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Background: Iron is abundant on earth but not readily available for colonizing 
bacteria due to its low solubility in the human body. Hosts and microbiota compete 
fiercely for iron. <15% Supplemented Iron is absorbed in the small bowel, and the 
remaining iron is a source of dysbiosis. The gut microbiome signatures to the 
level of predicting anemia among low-middle-income populations are unknown. 
The present study was conducted to identify gut microbiome signatures that have 
predictive potential in association with Neutrophil to lymphocytes ratio (NLR) and 
Mean corpuscular volume (MCV) in anemia.

Methods: One hundred and four participants between 10 and 70  years were 
recruited from Odisha’s Low Middle-Income (LMI) rural population. Hematological 
parameters such as Hemoglobin (HGB), NLR, and MCV were measured, and NLR 
was categorized using percentiles. The microbiome signatures were analyzed from 
61 anemic and 43 non-anemic participants using 16 s rRNA sequencing, followed 
by the Bioinformatics analysis performed to identify the diversity, correlations, 
and indicator species. The Multi-Layered Perceptron Neural Network (MLPNN) 
model were applied to predict anemia.

Results: Significant microbiome diversity among anemic participants was 
observed between the lower, middle, and upper Quartile NLR groups. For anemic 
participants with NLR in the lower quartile, alpha indices indicated bacterial 
overgrowth, and consistently, we  identified R. faecis and B. uniformis were 
predominating. Using ROC analysis, R. faecis had better distinction (AUC = 0.803) 
to predict anemia with lower NLR. In contrast, E. biforme and H. parainfluenzae 
were indicators of the NLR in the middle and upper quartile, respectively. While 
in Non-anemic participants with low MCV, the bacterial alteration was inversely 
related to gender. Furthermore, our Multi-Layered Perceptron Neural Network 
(MLPNN) models also provided 89% accuracy in predicting Anemic or Non-
Anemic from the top 20 OTUs, HGB level, NLR, MCV, and indicator species.

Conclusion: These findings strongly associate anemic hematological parameters 
and microbiome. Such predictive association between the gut microbiome and 
NLR could be further evaluated and utilized to design precision nutrition models 
and to predict Iron supplementation and dietary intervention responses in both 
community and clinical settings.
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Key points

- Roseburia faecis and H. parainfluenzae are the best indicator 
species to predict anemia with low and high levels of NLR, respectively.

- S. alactolyticus and C. eutactus are the best indicator species to 
predict anemia when classified as having low and normal levels of 
MCV, respectively.

- MLPNN predicts Anemic or non-Anemic from the top  20 
OTUs, Indicator species, HGB level, NLR, and MCV with 89% 
accuracy.

Introduction

Anemia- a condition where blood lacks adequate hemoglobin 
(HGB) concentration and red blood cells to meet an individual’s 
physiological needs- continues to be  a significant public health 
challenge, affecting about one-third of the population worldwide (1). 
In India, Anemia is widespread among all age groups; greater than 
60% of vulnerable groups, including pregnant women, preschool 
children, and women of reproductive age, are Anemic, particularly 
among the eight empowered action groups (EAG) States (2, 3).

HGB concentration naturally varies due to physiological factors, 
i.e., age, gender, pregnancy status, genetics, socioeconomic status, and 
environmental factors. HGB estimation is a prevalent method used to 
diagnose anemia in large community settings and a primary 
diagnostic method in hospitals. Rational use of routine hematology 
investigations like-red blood cell count (RBC), examination of 
peripheral smear, reticulocyte count, and red cell indices, such as 
mean corpuscular volume (MCV), mean corpuscular hemoglobin 
concentration (MCHC), and Neutrophil-Lymphocyte ratio (NLR) (4) 
can provide clues to identify underlying etiology. HGB level and NLR 
are widely measured routinely to diagnose diseases in various settings. 
NLR is a new inexpensive biomarker to assess systemic inflammatory 
response that reflects chronic and acute immune response. Measuring 
MCV provides the average circulatory volume of red blood cells and 
is used to classify them as microcytic, normocytic, or macrocytic in 
an anemic condition (5, 6).

The etiology of anemia is multifactorial, and they are 
interconnected. Factors like poverty, access to clean water, and 
sanitation may contribute to immediate causes of anemia, like nutrient 
deficiency, infections, and inflammation. Common causes in India 
include inadequate nutrient intake (folate, Vit B12, and iron), impaired 
absorption (environmental enteropathy), increased gastric 
Helicobacter pylori infestations, high phytate intake (7, 8), and parasitic 
infections. Iron deficiency remains the leading cause in many 
resource-limited settings, while poor iron nutrition may not be the 
primary cause.

Iron levels in the human body are regulated at absorption, and 
approximately <15% of the consumed iron is absorbed mainly in the 
duodenum (9). From the dietary sources, heme and non-heme iron 
are absorbed in the intestinal cells using multiple transporters, and a 

small peptide hormone, Hepcidin, regulates this. Hepcidin is affected 
by factors like iron status, inflammation, hypoxia, and erythropoiesis. 
Lipopolysaccharide (LPS) invading the intestine is a significant cause 
of inflammation. Proinflammatory cytokines like IL-6, IL-1, TNFα, 
and IFN-γ increase Hepcidin synthesis that regulates iron recycling, 
resulting in anemia (10). This response activates macrophages setting 
up an increased inflammatory response. Studies have shown an active 
neutrophil response at the intestinal barrier in anemic conditions. 
Thus, anemia leads to a positive feedback cycle of inflammation 
(11, 12).

Food is a predominant factor that shapes the gut microbiome 
and may influence a variety of host biology. The human gut 
microbiome is a repertoire of microbial genes, and this community’s 
assembly starts at birth (in-utero) (13). Iron supplementation in 
anemic conditions mainly plays a crucial role in the dysbiosis of the 
gut microbiome. Excessive unabsorbed iron passes through the gut 
and alters the host gut microbiota. Typically, the unabsorbed iron 
influences Streptococcus spp., Enterococcus spp., and Clostridia 
and initiates inflammation, while Lactobacillus, protective bacteria, 
is also depleted (14). Our previous study has shown that fecal total 
iron concentration was inversely associated with the microbiome 
and decreased abundance of fecal Lactobacillus (15). The gut 
microbiome signatures for the Anemic LMI cohort are yet to 
be understood. We hypothesized that anemia with NLR and MCV 
may be associated with dysbiosis and provide specific microbes as 
biomarkers to predict anemia. In this study, we evaluated the gut 
microbiome signatures of Anemia with NLR quartiles and MCV 
ranges using 16srRNA gene sequencing in the Low and middle-
income rural population of Odisha.

Materials and methods

Study design and participants

This prospective observational study was conducted in the 
Department of Biochemistry and the Centre for Excellence of Clinical 
Microbiome Research (CCMR) at the All India Institute of Medical 
Sciences (AIIMS), Bhubaneswar, from 2018 to 2022. The Institutional 
Review Board and ethics committee at AIIMS, Bhubaneswar, 
approved this study protocol, patient information sheet, and 
consent forms.

The study was conducted in the Tangi block, located at Latitude: 
19.9221° N, Longitude: 85.3900° E, Khordha district in Odisha, the 
eastern part of India. The study area consists of 122 villages with 
more than 56,000 populations. The study participants were from a 
rural community, predominantly of lower-middle or lower 
socioeconomic status. These study participants are homogenous 
based on geography, access to clean water, sanitation, and dietary 
practices, and they predominantly belonged to the farming 
community for more than five generations. One hundred and four 
participants between 10 and 70 years were recruited from the 
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previous community-based cross-sectional study (16). Two different 
point-of-care devices and a laboratory analyzer (HCS, HC201, and 
HGB Sysmax) were used to measure the hemoglobin range. 
Hematological parameters such as RBC, WBC, MCV, MCH, 
MCHC, lymphocytes, and neutrophils were measured using a 
6-Part CBC Analyzer, XN-1000 (Sysmex Corp, Japan). For this 
study, those who were willing to participate in the study, provide 
informed consent, and not suffering from any major illness at the 
time of the study, or have no history of antibiotic intake or iron 
supplementation in the past 3 months. Of the 104 included in the 
microbiome study, 61 were anemic, and 43 were non-anemic 
participants’ fecal samples were collected and transported from the 
community through maintained the cold chain and stored 
−80-degree deep freezer still analysis.

Fecal sample collection, DNA isolation, and 
sequencing

Ten gram of fecal sample was collected from the study participants. 
A 0.2 g of stool sample was used for DNA isolation with a modified 
DNeasy PowerLyzer Power Soil kit (Cat No: 12855–100, Qiagen, 
Qiagen GmbH, Germany). Twenty five nanogram of DNA was used 
to amplify the 16S rRNA hypervariable V3-V4 region using Illumina 
MiSeq (17). Of the 104, 102 samples have passed the QC threshold 
(Q20 > 95%) and are processed for further analysis.

Sample size

Based on the Anemia prevalence in Odisha of 64% as estimated 
from NHFS 4, with 80% study power and a type-I error of 5%, the 
required sample size was calculated as 92. Sixty one anemic and 43 
non anemic were recruited for this study for further analysis.

Data analysis

The high-quality contigs were checked for identical sequences. 
The filtered contigs were processed and classified into taxonomic units 
based on the GREENGENES v.13.8–99 database. The contigs were 
then clustered into OTUs (Operational Taxonomic Unit) with a 
cut-off of 97% for similarity (17).

For microbiome analysis, we set filtration criteria for phylum and 
species OTU Table containing 70 samples based on the availability of 
complete hematological parameters data; firstly, we set a threshold of 
20% prevalence of taxa in each of the samples. 10% of low-variance 
species were removed from the Inter quartile region. After filtration, 
data were normalized by rarefying by taking a minimum sample size; 
after normalization, relative abundance was calculated for both 
phylum and species OTU tables.

Analysis of bacterial taxonomic diversity

Alpha and beta diversity was calculated across age and gender 
with anemic and Non-anemic groups using the R package vegan. 
Similarly, alpha and beta diversity was assessed based on the NLR 

and MCV ranges. Firstly, the Neutrophil to Lymphocyte ratio was 
calculated by dividing the absolute count of neutrophils by the 
lymphocyte count. The NLR quartile (Q) ranges were divided into 
three groups: Lower Q (contains less than 25 percentiles of NLR 
range), Middle 2Q (contains greater than 25 percentiles to less than 
75 percentiles of NLR range), and Upper Q (contains greater than 
75 percentiles of NLR quartile range). The MCV values were 
divided into two groups: Lower MCV (<80 fl) and Normal MCV 
(80–100 fl). No participant with a high MCV range was observed in 
this study. The t-test was used to find a statistically significant 
difference between groups. Beta diversity was calculated using the 
Bray–Curtis dissimilarity index to plot PCoA ordination, followed 
by the Adonis test to determine the statistical significance of 
variation explained by the groups. Natural log-transformed 
Firmicutes/Bacteroidetes ratio (F/B ratio) was calculated for all the 
study participants. T-test was used to calculate the statistically 
significant difference in log(F/B) ratio between anemic and 
non-anemic across the age and gender groups.

Indicator species analysis

We performed Indicator Species Analysis in R using an 
indicspecies package based on the function multipatt to identify 
microbial species found more often in one group than another. This 
analysis was performed on anemic and non-anemic groups based on 
NLR quartile and MCV-based groups. Finally, the statistical 
significance of this relationship was tested using a permutation test.

Correlation between the microbial species 
and measured hematological parameters

We applied Spearman correlation to analyze the associations of 
the microbial species with the measured hematological parameters, 
i.e., HGB level (gm/dL), Mean corpuscular volume (MCV) count, 
Neutrophil to lymphocyte ratio (NLR) using the top  20 highest 
abundant species for anemic and non-anemic groups using R corr 
package. For this, microbial species counts were taken, and centered 
log ratio (CLR) was applied for transformation because microbiome 
data is compositional.

ROC

The sensitivity of NLR with indicator species at different cut-off 
values was plotted vs. the specificity to generate receiver operating 
characteristic curves using SPSS v.25.0 software.

Neural network

The Neural Network Model Multi-Layered Perceptron Neural 
Network (MLPNN) was used to predict the disease conditions 
(anemic or Non-anemic) using the top  20 OTUs (species level), 
indicator species, HGB Level, MCV, and NLR. Before fitting the 
model, disease condition was classified into binary numbers, where 
anemic and non-anemic were represented as 1 and 0, respectively. Due 
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to the imbalance in sample size in the two groups, we have performed 
both random oversampling of lower classes and random under-
sampling of higher classes using the ROSE package to balance the 
sample size between the two groups (18). Then, data was normalized 
(scale/center), followed by an evaluation of the model using a 10-fold 
cross-validation method performed on the entire data. The model was 
fitted in cross-validation using the neural net package (19). The 
formula for the structure of our model is provided in 
Supplementary Note S1. Performance metrics of the model, such as 
Accuracy, Sensitivity, Specificity, and F1 score, were calculated.

Results

Of 1732 participants from a previous community-based cross-
sectional study, 104 participants (61 were anemic, and 43 were 
Non-anemic) were included in this microbiome-based study 
(Figure 1). All participants were confirmed as anemic and non-anemic 
using the two different point-of-care devices and one routine 
diagnostic analysis for HGB measurement. Table 1 shows the study 
participants’ demographic and hematological parameters with 
mean ± sd values.

Fecal microbial bioinformatics analysis

Of the 104, 2 DNA samples failed for initial QC. On average, 
164,581 reads per sample were obtained using the Illumina MiSeq. 38 
OTUs were obtained at the phylum level, with Actinobacteria, 

Bacteroidetes, Cyanobacteria, Euryarchaeota, Firmicutes, and 
Fusobacteria, as the top 6 phyla in all the groups, accounting for 
99.8% of the total abundance. The taxonomic annotation revealed 
that 215 were identified at the genus level, and 401 of the OTUs were 
identified at the species level. From the 102 samples, 54 species were 
observed after data filtration, which was used for further relative 
abundance analysis. Firmicutes (anemic, 57.6%; non-anemic, 56.8%) 
were found to be  highly abundant phyla in both anemic and 
non-anemic groups, followed by Bacteroidetes (anemic, 19.7%; 
non-anemic, 19.1%), Actinobacteria (anemic, 10.2%; non-anemic, 
11.1%) and Proteobacteria (anemic, 8.07%; non-anemic, 9.21%) 
(Supplementary Figure S1A). The top 20 species, P. copri (anemic, 
24.3%; non-anemic, 23.6%), was found to be highly abundant species 
in both anemic and non-anemic groups, followed by F. prasauntizi 
(anemic, 15.5%; non-anemic, 14.9%), L. ruminis (anemic, 11.4%; 
non-anemic, 12.9%), B. adoloscentis (anemic, 7.23%; non-anemic, 
8.44%), E. biforme (anemic, 6.77%; non-anemic, 8.0%) 
(Supplementary Figure S1B). No statistical significance was found in 
the F/B ratio between anemic and Non-anemic across age and gender 
groups. In contrast, among the anemic belonging to different age 
groups, the F/B ratio (2.46 ± 1.03 vs. 6.59 ± 6.03, p = 0.0029) was 
statistically different only between the Children (C_A) and young, 
middle-aged adults (Y_M_A_A) groups (Supplementary  
Figures S2A–E).

Seventy samples (45 anemic and 25 non-anemic) with complete 
hematological parameters have been taken further for microbiome 
analysis. Fifty-six species obtained after the data filtration step were 
utilized for relative abundance, alpha, and beta diversity indicator 
species analysis, correlation, and neural network analysis.

FIGURE 1

Consort flow diagram for study participants.
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Alpha diversity and beta diversity between 
the NLR groups

Alpha diversity analysis in 102 samples between anemic and 
non-anemic groups across age did not show any statistically significant 
difference (Supplementary Figure S3A) except in the gender group 
where a statistically significant difference was found between F_A and 
M_A in Pielous’s index (0.63 ± 0.07 vs. 0.59 ± 0.08, p = 0.045) 
(Supplementary Figure S3B), while no statistically significant variation 
found between the group being clustered in beta diversity.

Alpha diversity between anemic and non-anemic groups based on 
NLR quartiles is shown in Figure 2A. In the Middle 2Q group, there 
is a statistically significant difference between the anemic and 
non-anemic groups in the Simpson index (0.79 ± 0.08 vs. 0.84 ± 0.06, 
p = 0.042); however other two groups, Lower Q and Upper Q did not 
show any statistically significant difference. In the anemic group, there 
was a statistically significant difference between Lower Q and Middle 
2Q in the Shannon (2.41 ± 0.2 vs. 2.15 ± 0.29, p = 0.0046), Simpson 
(0.86 ± 0.04 vs. 0.79 ± 0.08, p = 0.001) and Pielous index (0.66 ± 0.05 vs. 
0.59 ± 0.07, p = 0.0024) (Figure  2B). However, no statistically 
significant difference was found while comparing these groups with 
Upper Q.

In MCV-based alpha diversity, there were two groups derived 
based on MCV values, lower MCV and normal MCV. In the gender 
group, we found a statistically significant difference between lower 
MCV and Normal MCV; in female Non-anemic in Observed OTUs 
(Species richness) (42 ± 3 vs. 37 ± 3, p = 0.019), which is reverse in male 
non-anemic (36 ± 3 vs. 40 ± 4, p = 0.047) (Figure 2C), however, there is 
no statistically significant difference found in other groups.

Beta diversity was estimated between all three NLR quartile 
groups in the anemia group, Adonis test showed statistically significant 
variation between groups being clustered (R2 = 0.09, p = 0.01) 
(Figure 3). However, there is no differential clustering between anemic 
and non-anemic groups.

Identification of indicator species

All the 56 species obtained after data filtration and rarefaction 
steps from anemic and non-anemic groups based on NLR quartiles 
were used to detect the microbes significantly related to these groups. 
In the anemic group, H. parainfluenzae (p = 0.0349) and E. biforme 
(p = 0.0141) were good indicators of the upper and middle two Qs, 
respectively. At the same time, R. faecis (p = 0.0029) and B. uniformis 
(p = 0.0123) are indicator species in lower Q (Figure  4A). In the 
non-anemic group, C. catus (p = 0.0326) and A. indistinctus 
(p = 0.0434) were good indicators of the upper Q, while R. callidus 
(p = 0.0434), R. lactaris (p = 0.0336) and R. gnavus (p = 0.0176) was 
found in the middle Qs (Figure  4B). The ROC curve (Figure  5) 
showed distinction for the R. faecis in lower Q NLR, in the anemic 
group with an AUC of 0.803 while B. uniformis had an AUC of 0.669.

Similarly, indicator species analysis was also performed on anemic 
and non-anemic groups based on MCV classification, i.e., normal and 
lower. In an anemic group with normal MCV, C. eutactus (p = 0.0043) 
was an indicator species, while S. alactolyticus (p = 0.0461) was an 
indicator of lower MCV (Figure 6A). In the non-anemic group with 
normal MCV, B. longum (p = 0.0350) and M. multacida (p = 0.0428) 
were indicators. Likewise, in the lower MCV group, C. disporicum 
(p = 0.0216), D. formicigenerans (p = 0.0370), C. celatum (p = 0.0233), 
and L. mucosae (p = 0.0314) represented the indicator species 
(Figure 6B).

Correlation between the microbial species 
and measured hematological parameters

The Spearman correlation analysis was performed on the top 20 
abundant species along with indicator species based on MCV and 
NLR quartiles and hematological features in the anemic group. 
Figure 7A shows all the significant (p < 0.05) positive and negative 
associations between species, hematological parameters, and species-
species interactions. Similarly, the analysis was performed on 
non-anemic groups (Figure 7B).

In the anemic group, S. alactolyticus showed a significant positive 
correlation (p < 0.05) with NLR. At the same time, P. stercorea and 
W. cibaria were negatively associated with MCV (p < 0.05), while 
C. eutactus was positively associated with MCV (p < 0.05). 
Interestingly, P. stercorea and R. faecis were negatively associated with 
each other (p < 0.05). In the non-anemic group, A. indistinctus was 
positively associated with NLR (p < 0.05). E. biforme, C. somrae, 

TABLE 1 Demographic and hematological profiles of the study 
participants.

Characteristics Anemic n = 61 
(%)

Non-anemic 
n = 43 (%)

Gender

Male (n = 37) 16 (26.2) 22 (51.1)

Female (n = 67) 45 (73.8) 21 (48.9)

Age group

C (10–17 years) (n = 23) 12 (19.6) 11 (25.5)

Y_M_A (18–44 years) (n = 40) 21 (34.4) 19 (44.2)

O_A (45–59 years) (n = 18) 14 (23.0) 4 (9.3)

E (60 < years) (n = 23) 14 (23.0) 9 (21.0)

Hematological parameters N (mean ± SD)

HGB level (n = 104) 61(10.9 ± 1.45) 43 (13.4 ± 1.06)

WBC (n = 70) 45(8.53 ± 1.79) 25 (9.18 ± 2.38)

RBC (n = 70) 45(4.41 ± 0.703) 25 (4.78 ± 0.454)

MCV

Lower (<80 fl) (n = 41) 30 (73.3 ± 6.38) 11 (77.0 ± 1.99)

Normal (>80 fl) (n = 29) 15 (86.3 ± 5.28) 14 (85.4 ± 2.65)

MCH (n = 70) 45 (26.1 ± 3.60) 25 (28.6 ± 1.96)

MCHC (n = 70) 45 (33.5 ± 1.18) 25 (34.9 ± 0.870)

Neutrophil to lymphocyte ratio (NLR)

Lower Q (<25 percentile of 

NLR range) 12 (1.04 ± 0.19) 7 (1.11 ± 0.20)

Middle 2Q (>25 percentile 

and less than 75 percentile of 

NLR range) 22 (1.59 ± 0.26) 12 (1.60 ± 0.14)

Upper Q (>75 percentile of 

NLR range) 11 (2.43 ± 0.37) 6 (3.30 ± 1.37)
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C. disporicum was negatively associated with MCV, while B. longum 
and M. multacida had a significant positive correlation (p < 0.05).

Neural network model for predicting 
anemic and non-anemic individuals

The neural network model predicts anemic (n = 45) and 
non-anemic from the top 20 abundant species, indicator species based 
on MCV and NLR, and hematological parameters with an accuracy 
of 89% (mean accuracy of 10-fold cv) (Figure  8). The mean 
performance metrics of 10-fold cross-validation (CV) for the model 
are shown in Table 2.

The performance metrics for each fold of the 10-fold CV model 
for both groups are provided in Supplementary Tables S1A,B.

Discussion

This study identified significant microbiome signatures for anemia 
associated with hematological parameters such as HGB, NLR, and 
MCV, along with age and gender. The study participants were selected 
from a homogenous rural community of Odisha, diagnosed from a 

community-based diagnostic accuracy study (16). This study includes 
61 anemic and 43 non-anemic individuals for the microbiome 
analysis. Firmicutes and Bacteroidetes were identified as the 
predominant groups at the phylum level. However, no significant 
association was observed in the F/B ratio between the anemic and 
non-anemic groups. The F/B ratio significantly altered in children 
compared to young middle adults. In an earlier study, the 
Bifidobacteriaceae to Enterobacteriaceae ratio was altered considerably 
in anemic children compared to healthy children (20). This study did 
not observe a significant difference in this ratio between C_A and 
C_NA groups.

A significant difference was found between all three NLR quartile 
ranges within the anemic groups. Earlier studies show that iron is 
essential for the proliferation and maturation of lymphocytes, and 
NLR ranges positively predict systemic inflammation in various 
disease conditions (21). The present study evidenced that the NLR in 
the anemic group was significantly associated with the gut microbiome 
diversity and resulted in identifying a dynamic indicator species.

In MCV-based alpha diversity, a significant increase in Observed 
OTUs was found in F_NA Lower MCV compared to the F_NA 
Normal MCV group, which is reversed in males. Lower MCV levels 
were more prevalent in school-going children, indicating that 
micronutrient deficiency (22, 23).

H. parainfluenzae, aggressive bacteria, was highly specific to 
higher values of NLR in anemic individuals, indicating elevated 
neutrophils to combat this microbe. This association was not observed 
with age, gender, or non-anemic group. E. bioforme is an acetate and 
propionate-producing bacteria that were highly specific to middle 
ranges of NLR, reflecting their non-inflammatory roles in anemic 
individuals. Interestingly, B. uniformis and R. faecis, which are 
predominately butyrate-producing bacteria and maintain the balance 
of innate and adaptive immunity and anti-inflammatory properties in 
several disease conditions (24), are significant indicators for the 
anemic individuals with lower NLR. In our previous study, Roseburia 
spp. was more abundant in females than males (25). Likewise, Of the 
59 anemic participants, 43 were female, and 16 were males, and the 
present study substantiates the relationship between females and 
Roseburia spp. Conceivably, this microbe may be  enriched as an 

FIGURE 2

(A,B) Alpha diversity based on neutrophil to lymphocytes ratio (NLR) quartile range. (C) Alpha diversity based on mean corpuscular volume (MCV).

FIGURE 3

Beta diversity based on NLR range in the anemic group.
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adaptative mechanism, especially in the female in the LMI cohort. For 
the non-anemic group, R. callidus and R. gnavus are indicators of the 
Middle and Lower NLR quartiles. The increased abundance of these 
microbes are predominantly SCFA producers in the healthy gut, 
observed in more than 90% of the population (26). The predominance 
of C. catus and A. indistinctus in the upper NLR quartile range is yet 
to be understood.

The best indicator with lower MCV for the anemic group is 
S. alactolyticus, a rare pathogen, an infrequent cause of distant organ 
infection (27). In contrast, the indicators with lower MCV in the 
non-anemic groups are C. disporicum, L. mucosae, D. formicigenerans, 
and C. celatum. L. mucosae has probiotic potential, while the other three 
are commensals and defined opportunistic pathogens. This study 
identifies that increased C. eutactus is directly related to increased MCV; 

however, its number significantly decreased in anemic females. Likewise, 
this study identified H. parainfluenzae and A. alactolyticus directly 
associated with high NLR and MCV in the anemics.

We identified P. stercorea to associate with MCV negatively, 
indicating that when MCV is low, these bacteria predominate in anemic 
individuals or vice-versa. On the other hand, P. stercorea also negatively 
associates with R. faecis, indicating these microbes have an antagonistic 
relationship, such as competition for the same niche in case of anemia. 
In this study, P. stercorea is among the top 20 abundant species and 
negatively correlated with MCV and NLR in female Anemic (F_A) 
groups. And this species is known to increase with plant-based and 
low-fat diets typical of rural communities (28). Increased numbers of 
P. stercorea in the female Anemia group imply decreased MCV and 
NLR, indicating an association between diet, microbiome, and 

FIGURE 4

(A,B) Indicator species based on NLR quartiles in the anemic and non-anemic group.

FIGURE 5

ROC curve analysis for indicator species in the NLR lower Q anemic group.
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inflammation. A unique feature of P. stercorea is that they possess 
sialidases. Sialic acid mediates the interaction between immune cells, 
pathogen binding to human cells, and inflammation in the gut (29–32).

In gender-based analysis, we  identified two unique OTUs 
(Ruminococcus and Prevotella) in anemic males. Ruminococcus is 
responsible for the degradation of the mucus layer. Polysaccharides 
are accountable for the induction of dendritic cells, promoting an 
inflammatory condition (33, 34). Prevotella promotes chronic 
mucosal inflammation by inducing the TH17 immune response. Its 
role is established in many inflamed conditions and gut dysbiosis 
(35), leading to our hypothesis that these abundant pathogenic 
bacteria might contribute to low levels of ongoing inflammation 
allowing a vicious cycle of anemia to progress.

The neural network model shows relatively promising 
sensitivity (true positive rate) (anemic, 0.96 ± 0.016; non-anemic, 
0.82 ± 0.033) and specificity (true negative rate) (anemic, 
0.82 ± 0.033; non-anemic, 0.96 ± 0.016), an imbalance of datasets 
can lead to high sensitivity and low specificity based on the 
dominant group (36). Our model gives a commendable F1 score 
(anemic, 0.89 ± 0.013; non-anemic, 0.88 ± 0.016), implying that the 
model is accurate enough to determine the number of patients 
mispredicted as anemic and non-anemic. It is widely accepted that 
the higher the F1 score, the better the model. While we  were 
reducing features from the top 20 species, there was a reduction 
in accuracy, but interestingly difference between sensitivity and 
specificity was reduced, which is a good indicator of predicting 

FIGURE 6

(A,B) Indicator species based on MCV groups in the anemic and non-anemic groups.

FIGURE 7

(A,B) Correlation between hematological features and top 20 abundant species with NLR and MCV indicator species in anemic and non-anemic 
groups.
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both groups. However, both models predict anemic disease 
conditions with more than 85% accuracy.

MLPNN neural network model is a traditional and well-established 
model in the deep learning community. Besides anemia, the MLPNN 
model is accurate in previous studies with gut microbiome data 
predicting disease (37–40). Our models also provide relatively high 
accuracy in predicting anemic or non-anemic from the top 20 OTUs at 
the species level, indicator species based on NLR and MCV, and 
hematological parameters. The top 20 OTUs at the species level account 
for 86.33% of total counts, which means these OTUs are highly 
abundant in the gut and control the entire gut microbiome and HGB 
level, allowing to classify a person as anemic or non-anemic. NLR is 
used to evaluate systemic inflammation and is a crucial feature in this 
prediction (6). To the best of our knowledge, this is the first study on the 
prediction of anemia from the gut microbiome and hematological data.

Regular iron supplementation with and without the combination 
of other micronutrients is used as a national supplementation program 
in children below 5 years, reproductive-age women, and pregnant 
women (41–43). Nowadays, iron-fortified foods have come into 

existence to improve iron intake regularly; this leads to combining 
iron tablets with animal products, which may decrease the abundance 
of beneficial bacteria such as Lactobacillus and Bifidobacterium family 
and increase the pathogenic bacteria (44–46). Predictive microbiome 
signatures can find utility in designing personalized interventions to 
resetting anemic to non-anemic microbiome signatures.

The limitation of this study is the smaller sample size. Mainly, the 
number of age and gender-matched is low, and this data is derived 
from a homogenous population. However Future studies will aim to 
have a larger cohort, including rural and urban populations, across 
age, gender, and socioeconomic status, with and without anemia and 
Iron supplementation; detailed dietary intake, at least two-time 
follow-up samples, and a comprehensive hematological profile to 
develop a robust predictive tool.

Conclusion

This study derives specific gut microbiome signatures associated 
with NLR and MCV in anemic and non-anemic rural population of 
Odisha. Identifies significantly altered gut microbiome diversity 
between the NLR quartile among the anemic individuals. R. faecis and 
H. parainfluenzae are the best indicators predicting anemia with low 
and high NLR. S. alactolyticus and C. eutactus are the best indicators 
predicting microcytic and normocytic anemia. R. faecis had proven 
good distinction in anemic with Lower NLR groups. P. stercorea 
negatively correlated with MCV, NLR and R. faecis in anemic female 
groups. The MLPNN model predicts anemic and non-anemic from the 
top 20 OTUs, HGB level, and NLR as hematological parameters with an 
accuracy of 89%. These findings are unique, and the utility of such 
anemia-specific signatures could help evaluate and device personalized 
iron supplementation strategies for malnourished school-going children 
or Women in reproductive-age women in LMICs.

FIGURE 8

Neural network structure for the model. The first layer shows input variables (top 20 abundant species, indicator species, and hematological parameters); 
the successive two layers show two hidden layers consisting of 15 and 10 hidden neurons. The last neuron is the output layer of the neural network. 
Each black arrow (➔) with values represents weights associated with neurons. Each blue arrow (➔) with values represents bias weights.

TABLE 2 Mean of Accuracy, Sensitivity, Specificity, and F1 score 
calculated from 10-fold cross-validation for both classes (anemic and 
non-anemic) predicted from top 20 OTUs (species level), indicator 
species and hematological parameters (Hb level, NLR, MCV) having 70 
samples.

Performance 
metrics

Anemic Non-anemic

Accuracy 0.89 ± 0.012 0.89 ± 0.012

Sensitivity 0.96 ± 0.016 0.82 ± 0.033

Specificity 0.82 ± 0.033 0.96 ± 0.016

F1 score 0.89 ± 0.013 0.88 ± 0.016

The value represents mean ± variance.
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