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Introduction: Today, alternative strategies based on the use of bioactive 
compounds have been proposed to reduce mycotoxin contamination and limit 
the use of chemical fungicides. 

Methods: In the present work, several by-products collected from the agri-
food chain (i.e., red and white grape marc, red grapevine leaves, grape seeds 
and stalks, pear, apple, green beans, tomato, and spent hops) were subjected 
to green extraction protocols (i.e., steam distillation, Ultrasound-Assisted, and 
Naviglio® extraction) to obtain extracts rich in polyphenols and terpenes. Each 
extract was assessed in vitro for its ability to inhibit the development of the main 
mycotoxigenic species and related mycotoxins.

Results and Discussion: Aspergillus flavus and A. carbonarius were significantly 
reduced by pear (from −45 to −47%) and grape marc (from −21 to −51%) extracts, while  
F. graminearum was shown to be highly influenced by grape stalk, pear, and grape 
marc extracts (−24% on average). On the contrary, F. verticillioides was inhibited 
only by pear (−18%) and to a very low and negligible extent by apple (−1%) and 
green beans (−3%). Regarding the reduction of mycotoxins, the extracts were able 
to inhibit OTA from 2 to 57%, AFB1 from 5 to 75%, and DON from 14 to 72%. The 
highest percentages of reduction were obtained against FBs (from 11 to 94%), 
ZEN (from 17 to 100%), and Alternaria toxins (from 7 to 96%). In conclusion, this 
work provided promising results for the production of bioactive extracts obtained 
from agri-food by-products, which could be exploited as potential biofungicides 
against the development of mycotoxigenic fungi and related mycotoxins. 
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1. Introduction

The presence of mycotoxins in food commodities is a concrete risk 
worldwide, with important potential impacts on human and animal 
health; therefore, their presence in agricultural products is the subject 
of extensive research across the globe. Cereals, dried fruits, and spices 
may be exposed to contamination by several mycotoxigenic fungal 
species and related mycotoxins (1–5). Moreover, in a climate change 
scenario where high temperatures and extreme events such as floods 
or droughts are reached, the development of mycotoxigenic fungi 
could find suitable environmental conditions for their easy growth. 
The European Union (EU) has established maximum levels for the 
major mycotoxins (6, 7). Recently, the European Commission also 
published maximum levels for Claviceps ergot and a recommendation 
for Alternaria toxins in food products, underscoring the increasing 
concern about the possible effects of these mycotoxins on human 
health (8, 9).

Preventive methods, such as good agricultural practices and the 
use of appropriate chemical products, are considered the best choices 
to reduce mycotoxin contamination. However, the increasing interest 
of consumers in the adverse health effects presumably produced by 
pesticides has led to a growing demand for natural products, as their 
use is seen as an improvement in food quality and consumer safety. 
Due to the increasing need to reduce the use of chemical pesticides in 
agriculture, also according to the guidelines of the EU Green Deal, and 
to achieve both the environmental emergency and the consumer 
demand for safer agro-food products, several bioactive compounds 
showed to be promising alternatives as inhibitors of antifungal activity 
and mycotoxin production.

In in vitro studies, phenolic compounds, which are naturally 
found in plants, herbs, fruits, and other vegetables, showed antifungal 
activity and could limit mycotoxin production (10–12). Polyphenols 
were able to inhibit trichothecene-producing Fusarium (13), 
isoflavones showed weak inhibitory activity against Fusarium 
graminearum (14), and several essential oils were efficient in 
mitigating mycotoxigenic Aspergillus and Penicillium species (15, 16). 
In general, naturally occurring phenolic compounds and terpenes 
seem to be  really effective as anti-mycotoxin agents. Food waste 
represents a reservoir of these bioactive compounds, and their 
valorization through appropriate biorefinery approaches could play a 
crucial role in sustainable and zero-waste global development. In fact, 
today, the residual biomass discarded by the whole food chain 
amounts to 1,300 Mtons/year, with a significant impact on the 
ecosystem. For this reason, the circular economy is now being 
explored as a new economic system that allows the reuse and 
valorization of waste and by-products as a resource to manufacture 
new materials and products. In this perspective, food waste extracts 
could be  a potential source of bioactive polyphenols that can 
be  exploited for many different purposes (e.g., food additives, 
preservatives, coloring agents, and nutraceuticals) (17). Besides their 
common application as antioxidants and antimicrobials, they could 
also be used as biofungicides and inhibit mycotoxin production in 
different raw commodities (18). The by-products considered come 
from three different agri-food supply chains (wine, canning, and 
brewing) in the Emilia Romagna region, where the two collaborating 
universities for this study are located. The most abundant by-products 
of the wine and canning supply chains were considered: marc, stalks, 

grape seeds, and leaves from the wine supply chain; and pear, apple, 
green bean, and tomato processing waste from the canning supply 
chain. In the case of the brewing chain, the spent hops were considered 
for their essential oil content and anti-fungal activity.

Many different methodologies can be  used for bioactive 
compounds, ranging from conventional ones such as acid and alkaline 
hydrolysis, solvent extraction, and Soxhlet extraction to more 
sustainable and new techniques that are more cost-effective and highly 
efficient (19). The extraction techniques used for this study 
(Ultrasound-Assisted Extraction, Naviglio®, and steam distillation) 
were chosen based on secondary metabolites with possible antifungal 
activity against the microorganisms able to be obtained and also for 
their low environmental impact. The first two, carried out with 
hydroalcoholic solvents, were necessary for the extraction of polar 
molecules, while steam distillation, the method of choice for obtaining 
essential oils (also listed in the Official European Pharmacopoeia for 
numerous drugs), was used to obtain hop essential oil.

Using these extraction processes, different agri-food wastes have 
been exploited for their biological, biostatic, and biocidal activities and 
have been considered for their possible use as alternatives to protect 
plants from contamination by fungi and mycotoxins, limiting the use 
of chemical fungicides.

2. Materials and methods

2.1. Chemicals and raw materials

All of the solvents, standards, salts, acids, and bases were of 
analytical grade and were purchased from Sigma-Aldrich-Merck 
(Darmstadt, Germany) or Carlo Erba (Milan, Italy). Aflatoxin B1 
(AFB1), ochratoxin (OTA), fumonisins B1 and B2 (FB1, FB2), 
deoxynivalenol (DON), zearalenone (ZEN), alternariol (AOH), 
alternariol monomethyl ether (AME), and tenuazonic acid (TEA) 
were purchased from Sigma-Aldrich (St. Louis, MO, USA). The 
by-products selected for this study were: red and white grape marc 
(RG and WG, respectively); red grapevine leaves (RGL); grape seeds 
(VIN) and stalks (GS); pear (PE), apple (AP); green beans (GB); 
tomato (TO); and spent hops (HW).

2.2. Extractions from food waste

2.2.1. Ultrasound-assisted extraction
Ultrasound-assisted extraction (UAE) was performed in an 

ultrasonic bath (Ultrasonik 104X, Ney Dental International, 
MEDWOW, Cyprus) at a working frequency of 48 kHz. An aliquot of 
50 g of each sample was extracted with 650 ml of a 50% ethanolic 
solution for 80 min at room temperature (solvent/solid ratio of 13 ml/g 
of dried matrix). Each aliquot was subjected to a triple extraction, each 
time with fresh solvent, to increase the yield of the procedure. The 
extracts were then filtered and lyophilized. Each extraction was 
performed in triplicate.

2.2.2. Naviglio® extraction (NAV)
The Naviglio® extractor (Atlas Filtri, Italy) was used to extract 

solids using a pressurized solvent extraction method (20). Briefly, 30 g 
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of each sample was placed in a bag with a 60 μm filtering membrane 
and transferred to the chamber of the Naviglio extractor; 400 ml of a 
50% ethanolic solution was added. The extraction process consisted 
of 10 cycles, each divided into two phases, one static, and one 
dynamic: the former was set for 5 min, while the dynamic phase was 
set for 3 min, for a total extraction time of 80 min. The extracts were 
then filtered and lyophilized. Each extraction was performed 
in triplicate.

2.2.3. Steam distillation of spent hops
An aliquot of 300 g of the spent hops was used to obtain essential 

oils by 3 h steam distillation (DIS) with a Clevenger apparatus 
according to the methods of the European Pharmacopoeia. The 
extract yield was determined on a volume-to-wet-weight basis, and 
the samples, dehydrated, were stored in glass vials with Teflon sealed 
caps at −18 ± 0.5°C in the absence of light until analysis.

2.3. Extract characterization

2.3.1. Determination of total phenolic content, 
total flavonoid content, and total 
proanthocyanidin content

The determination of total polyphenolic, flavonoid, and 
proanthocyanidin content was performed using a Thermo Spectronic 
Helios-γ spectrophotometer (Gebraucht, Germany) according to the 
method described by Greco et al. (21). The total phenolic content 
(TPC) results are expressed as the g equivalent of gallic acid/100 g of 
dried extract, total flavonoid content (TFC) as the g equivalent of 
hyperoside/100 g of dried extract, and total proanthocyanidin content 
(TPrC) as the g equivalent of cyanidin chloride/100 g of dried extract. 
Each experiment was performed in triplicate.

2.3.2. RP-HPLC-DAD analyses
RP-HPLC analyses were performed with a JASCO modular 

HPLC system (Tokyo, Japan, model PU 2089) coupled to a diode 
array apparatus (MD 2010 Plus). The HPLC was equipped with an 
injection valve with a 20 μl sampling loop and an Eclipse-
PLUS-C18 column (25 mm × 0.46 cm, 5 μm; Phenomenex, Bologna, 
Italy) at a flow rate of 1.0 ml/min. The identification and 
quantification of different polyphenols in the extracts of agri-food 
waste were performed following the experimental conditions also 
used by Tacchini et al. (caftaric acid and flavonoids) (22), Bernardi 
et al. (anthocyanins) (23), and Kammerer et al. (gallic acid and 
catechins) (24). The different peaks were identified by comparing 
their UV spectra and retention times with those of pure standards. 
Dedicated JASCO software (ChromNAV version 2.02.01) was used 
to calculate peak areas by integration. Each experiment was 
performed in triplicate.

2.3.3. GC–MS and GC-FID analyses
The samples obtained from steam distillation were diluted, and 

1 μl of the solution was injected for gas chromatography (GC). GC 
analysis was performed on a Varian GC3800 gas chromatograph 
equipped with a Varian MS-4000 mass spectrometer using electron 
impact (EI) and hooked to the NIST library, and a ThermoQuest 
GC-Trace (ThermoQuest Italia, Rodano, Italy) coupled to a flame 
ion detector. The operating conditions are the same as those 

reported by Tacchini et al. (25). Each experiment was performed 
in triplicate.

2.4. Preparation of fungal strains

Representative mycotoxigenic fungal strains were obtained from 
official fungal collections, as reported in Table 1.

Fungal strains were centrally transferred on Petri dishes (Ø 9 cm) 
containing potato dextrose agar (PDA, Biolife, Milan, Italy) and 
incubated at 25°C for 7 days (12 h light/12 h dark photoperiod). After 
the incubation period, the developed fungal colonies were used as a 
source for further inoculations.

2.5. Extract evaluation – in vitro test

All the extracts were tested for their ability to reduce 
mycotoxigenic fungal growth and mycotoxin production at a 
concentration of 1,000 mg/L. On Petri dishes (Ø 9 cm) containing 
potato dextrose agar (PDA, Biolife, Milan, Italy), 1 mL of the extract 
solution was distributed with a sterile spreader. Fungal inoculation 
was performed by cutting agar discs (Ø 2 mm) using a sterile cork 
borer from the edge of the fungal colony prepared as previously 
described and putting them at the center of the dish. Petri dishes 
centrally inoculated with fungi but without the addition of extracts 
were considered untreated. Inoculation was performed for the fungal 
species listed in Table  1, and the experiment was performed 
in triplicate.

Petri dishes were incubated at 25°C for 14 days. At the end of the 
incubation period, fungal growth and mycotoxin production 
were determined.

2.5.1. Measurement of fungal growth
The diameter of the fungal colonies was measured along two 

perpendicular diagonals crossing the inoculum point. The percentage 
reduction in fungal growth in the presence of the extracts was 
calculated by comparing the fungal growth diameters obtained in 
untreated dishes with the fungal growth diameters obtained in the 
presence of each extract (26).

2.5.2. Mycotoxin production
The entire contents of each Petri dish were homogenized and 

extracted with 40 mL of CH3CN using a rotary shaker for 45 min. 
After centrifugation and dilution (1 + 9 v/v) of the extract, mycotoxins 

TABLE 1 Mycotoxigenic fungal strains obtained from official collections 
and used in the experiments.

Fungal species Code number Official collection

Aspergillus flavus ITEM 8069 ISPA-CNR BARI

Aspergillus carbonarius ITEM 5012 ISPA-CNR BARI

Fusarium verticillioides ITEM 10027 ISPA-CNR BARI

Fusarium graminearum ITEM 646 ISPA-CNR BARI

Alternaria alternata CBS 118814 Westerdijk Fungal 

Biodiversity Institute
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were quantified using instrumental methods previously developed 
and published in our laboratory (27–31).

2.6. Data analyses

Data were transformed prior to statistical analysis; specifically, 
data on fungal growth reduction were arcsine transformed, while data 
on mycotoxin production (values +1) were logarithmically 
transformed (32).

Analysis of variance (ANOVA) was calculated using the 
generalized linear model (GLM) procedure of the statistical IBM SPSS 
Statistics 27 package (IBM Corp., Armonk, NY, United States), while 
significant differences were highlighted using the Tukey’s test 
(p ≤ 0.05) for mean separation.

Also for mycotoxins, the percentage reduction of the fungal ability 
to produce its own mycotoxin was calculated by comparing the 
mycotoxin production in untreated dishes with the mycotoxin 
production obtained in the presence of each extract.

3. Results

3.1. Characterization of the extracts

A total of 14 different extracts were obtained from 10 different 
food by-products using the different high-tech methodologies 
described previously. Extracts obtained using Ultrasound-Assisted 
Extraction (UAE) and pressurized liquid extraction with Naviglio® 
technology (NAV) were primarily analyzed for the content of 
polyphenolic compounds (Table 2).

The extraction methods used for the production of extracts 
allowed yields ranging from 9.32% in VIN to 37.92% in GB.  Red 
grape marc, white grape marc, and grapevine leaves were extracted 

using both NAV and UAE techniques, with UAE providing the 
highest extract yields. These extracts were also subjected to 
chemical analysis in order to quantify the content of total phenols, 
flavonoids, and proanthocyanidins. Total phenolic compounds 
ranged from 17.56 g gallic acid equivalent/100 g dried extract in 
TO to 514.26 g gallic acid equivalent/100 g dried extract in VIN. As 
previously reported, for those samples that were subjected to both 
UAE and NAV extraction techniques, UAE allowed the recovery of 
the highest amount of phenolic compounds. Total flavonoids were 
determined in concentrations ranging from 3.88 g of 
hyperoside/100 g dried extract in AP to 126.41 g of hyperoside/100 g 
dried extract in RGL NAV; the highest amount of total 
proanthocyanidins was detected in VIN extract (92.17 g cyanidin 
chloride/100 g dried extract), while the lowest was TO (0.58 g 
cyanidin chloride /100 g dried extract). Comparing these results, 
it can be observed that, while UAE gave a higher extraction yield 
and a higher quantity of total phenolic content than NAV, the 
quantification of total flavonoids shows the opposite trend, 
explaining a possible selectivity of this technique towards the latter 
molecular category. The first eight extracts in Table 2 came from 
waste from the wine supply chain and showed a higher amount of 
total phenols compared to the other by-products selected in the 
current study. In particular, among all the extracts, grape seed UAE 
was characterized by the highest content of total phenols (514.26 g 
gallic acid equivalent /100 g dry extract), composed of 18% 
proanthocyanidins and 12% flavonoids. This matrix, although of 
high commercial value, showed the lowest extractive yield 
compared to the other agri-food extracts obtained. Considering 
the quantification of total flavonoids, RGL extracted using the NAV 
technique was the richest waste matrix among those analyzed, 
showing twice the flavonoid content of grape seeds. The flavonoid 
fraction of this matrix was then studied in detail, and individual 
flavonoids were identified and quantified. Table 3 shows the results 
of the flavonoid quantification of the leaf extract.

TABLE 2 Yield and total phenolic compounds (TPC), flavonoids (TFC), and proanthocyanidins (TPrC) content in agri-food extracts.

Extract (Abbreviation) Yield % TPC (g GAE/100 g 
dried extract)

TFC (g Hyp/100 g 
dried extract)

TPrC (g Cyanidin 
Chloride/100 g dried 

extract)

Red Grape marc UAE (RG UAE) 23.26 ± 0.30 259.20 ± 8.47 13.59 ± 1.10 89.70 ± 5.44

Red Grape marc NAV (RG NAV) 11.29 ± 0.64 205.59 ± 7.75 21.88 ± 1.32 61.76 ± 6.72

White Grape marc UAE (WG UAE) 30.55 ± 0.71 197.26 ± 5.32 4.40 ± 0.24 31.36 ± 1.38

White Grape marc NAV (WG 

NAV)
14.26 ± 0.92 165.43 ± 20.73 10.85 ± 1.28 33.50 ± 3.21

Red Grapevine Leaves (RGL UAE) 15.27 ± 0.72 253.19 ± 11.41 113.48 ± 3.24 10.02 ± 0.18

Red Grapevine Leaves (RGL NAV) 11.75 ± 0.84 148.21 ± 1.10 126.41 ± 10.25 3.54 ± 0.18

Grape seeds UAE (VIN) 9.32 ± 0.48 514.26 ± 5.70 60.56 ± 3.51 92.17 ± 7.10

Grape stalks UAE (GS) 31.72 ± 0.54 198.95 ± 10.40 22.24 ± 0.51 9.14 ± 0.09

Pear (PE) 24.34 ± 0.22 105.94 ± 9.84 17.96 ± 1.25 3.56 ± 0.11

Apple (AP) 34.07 ± 2.33 29.50 ± 1.53 3.88 ± 0.33 0.80 ± 0.08

Green Bean (GB) 37.92 ± 1.83 41.17 ± 1.11 8.99 ± 0.63 0.96 ± 0.03

Tomato (TO) 15.97 ± 0.82 17.56 ± 0.55 7.33 ± 2.06 0.58 ± 0.04

Spent Hops UAE (HW) 22.83 ± 0.03 18.84 ± 0.32 15.06 ± 1.33 1.26 ± 0.02

TPC, total phenolic content; TFC, total flavonoid content; TPrC, total proanthocyanidin content; GAE, gallic acid equivalent; Hyp, hyperoside.
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In this case, too, the NAV technique gave the best quantitative 
results, highlighting the main flavonoids as quercetin and 
kaempferol derivates.

Another molecular category of interest from the point of view of 
reducing fungal growth is anthocyanins (33); a preliminary 
quantification was carried out in the red pomace extracts (Table 4).

NAV and UAE did not significantly influence the concentration 
of anthocyanins detected in the RG extracts, and oenin was the most 
abundant in both samples.

Moreover, chlorogenic acid, known for its antifungal action (34), 
was determined in AP and PE extracts since it is one of the main 
secondary metabolites identified in these vegetables. Pear processing 
residues obtained with UAE showed a chlorogenic acid content of 
2.54 ± 0.21 mg/g of extract, while apple processing residues obtained 
with UAE showed 0.70 ± 0.03 mg/g of extract.

Finally, the HW extract (from the IPA mixture after brewing) was 
obtained by hydro-distillation and characterized for its terpene 
content by GC–MS and GC-FID analysis (Table 5).

The extraction yield of the exhausted hop (Hop-EO) after IPA 
brewing was 0.10%, and the most abundant terpenes were: myrcene 
(29.1%), α-caryophyllene (29.1%), β-caryophyllene (13.9%), cadinene 
(5.0%), and humulene epoxide (2.5%).

3.2. Inhibition of mycotoxigenic fungal 
growth

The mycotoxigenic fungi tested were shown to be differentially 
affected by the extracts. In particular, A. flavus and A. alternata 
were the fungi inhibited by the highest (n = 9) and the lowest 
(n = 1) number of extracts, respectively (Table 6). In general, the 
growth of the Aspergillus species considered in this study (A. flavus 
and A. carbonarius) was more affected by PE (reductions from 45 
to 47%) and RG-WG (reductions from 21 to 51%) extracts, but also 
TO (−24%) and GS (reductions from 27 to 33%) extracts, which 
proved to be good inhibitors for these fungi’s development. For 
Aspergillus species, differences were found for AP and GB extracts; 
in fact, in both cases, A. carbonarius was more affected by their 
presence (reduction of 23 and 28%, respectively) (Figure 1) when 
compared with A. flavus (reduction of 8 and 10%, respectively) 
(Figure 2).

Among the Fusarium species considered in this study, more 
differences in fungal susceptibility were found. While F. graminearum 
was shown to be highly affected in its development by several extracts 
(GS, PE, and RG-WG) (Figure 3), F. verticillioides was only inhibited 
by PE (−18%) and to a very low and negligible extent by AP (−1%) 
and GB (−3%) (Figure 4).

Alternaria alternata was less affected by the presence of extracts, 
resulting in a slight reduction only with GB (−5.8%) (Figure 5).

Interestingly, some extracts were effective against more fungi. In 
particular, PE extract was one of the most effective against A. flavus, 
A. carbonarius, F. verticillioides, and F. graminearum, causing 
significantly lower development in the considered fungi (p ≤ 0.01) 
(Figures 1–4). Marcs from both red and white grapes can significantly 
reduce fungal development in all fungi considered, with the sole 
exception of A. alternata and F. verticillioides (p ≤ 0.01) (Figures 1–3).

3.3. Inhibition of mycotoxin production

The production of mycotoxins was more affected than fungal 
growth. The reductions obtained from the extracts varied from 2.3 to 
70.7% for OTA, from 5 to 74.8% for AFB1, from 8.5 to 79.7% for DON, 
from 10.8 to 94% for FBs, from 63 to 100% for ZEN, and from 6.6 to 
95.9% for Alternaria toxins (Table 6).

It is noteworthy that ZEN and DON produced by F. graminearum 
often showed opposite behaviors when treated with the same extracts. 
In particular, with RG-WG obtained from NAV, regardless of the 
grape color, ZEN was completely inhibited, while DON was increased 
more than 100 times. The same happened with RG obtained from 
UAE and with PE extracts.

Taking into consideration only the significant differences in 
mycotoxin production highlighted by ANOVA, species-dependent 
results were obtained.

Regarding OTA, although good reductions were obtained with 
several extracts (GS, PE, RG, and RGL UAE), only the essential oil of 
spent hops was shown to induce a significant reduction in mycotoxin 
production (p ≤ 0.05); on the contrary, AP and VIN induced an 
increase in OTA production (p ≤ 0.05) (Figure 1).

More extracts were able to reduce the production of AFB1 by 
A. flavus. In particular, PE extract, RGL UAE extract, and hop essential 
oil were the most effective in significantly reducing mycotoxin 
production (p ≤ 0.01), obtaining a decrease ranging from 57.7 to 
74.8%. However, significant reductions were also obtained by GS, AP, 

TABLE 3 Main flavonoid content in grapevine leaf extracts (RGL) obtained by both ultrasound-assisted extraction (UAE) and Naviglio extraction (NAV).

Extract Caftaric acid Quercetin-3-O-
glucuronide and 
Quercetin-3-O-
glucopyranoside

Q-3-O-
rutinoside

k-3-O-glucoside k-3-O-rutinoside

mg/g extract ± SD mg/g extract ± SD mg/g extract ± SD mg/g extract ± SD mg/g extract ± SD

RGL UAE 5.35 ± 0.46 36.53 ± 0.87 1.41 ± 0.11 2.32 ± 0.13 1.41 ± 0.23

RGL NAV 2.68 ± 0.23 47.21 ± 0.45 2.75 ± 0.05 5.26 ± 0.03 2.96 ± 0.06

Q-3-O-rutinoside: quercetin-3-O-rutinoside; k-3-O-glucoside: kaempferol-3-O-glucoside; k-3-O-rutinoside: kaempferol-3-O-rutinoside.

TABLE 4 Main anthocyanins in grape pomace extract (RG) obtained by 
both ultrasound-assisted extraction (UAE) and Naviglio extraction (NAV).

Kuromanin Myrtillin Oenin

mg/g 
extract ± SD

mg/g 
extract ± SD

mg/g 
extract ± SD

RG UAE 0.24 ± 0.01 1.01 ± 0.10 4.14 ± 0.12

RG NAV 0.17 ± 0.01 1.07 ± 0.05 3.22 ± 0.14
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TABLE 5 GC-MS-FID chemical characterization of spent hop distillation extract.

n° Compounda Area %b AI exp.c AI litc

1 Beta-pinene 0.49 ± 0.02 971 979

2 Myrcene 29.13 ± 1.45 986 991

3 Propanoic acid, 2-methyl-, 3-methylbutylester 0.13 ± 0.01 1010 1009

4 Propanoic acid, 2-methyl-, 2-methylbutylester 0.23 ± 0.01 1013 1014

5 Limonene 0.32 ± 0.01 1023 1029

6 2-Undecanone 0.91 ± 0.03 1292 1294

7 Cis-pinocarvyl acetate 0.61 ± 0.02 1309 1311

8 Methyl geranate 0.63 ± 0.02 1325 1325

9 Alpha-ylangene 0.15 ± 0.01 1367 1375

10 Alpha-copaene 0.52 ± 0.02 1373 1377

11 n-Tetradecane 0.16 ± 0.01 1396 1400

12 Beta-caryophyllene 13.90 ± 0.58 1406 1409

13 Beta-copaene 0.55 ± 0.03 1420 1432

14 Alpha-caryophyllene 29.07 ± 1.05 1448 1455

15 γ-Gurjunene 1.62 ± 0.06 1470 1477

16 Geranyl propanoate 0.21 ± 0.01 1474 1478

17 Beta-selinene 0.68 ± 0.02 1481 1490

18 Cubenene 0.42 ± 0.01 1486 1496

19 Alpha-selinene 0.65 ± 0.03 1487 1498

20 Gamma-muurolene 0.16 ± 0.01 1490 1499

21 Alpha-muurolene 0.34 ± 0.01 1492 1500

22 2-Tridecanone 1.22 ± 0.05 1495 1495

23 Gamma-cadinene 2.37 ± 0.10 1505 1514

24 Geranyl isobutyrate 0.70 ± 0.03 1507 1515

25 Delta-cadinene 2.78 ± 0.12 1512 1523

26 Trans-calamene 0.40 ± 0.02 1516 1529

27 Alpha-cadinene 0.83 ± 0.04 1530 1539

28 Selina-3,7(11)-diene 0.52 ± 0.02 1535 1547

29 n-Tridecanol 0.23 ± 0.01 1571 1572

30 Caryophyllene oxide 1.46 ± 0.05 1577 1583

31 Cedrol 0.24 ± 0.01 1594 1600

32 Geranyl 2-methyl butanoate 0.19 ± 0.01 1597 1601

33 Humulene epoxide II 2.43 ± 0.12 1605 1608

34 1-epi-Cubenol 0.13 ± 0.01 1626 1629

35 Eremoligenol 0.22 ± 0.01 1629 1631

36 Alpha-acorenol 0.28 ± 0.01 1632 1633

37 Alpha-muurolol 0.26 ± 0.01 1641 1646

38 Alpha-cadinol 0.27 ± 0.01 1656 1654

39 Selin-11-en-4-alpha-ol 2.95 ± 0.14 1660 1660

40 14-hydroxy-9-epi-(E)-caryophyllene 0.20 ± 0.01 1665 1667

41 Epi-beta-bisabolol 0.94 ± 0.03 1670 1672

42 2-Pentadecanone 0.30 ± 0.03 1698 1697

Total 99.39

Major compounds are indicated in bold. aCompounds are listed in order of elution, and their nomenclature is according to the NIST (National Institute of Standards and Technology) library. 
bRelative peak areas calculated by GC-FID. cAI exp: arithmetic retention indices calculated on Varian VF-5 ms columns for comparison with AI lit: arithmetic retention indices (35).
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and WG independently of the extraction method (p ≤ 0.01), although 
to a lesser extent (Figure 2).

Fusarium species showed completely different behavior. 
Considering DON produced by F. graminearum, a significant 
reduction in mycotoxin production was obtained only by WG UAE 
(−72%) (p ≤ 0.05), but good reductions were also obtained by TO and 
AP extracts, with 60 and 30% less production, respectively, although 
not significant from a statistical point of view (Figure 3).

Regarding ZEN, the other mycotoxin produced by F. graminearum, 
all the RG-WG and PE extracts were the most effective in its reduction 
(−100%) (p ≤ 0.01); satisfactory results were also obtained using 
HW-UAE (−97%) (Figure 4).

For FB, more extracts were able to significantly reduce the 
mycotoxins. The most effective were WG and DON, but in this case, 
they were extracted by NAV and PE extracts with reductions higher 
than 80% (p ≤ 0.01) (Figure  5). The production of FBs by 
F. verticillioides was, however, significantly reduced by approximately 
70% when GS and WG were extracted by UAE (p ≤ 0.01) (Figure 5).

For Alternaria toxins, it is difficult to highlight some extracts that 
are able to contrast all the mycotoxins considered in the same way. In 
many cases, we observed a significant reduction for some Alternaria 
toxins and, at the same time, a high production for others among 
those considered. Taking into account TeA, often the most abundant 
in cereals, the most significant reductions were obtained with HW- 
extracted UAE (−42.8%) and with VIN extract (−50.3%) (p ≤ 0.01) 
(Figure 6). For the other mycotoxins considered, the best results were 
obtained instead by WG, both NAV, and UAE, for AOH (about −82%) 

(p ≤ 0.01) and by GB (−94.4%) and WG-NAV (−95.9%) for AME 
(p ≤ 0.01) (Figure  7). Although not statistically significant for all 
Alternaria toxins considered, GB, VIN, RGL-UAE, and HW-UAE 
extracts were able to reduce all three toxins to different extents 
(Figure 7).

4. Discussion

The different results obtained by the different agri-food waste 
extracts tested in this work were probably due to their varying 
chemical compositions. Several published studies reported the 
antifungal activities of pure chemical compounds; some of them also 
showed interesting results against mycotoxigenic fungi. Compounds 
belonging to the terpene and benzaldehyde classes showed reducing 
activities against aflatoxin-producing Aspergillus species: o-vanillin 
damaged the mitochondria of A. flavus (35, 36), and some essential 
oils (cinnamaldehyde, thymol, citral, and carvacrol) inhibited A. flavus 
growth and AFB1 production (37). In addition, several organic acids 
(such as benzoic acid, butyric acid, sorbic acid, hop α- and β-acids, 
and phenolic acids), flavonoids, and naphthoquinones have also been 
shown to reduce A. flavus growth and AFB1 production (11, 38–41).

In our study, a systemic approach was used to evaluate the 
potential inhibitory effects of 14 different agri-food waste extracts 
against multiple mycotoxigenic fungi and related mycotoxins. In 
particular, the agri-food waste extracts that showed the highest 
reductions against Aspergillus and aflatoxins were hop essential oil, 

FIGURE 1

Mean development (mm) and ochratoxin A production (OTA, ng) of A. carbonarius grown on Petri dishes (Ø 90 mm) with potato dextrose agar and 1 ml 
of different extracts obtained from agricultural production waste at a concentration of 1,000 mg/L after 14 days of incubation at 25°C. Different letters 
mean significant differences according to Tukey’s test; blue letters refer to significant differences between the theses related to fungal growth, while 
orange letters refer to significant differences between the theses related to mycotoxin production.
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rich in terpenes, red grape leaves, and pear extract, rich in flavonoids 
and phenolic acids.

Regarding toxigenic Fusarium species, isoflavonoids, and phenolic 
compounds showed activities against F. graminearum (14) and 
trichothecene (13). Green bean extract, containing isoflavonoids such 
as genistein and daidzein, was able to significantly reduce DON, FBs, 
and ZEA; pear, white, and red grape extracts, rich in phenolic 
compounds, reduced FBs production.

Finally, the reduction of OTA by RG-NAV extract can 
be supported by the inhibition of flavonoids on A. carbonarius and 
OTA reported by Ricelli et al. (42).

It is always very important to consider the different effects that 
the use of extracts may have on fungal growth and mycotoxin 
production, which are not always correlated. It is possible to 
observe how the same extract can reduce fungal development but 
may not be effective on mycotoxins, and vice versa. This is quite 
normal for mycotoxigenic fungi because of their specific nature. In 
fact, it is well known that stress conditions, such as those caused 
by restrictions in development due to fungicides, can induce a 
higher production of mycotoxins by the same fungus (43–45), even 
if with scarce growth. On the other hand, mycotoxigenic fungi 
developing in environments without stress conditions can grow 
very much and quickly without the necessity to produce 
mycotoxins (46, 47). Considering extracts, they can have a possible 
effect on fungal behavior, since they are composed of substances 
naturally present in the plant substrates attacked by fungi and that 
can be used, in some cases, as nutritional compounds by some 

species. For this reason, if extracts are to be  used as possible 
biofungicides, it is important to study their species-specific effects, 
since for some fungal species they can boost their development 
(but at the same time create less stress and thus lower mycotoxin 
content), and for other fungal species the same extract may limit 
their growth (but at the same time increase mycotoxin content). 
Our study confirms the findings reported in previous works that 
evaluated the antifungal properties of some agri-food waste. Spent 
coffee grounds showed detoxification for AFBs and OTA (11); 
lemon peel extract, rich in flavonoids, reduced aflatoxin toxicity in 
rats (48); olive mill wastewater, produced during olive oil 
extraction, was shown to suppress AFB1 produced by A. flavus, 
although no inhibition against fungi was determined (49); apple 
pomace extracts, rich in phloridzin and quercetin derivatives, 
showed inhibitory properties against F. oxysporum and N. fischeri 
(50). Moreover, application as nano-emulsion or micro-capsulation 
improved the efficacy of food waste extracts; Faouk et  al. (51) 
reported that nano-emulsion of ginger essential oil through an 
edible coating increased its bioactivity, achieving higher inhibition 
of A. flavus and related AFB production. Finally, Badr et al. (52) 
proposed the use of encapsulated grape by-products (stems and 
leaves) as bio-preservatives in foods; their utilization provided 
relevant OTA reduction.

However, fewer encouraging results were obtained with some 
extracts that promoted the growth and production of fungi and related 
mycotoxins. The PE and WG-NAV extracts, even if they inhibited the 
growth of F. graminearum and the production of ZEN, promoted the 

FIGURE 2

Mean development (mm) and aflatoxin B1 production (AFB1, ng) of A. flavus grown on Petri dishes (Ø 90 mm) with potato dextrose agar and 1 ml of 
different extracts obtained from agricultural production waste at a concentration of 1,000 mg/L after 14 days of incubation at 25°C. Different letters 
mean significant differences according to Tukey’s test; blue letters refer to significant differences between the theses related to fungal growth, while 
orange letters refer to significant differences between the theses related to mycotoxin production.
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production of DON (on average 50% with respect to the control test). 
In addition, OTA was promoted by AP and VIN extracts, with 
percentages that exceeded 100%.

5. Conclusion

Large amounts of waste and by-products are generated along the 
whole food chain, which, before being discarded, could be significantly 
valorized as they represent a source of bioactive compounds. In the 
present work, high-tech extraction processes with high sustainability 
were applied to a wide range of organic by-products produced in the 
agro-food sector in order to obtain extracts rich in polyphenols and 
terpenes. These extracts demonstrated to be a valuable tool for the in 
vitro inhibition of some of the most important mycotoxigenic fungi 
and related mycotoxins. These extracts could be applied in the field or 
during food storage to reduce the mycotoxin contamination of raw 
materials to regulatory limits. This could significantly reduce the use 
of chemical pesticides, which are largely used today, with cascading 
positive effects on the environment, biodiversity, and human health.
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FIGURE 3

Mean development (mm) and deoxynivalenol production (DON, ng) of F. graminearum grown on Petri dishes (Ø 90 mm) with potato dextrose agar and 
1 ml of different extracts obtained from agricultural production waste at a concentration of 1,000 mg/L after 14 days of incubation at 25°C. Different 
letters mean significant differences according to Tukey’s test; blue letters refer to significant differences between the theses related to fungal growth, 
while orange letters refer to significant differences between the theses related to mycotoxin production.
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FIGURE 4

Mean development (mm) and deoxynivalenol production (ZEN, ng) of F. graminearum grown on Petri dishes (Ø 90 mm) with potato dextrose agar and 
1 ml of different extracts obtained from agricultural production waste at a concentration of 1,000 mg/L after 14 days of incubation at 25°C. Different 
letters mean significant differences according to Tukey’s test; blue letters refer to significant differences between the theses related to fungal growth, 
while orange letters refer to significant differences between the theses related to mycotoxin production.

FIGURE 5

Mean development (mm) and fumonisin production (FB1 + FB2, ng) of F. verticillioides grown on Petri dishes (Ø 90 mm) with potato dextrose agar and 
1 ml of different extracts obtained from agricultural production waste at a concentration of 1,000 mg/L after 14 days of incubation at 25°C. Different 
letters mean significant differences according to Tukey’s test; blue letters refer to significant differences between the theses related to fungal growth, 
while orange letters refer to significant differences between the theses related to mycotoxin production.
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FIGURE 6

Mean development (mm) and tenuazoic acid production (TeA, ng) of A. alternata grown on Petri dishes (Ø 90 mm) with potato dextrose agar and 1 ml 
of different extracts obtained from agricultural production waste at a concentration of 1,000 mg/L after 14 days of incubation at 25°C. Different letters 
mean significant differences according to Tukey’s test; blue letters refer to significant differences between the theses related to fungal growth, while 
orange letters refer to significant differences between the theses related to mycotoxin production.

FIGURE 7

Mean production of alternariol (AOH, ng) and alternariol monoether (AME, ng) of A. alternata grown on Petri dishes (Ø 90 mm) with potato dextrose 
agar and 1 ml of different extracts obtained from agricultural production waste at a concentration of 1,000 mg/L after 14 days of incubation at 25°C.
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