofibrillar gel were found to be increased (89).

5.2. Assessment methods of aggregated 
protein in foods

Protein aggregation could be caused by protein oxidation because 
of the protein’s unstable structure. The methods to evaluate oxidized 
protein variation have also been applied to assess the degree of protein 
aggregation. X-ray diffraction (XRD) and NMR methods are widely 
used to evaluate the tertiary structure. However, XRD requires high-
quality protein single-crystal samples, and NMR is limited by 
molecular weight and the condition that the sample particles should 
be small enough. Scanning electron microscopy (SEM) (85) is another 
standard method for analyzing the structure of biological 
macromolecules. Although it could directly investigate the protein 
tertiary structure, the ways to evaluate the variation of protein 
secondary structure could also be meaningful. Considering aggregated 
protein can be formed by protein oxidation, oxidized proteins could 
be potentially used to evaluate protein aggregation. The biochemical 
changes, the surface hydrophobicity, and the crosslinking formation 
caused by oxidation could be reflected by di-tyrosine and disulfide 
bonds 4 (4, 70). As secondary protein bonds, disulfide bonds are 
related to the change in protein tertiary structure. So, the content of 
carbonyl and sulfhydryl could be analyzed to evaluate the oxidative 

extent of proteins. The carbonylation variation and the sulfhydryl 
content increased in rancid rice bran, indicating that the proteins 
aggregated caused by rice bran oxidation (62). The secondary 
structure formed by individual amino acids has been explicitly proven 
(90). The formation is caused by their side-chain function and 
environmental factors. The structure of α-helices is regarded as the 
default conformation. Due to steric clashes, the branch on the 
β-carbon atom always causes unstable α-helix, such as valine and 
threonine (91). β-strands, the relatively extended ordered structure, 
mainly contain steric residues. So, α-helices, β-sheets, β-turns, and 
random coils are often detected to evaluate the variation of protein 
structure. Many methods are available to detect these metrics. The 
interpretation of the protein secondary structure could be reflected by 
protein change in the infrared spectral region. The secondary structure 
of protein and polypeptide has nine characteristic absorption bands 
in the infrared spectral region. Among them, the key absorption band 
to study protein secondary structure is the amide I band, which is 
located in the range of 1600–1700 cm−1. The characteristic bands of 
α-helices, β-sheets, β-turns, and random coils are in the range of 
1650–1658 cm−1, 1600–1640 cm−1, 1660–1695 cm−1, 1640–1650 cm−1, 
respectively (92). The content of the β-sheet could be analyzed by 
Fourier transform infrared method (62). The contents of amino-acid 
side chains and random coils were found to be  increased by this 
method, indicating that aggregated proteins were formed (93). Under 
high storage temperature conditions (70°C), the rice protein 
secondary structure was destroyed with the order structure, such as 
α-helices and β-sheets, decreasing and the random coils increasing 
because of lipid and protein oxidation (4). However, the study pointed 
out that the amide I  region only could not sufficiently provide 
information for structure quantitation, and it could be combined with 
the amide III region to study protein secondary structure more 
comprehensively (94). In addition to IR spectroscopy, many methods 
could be applied to study protein secondary structure (95), such as 
circular dichroism (CD), Raman (96), and ultraviolet (UV) 
spectroscopies (97) (Figure 7). CD and IR methods are commonly 
used to analyze polypeptide polymers, and the CD method is usually 
applied in aqueous solutions. However, any spectroscopic technique 
should not be used alone to guarantee accuracy.

TABLE 2 Variation of protein function caused by oxidation.

Function Variation Food source Mechanism References

Solubility
Loss of the water-holding 

capacity
Meat, rice bran Intermolecular disulfide crosslinks (5, 80)

Digestibility
Loss of pepsin and trypsin 

digestibility
Rice bran

Protein aggregation and crosslinks promoted through 

non-disulfide covalent bonds
(81)

Foaming Slightly improve Egg white protein Modify molecular arrangement and interaction (62, 82)

Color Loss of redness
Muscle food (brown 

pigment)
Hemoglobin autoxidized to metHb (1)

Texture

Gelling Impaired Meat Protein carbonylation induced by Cu2+/systems (71)

Viscosity and 

elasticity

Tenderness decreased, but 

hardness, springiness, and 

gumminess improved under 

moderate oxidation

Meat
Protein thiols oxidized, excessive carbonylation of 

protein
(2, 5, 83)

Cohesiveness Improved to some extent Meat
Depolymerization of myofibrillar proteins; unfolding of 

α-helix and exposure of the hydrophobic groups
(49)
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The variation of proteins’ rheological properties could also 
be used to evaluate the tertiary structure. With increased temperature, 
proteins could form a three-dimensional gel network system to create 
a tight spatial structure. Gel forming ability and gel elasticity could 
be judged by measuring the rheological properties of proteins. They 
are always expressed by the elastic or storage modulus (G′). The larger 
the G′, the stronger the elasticity of the protein to form a gel (64). The 
loss modulus(G′′) corresponds to G′, and it is used to represent the 
viscous properties of the protein. Tan α is the ratio between G′′ and 
G′, and it is a comprehensive evaluation index for the viscoelasticity 
of a sample, reflecting the energy loss of each oscillation process. 
Lower values indicate that the gel network structure improved. 
According to texture profile analysis, the hardness, springiness, 
gumminess, and cohesiveness of isolated myofibrillar protein 
improved under moderate oxidation of protein (49). Moreover, 
Raman spectroscopy and NMR are also used to study aggregated 
protein’s structure and physicochemical properties (Table 3).

Protein molecular weight distribution variation is also used to 
measure protein oxidation. By liquid chromatography -20A liquid 
chromatogram method, the aggregation of rice bran protein caused 
by rancid rice bran was proven (69). In addition, the molecular weight 

of barley grains protein could be measured by matrix-assisted laser 
desorption ionization-time of flight mass spectrometry (104). Sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis (26) is also a 
standard method to evaluate the variation of molecular protein 
weight. This method could analyze protein molecular weight by the 
variation of protein bands, especially in highly oxidized proteins (71).

6. Summary and outlook

Whether in plant- or animal-based foods, light or high 
temperature storage conditions always deteriorate nutrient substances, 
especially lipids, and proteins. During lipid oxidation, fatty acids will 
decompose into carbonyl compounds, unsaturated aldehydes, ketones 
and other substances, forming an unstable food system. During the 
lipid auto-oxidation process, free radical chain reactions can cause 
protein oxidation and deterioration, even leading to protein 
aggregation. The protein aggregation caused by lipid and protein 
oxidation are due to various factors. At present, the effects on lipid or 
protein oxidation have been sufficiently evidenced, and there are 
multiple detection methods to measure the degree of food oxidation. 

FIGURE 7

Summary of spectroscopic methods used to measure protein structure.

TABLE 3 Common spectroscopic methods to evaluate protein structure.

Target Method Common 
advantage

Applicable condition References

Secondary structure Fourier transform infrared (FTIR)
Rapid, convenient, and 

increased popularity

Based on C=O (98)

Secondary and tertiary 

structure

Circular dichroism (CD) Optically active sample, and applied in aqueous solutions (95, 99)

Raman spectroscopy Based on -CO-NH- (96, 99)

Tertiary structure

Fluorescence spectroscopy
Rapid, convenient, and 

increased popularity

Based on the absorption of UV or visible light of 

chromophores that can emit photons, like natural 

chromophores: Trp, Tyr and phenylalanine (Phe) residues

(95, 100)

Ultraviolet spectroscopy (UV) Based on aromatic amino acid residues (97, 100)

X-ray diffraction (XRD) Does not allow for real time conformational transition (101)

Nuclear magnetic resonance 

(NMR)
High resolution Suitable for low molecular weight proteins (102, 103)
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Therefore, further studies should focus on the variation of lipids and 
proteins simultaneously and study their interaction mechanism. 
Further research on novel formulation strategies to minimize lipid and 
protein oxidation should be studied, especially in plant-based foods. 
The mechanism of protein denaturation, the specific degree of 
denaturation caused by lipid oxidation degree, and the categories of 
oxidized products should also be studied in depth.
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