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Aging is the most important factor contributing to cardiovascular diseases (CVDs), 
and the incidence and severity of cardiovascular events tend to increase with age. 
Currently, CVD is the leading cause of death in the global population. In-depth 
analysis of the mechanisms and interventions of cardiovascular aging and related 
diseases is an important basis for achieving healthy aging. Tea polyphenols (TPs) 
are the general term for the polyhydroxy compounds contained in tea leaves, 
whose main components are catechins, flavonoids, flavonols, anthocyanins, 
phenolic acids, condensed phenolic acids and polymeric phenols. Among them, 
catechins are the main components of TPs. In this article, we provide a detailed 
review of the classification and composition of teas, as well as an overview of 
the causes of aging-related CVDs. Then, we focus on ten aspects of the effects 
of TPs, including anti-hypertension, lipid-lowering effects, anti-oxidation, anti-
inflammation, anti-proliferation, anti-angiogenesis, anti-atherosclerosis, recovery 
of endothelial function, anti-thrombosis, myocardial protective effect, to improve 
CVDs and the detailed molecular mechanisms.
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1. Introduction

With the advent of an aging society, aging-related issues are becoming a growing 
concern (1). Aging-related diseases have also become the most common diseases among 
middle-aged and elderly people (1, 2). Cardiovascular disease (CVD) is closely related to 
aging and is a serious threat to the lives and health of middle-aged and elderly people (3). 
CVD is a complex disease that involves multiple environmental and genetic factors, 
particularly atherosclerosis (AS), which mainly affects the large and middle arteries (3). 
This disease is characterized by lesions in the affected arteries starting from the intima, 
followed by a combination of lesions, including lipid accumulation, fibrous tissue 
proliferation and calcification, along with degenerative changes in the middle layers of the 
arteries (4). The secondary lesions of AS include lipid deposition, intimal thickening, 
thrombosis, inflammatory cell infiltration, subintimal inflammation, vessel wall 
remodeling, neovascularization, plaque rupture, intraplaque hemorrhage, plaque rupture 
and local thrombosis, which eventually cause narrowing or blockage of the vascular lesion, 
resulting in ischemic injury to the affected organs (4). AS and related diseases, such as 
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coronary heart disease (CHD) and myocardial infarction, have 
become serious threats to human health and have become the 
leading causes of high morbidity, disability and mortality 
worldwide (5). Hence, there is a growing interest in exploring new 
ways to prevent and treat aging-related CVD.

With aging, cardiomyocytes gradually develop physiological 
changes such as hypertrophy, senescence, lipofuscin aggregation, 
fibrosis, and apoptosis, which lead to cardiac hypertrophy and heart 
failure (6). Vascular endothelial cells, smooth muscle cells and 
extracellular matrix gradually change, resulting in reduced 
endothelial function, a thickened intima, vascular sclerosis, increased 
arterial pressure, reduced number of capillaries and decreased 
permeability, which further cause tissue ischemia and hypoxia, 
oxidative stress damage and necrosis (7, 8). Eventually, this causes AS, 
CHD, and atherosclerotic occlusive disease (8, 9). In addition, during 
aging, physiological changes in glucose and lipid metabolism also 
occur, resulting in diabetes, hyperlipidemia, and metabolic syndrome, 
which in turn damage cardiovascular function and can lead to 
diseases such as diabetic heart disease (10, 11). Therefore, blocking 
these mechanisms may be  a therapeutic strategy to resist aging-
related CVD.

Tea is the second most widely consumed beverage after water 
and has been consumed for thousands of years in China (12). Tea 
is the dried young leaves or leaf buds of Camelliasinenis o. Ktze., a 
plant in the Camelliaceae family, and is used as a drink with great 
nutritional, health and medicinal value (13, 14). Depending on the 
degree of fermentation, tea is divided into six main categories: white 
(not fermented), green (not fermented), yellow (slightly fermented), 
oolong (deeply fermented), black (deeply fermented), and dark 
(deeply fermented) (15, 16). Tea is rich in many biologically active 
components, such as polyphenols, pigments, polysaccharides, 
alkaloids, free amino acids and saponins (15–17). Although tea 
contains several chemicals, tea polyphenols (TPs) play a major role 
in promoting health, and green tea contains far more polyphenols 
than other teas (12, 18–20). A large amount of evidence confirms 
that TPs are effective antioxidants with anti-inflammatory, 
antiradiation, and antiaging properties that can prevent CVD 
(20, 21).

The treatment methods for CVDs are mainly divided into two 
categories: (1) drug conservative treatment; (2) active surgical 
treatment. No matter which treatment method is used, it needs to 
be carried out on the basis of improving lifestyle, such as a light 
diet, rest, physical exercise, controlling weight, blood pressure, 
blood sugar, blood lipids, quitting smoking, and limiting alcohol. 
These are important lifestyle improvement measures to reduce the 
risk of CVDs recurrence. Compared to these traditional treatment 
methods, tea is widely recognized as a healthy beverage, and 
multiple studies have confirmed that drinking tea regularly can 
reduce the risk of CVDs (22–24). This may be related to various 
components in tea, and TPs have the effects of lowering blood 
lipids, antioxidation, and inhibiting thrombosis. There have been 
many reports describing the role of TPs in the prevention and 
treatment of CVDs (25–27). These articles focus on a particular 
component of tea or emphasize a particular CVD. In this article, 
we provide a detailed review of the classification and composition 
of teas and an overview of the causes of aging-related CVDs; then, 
we focus on ten aspects of the effects of TPs to improve CVD and 
the detailed molecular mechanisms.

2. Physicochemical properties and 
composition of TPs

Many bioactive TPs have been identified in dry tea leaves, 
including flavonols, flavonoids, anthocyanins, and phenolic acids (23, 
24, 28, 29). Flavanols are the main components of TPs, and flavanols 
are dominated by catechins and their derivatives (15, 16). According 
to their chemical structure, catechins can be divided into four main 
types: (-)-epigallocatechin-3-gallate (EGCG), (-)-epigallocatechin 
(EGC), (-)-epicatechin-3-gallate (ECG) and (-)-epicatechin (EC) (18). 
EGCG is the most physiologically active substance among catechols, 
accounting for approximately 50%–70%, and the physiological effects 
of green tea are mainly exerted by EGCG (18). Unlike green tea, 
oolong and black teas are fermented, and their catechins are oxidized 
to theaflavins (including four isomers: theaflavin, theaflavin-3-gallate, 
theaflavin-3′-gallate and theaflavin-3,3′-gallate) (Table 1) (18). These 
theophyllins exert cardiovascular protective effects, but their 
antioxidant activity may be lower than that of catechins (18).

3. Traditional risk factors for CVD

3.1. Abnormal blood pressure

Hypertension is a chronic CVD (32). A study showed that for 
every 10 mmHg reduction in systolic blood pressure, the risk of major 
cardiovascular events (e.g., coronary heart disease, stroke, heart 
failure) is significantly reduced (33). Therefore, effective control of 
blood pressure can reduce the incidence of cardiovascular-related 

TABLE 1 Tea polyphenol composition of different tea leaves.

Tea Components References

White tea EC, GC, EGC, CG, ECG, 

GCG, EGCG

(15, 16)

Green tea EC, GC, EGC, CG, ECG, 

GCG, EGCG

(15, 16, 18)

Yellow tea EC, GC, EGC, CG, ECG, 

GCG, EGCG

(15, 16)

Oolong tea Catechins, gallic acid, TF, 

theaflavin-3-gallate, 

theaflavin-3′-gallate, 

theaflavin-3,3′-gallate, 

thearubigins

(18, 30, 31)

Black tea Catechins, gallic acid, TF, 

theaflavin-3-gallate, 

theaflavin-3′-gallate, 

theaflavin-3,3′-gallate, 

thearubigins

(18, 30, 31)

Dark tea Catechins, gallic acid, TF, 

theaflavin-3-gallate, 

theaflavin-3′-gallate, 

theaflavin-3,3′-gallate, 

thearubigins

(18, 30, 31)

CG, catechin gallate; EC, (-)-epicatechin; ECG, (-)-epicatechin-3-gallate; EGC, 
(-)-epigallocatechin; EGCG, (-)-epigallocatechin-3-gallate; GC, gallocatechin; GCG, 
gallocatechin gallate; TF, theaflavin.
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diseases, morbidity and mortality (34). In addition, prehypertension 
is already prevalent and accompanied by increased aortic stiffness, 
impaired elasticity, decreased cardiac function, and diminished 
insulin resistance (34). Hence, hypertension is not only a chronic form 
of CVD but also worsens the morbidity and mortality of major 
CVD (35).

3.2. Abnormal metabolic indices

3.2.1. Abnormal glucose metabolism
Abnormal fasting plasma glucose (FPG) increases the risk of CVD 

(36). Abnormal glucose metabolism, especially hyperglycemia, leads 
to oxidative stress, microvascular damage, vascular tone and 
endothelial damage, as well as platelet aggregation and embolism (37, 
38). In addition, hyperglycemia induces certain inflammatory factors 
[tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), C-reactive 
protein (CRP), etc.] and inflammatory reactions, all of which cause 
varying degrees of damage to cardiomyocytes, blood vessels, and even 
the heart (39).

3.2.2. Dyslipidemia
Lipids are the general term for neutral fats [triacylglycerols (TG) 

and total cholesterol (TC)] and lipids in plasma (phospholipids, 
glycolipids, sterols, and steroids), which are essential for the basic 
metabolism of living cells (40). Among them, cholesterol [low density 
lipoprotein (LDL) and high density lipoprotein (HDL)] and TG are 
closely related to the development of atherosclerosis (AS) (40, 41). 
Studies have shown that for every 1 mmol/L reduction in LDL-C, the 
risk of CVD is reduced by 21% to 24% (41, 42).

3.3. Poor lifestyle habits

3.3.1. Smoking
It is estimated that tobacco use causes approximately 10% of CVD 

worldwide (43–45). Tobacco contains approximately 4,000 chemicals, 
of which nicotine, carbon monoxide and other components stimulate 
blood pressure, lead to coronary AS, increase blood and platelet 
viscosity, reduce the ability to dissolve blood clots and oxygen-
carrying capacity of hemoglobin, and even induce ventricular 
fibrillation, increasing the incidence of cardiovascular events (46, 47).

3.3.2. Alcohol consumption
Many studies now indicate that small amounts of alcohol 

consumption can moderately reduce the risk of myocardial infarction 
(48, 49). However, the effects of heavy alcohol use on exacerbating 
CVD cannot be  ignored. Both long-term heavy drinking and 
occasional heavy drinking can, to varying degrees, decrease HDL-C, 
increase plasma viscosity and fibrinogen concentration, cause platelet 
aggregation, impair endothelial function, increase inflammatory 
responses, increase heart rate, and inhibit cardiac contractile function, 
thereby increasing the incidence of CVD, morbidity and mortality 
(50, 51).

3.3.3. Diet
The structure, quantity, and type of diet can also influence the 

occurrence of cardiovascular events (52, 53). For example, a high-salt 

diet can exacerbate vasoconstriction, leading to elevated blood 
pressure and plasma cholesterol and contributing to the development 
of AS (52–55). Sugar can increase blood viscosity and slow blood flow, 
which, combined with damage to the vascular endothelium, causes 
the generation of a large number of atherosclerotic plaques that block 
blood vessels and trigger the occurrence of acute cardiovascular events 
(56, 57). A high-fat diet can cause obesity or overweight, leading to 
metabolic disorders such as hyperlipidemia, hypertension, and other 
CVDs (58, 59).

3.3.4. Sleep and mental factors
It is reported that in patients with insomnia, serum HDL is low, 

while TG level is high (60, 61). In addition, CVDs are closely related 
to psychological conditions such as depression, chronic psychological 
stress, post traumatic stress disorder (PTSD), and anxiety (62).

3.4. Others

Numerous epidemiological studies have shown that sex, age, and 
family history influence the incidence and mortality rates of CVD (63, 
64). With increasing age, the onset of various metabolic diseases, and 
the reduction in the body’s immune system, CVD increases each year 
(65). Moreover, the prevalence and mortality rates are higher in men 
than in women, especially in premenopausal women (66). 
Postmenopausal women lack the protective mechanisms of a specific 
physiological period, and with the decrease in estrogen levels, the 
metabolism of the body changes, leading to an increase in the 
incidence of CVD (65, 67).

4. Molecular mechanism of the 
cardioprotective effect of TPs

As a natural polyphenol complex, TPs are characterized by their 
simple availability and wide range of biological effects (68, 69). In 
recent years, TPs have been shown to have good preventive and 
curative effects against AS, thrombosis, myocarditis, coronary artery 
disease, antiarrhythmia and myocardial ischemia/reperfusion (I/R) 
injury (70). Studies have shown that the cardioprotective effects of TPs 
are closely related to their antioxidant, anti-inflammatory, and blood 
viscosity-altering characteristics (68, 70). Here, we have reviewed the 
relevant literature and summarized ten mechanisms of TPs associated 
with protection against CVD (anti-hypertension, lipid-lowering 
effects, anti-oxidation, anti-inflammation, anti-proliferation, anti-
angiogenesis, anti-AS, recovery of endothelial function, anti-
thrombosis, myocardial protective effect),. Undoubtedly, TPs can 
significantly reduce the risk of CVDs by reducing the factors related 
to CVDs.

4.1. Hypotensive effects

Hypertension is a major risk factor for CVD and a common 
disease with a high incidence worldwide that is characterized by 
elevated arterial pressure (71). At present, there are many drugs that 
treat hypertension and can effectively lower blood pressure but have 
large side effects and fluctuate greatly while lowering blood pressure 
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(72, 73). Therefore, the screening of functional food factors with 
antihypertensive effects is critical for the prevention and treatment of 
hypertension. One of the pathogeneses of hypertension is elevated 
levels of renin, angiotensin, and aldosterone, and so patients with 
hypertension will experience high renin in their bodies (74). Aqueous 
extracts of fermented oolong and black teas strongly inhibit renin (74). 
In addition, supplementation with white, black and green teas in obese 
mice prevented the development of hypertension (75). Further 
analysis revealed that this antihypertensive effect was mainly 
associated with increased expression of antioxidant enzymes induced 
by TPs such as gallic acid, xanthine and flavan-3-ol (75). In a 
randomized, double-blind, controlled crossover study, black tea intake 
increased functionally active circulating angiogenic cells compared to 
placebo, thereby greatly offsetting the reduction in blood flow-
mediated dilation due to fat intake (76). In two epidemiological 
studies [ATTICA and MEDiterranean ISlands (MEDIS)], green tea is 
rich in high levels of catechins (e.g., EGCG) compared to black tea 
and, therefore, significantly reduces the likelihood of hypertension in 
adults aged 50 years and older (77). In addition, tannins in tea have 
been shown to have a hypotensive effect on rats (78). Gao et al. (52, 
53) found that green tea had an antihypertensive effect on 
hypertension induced by a high salt diet in aged male rats, and its 
main mechanism of action included inhibiting the activity of the 
renin-angiotensin II-aldosterone system, altering the expression of 
sodium-potassium pumps in heart, kidney and aortic tissues and 
increasing the synthesis of nitric oxide in endothelial cells.

4.2. Lipid-lowering effects

Hyperlipidemia is an important factor that induces CVD. An 
increase in LDL-C and a decrease in HDL-C in serum can cause 
arterial endothelial cell damage, increase permeability and accelerate 
LDL-C deposition in the subendothelium of blood vessels (79). In 
recent years, a large number of studies have shown that TPs can 
significantly reduce serum TC, TG, and LDL-C levels and increase 
HDL-C levels in patients with hyperlipidemia, which can protect 
vascular endothelial function (79). For example, serum levels of 
cholesterol, LDL and TG were reduced and HDL was significantly 
increased in experimental rats fed a high-cholesterol diet after the 
administration of beverages containing theaflavin and theaflavin (80). 
Results from a clinical trial of tea drinking habits and HDL in Chinese 
adults found that in people aged 60 years or older, serum HDL 
concentrations decreased more slowly in tea drinkers compared to 
non-tea drinkers, suggesting a significant association between tea 
consumption and HDL-C (81). In a randomized, controlled trial, 
ingestion of GTC for 4 consecutive weeks significantly reduced fasting 
serum TG levels (82). TPs have been widely demonstrated to improve 
lipid metabolism abnormalities by modulating gut microbial species 
and functions. Ma et al. (83) found that different doses of TPs could 
regulate intestinal redox status and the intestinal microbiota through 
different patterns, thus improving the disorders of lipid metabolism 
induced by a high-fat diet (HFD). Wang et al. (84) found that green 
tea leaf powder could reshape the intestinal microbiota in the cecum 
of mice and increase satiety hormone secretion, there by reducing 
lipid metabolism disorders in mice fed a HFD. Conversely, excessive 
intake of TPs reduced their beneficial effects on intestinal health (83). 
Moreover, TPs were effective in reducing leptin in rat serum and 

inhibiting fatty acid uptake, thereby improving lipid and antioxidant 
levels (85). It is worth noting that the lipid-lowering effect of black teas 
(such as Liubao and Pu′er teas) is increased significantly after 
fermentation compared to that of the raw material, probably due to 
the significant increase in browning and gallic acid in the tea leaves 
after fermentation (86).

4.3. Inhibiting oxidation

Oxidative stress is present throughout the pathology of AS, and 
another important effect of TPs is their antioxidant properties (87). 
Due to the number and structure of phenolic hydroxyl groups, 
catecholates and theaflavins are excellent electron donors and effective 
free radical scavengers (87). In vitro, the antioxidant effects of 
catechols and theaflavins against human LDL oxidation were similar, 
and the antioxidant capacity of polyphenols was in the following 
order: TF3 > ECG ≥ TF2B ≥ TF2A ≥ TF1 ≥ EC > EGC (88). In 
addition, after drinking 600 mL of green tea daily for 4 weeks, plasma 
levels of oxidized LDL (ox-LDL) were reduced in smokers (89). The 
inhibition of ROS-producing enzymes by TPs may also enhance their 
antioxidant effects. Both catechols and TFs inhibit the expression of 
inducible NO synthase (iNOS). Another physiological source of ROS 
occurs during the oxidation of hypoxanthine and xanthine to uric acid 
(87, 90). This reaction is catalyzed by xanthine oxidase, which has now 
been shown to be inhibited by catechol and theaflavin. Several studies 
have shown that catechol induces a variety of enzymes involved in 
cellular antioxidant defense mechanisms (87, 90, 91). Negishi et al. 
(91) found that oral administration of TPs for 2 weeks induced 
peroxidase in the aorta in spontaneously hypertensive rats. In 
endothelial cells, EGCG significantly induced subtilisin oxygenase-1 
through activation of AKT and Nrf2, resulting in significant protection 
against hydroperoxide-regulated oxidative stress (87, 90). In vitro, TPs 
ameliorated heat stress injury in cardiomyocytes by upregulating 
Keap1-Nrf2-ARE signaling to enhance its antioxidant capacity and 
inducing the expression of heat shock proteins (69). Moreover, in 
Wistar rats, TPs attenuated the HFD-induced increase in intima-
media thickness and significantly inhibited vascular oxidative damage 
(92). In addition, TPs can inhibit the oxidation of lipoproteins in vivo. 
In a clinical study, urinary levels of 4-O-methylglutamic acid were 
significantly increased after subjects took green and black tea, 
suggesting that intake of TPs could inhibit LDL oxidation in vivo (93). 
Besides, in a randomized, placebo-controlled, double-blind, crossover 
trial, green tea extract was ingested, with EGCG and EGC as the main 
components. Both of them rapidly bind LDL particles and reduce the 
degree of oxidation of LDL, thereby reducing the risk of AS associated 
with oxidative stress (94).

4.4. Inhibiting proliferation

The proliferation and migration of vascular smooth muscle cells 
(VSMCs) play key roles in the formation and development of AS, 
postvalvular restenosis and graft vascular lesions (95). In vivo and in 
vitro experiments showed that catechols inhibited VSMC proliferation 
and migration (95). Among catechols, EGC, ECG and EGCG were 
significantly more effective than catechins and epicatechins in 
preventing proliferation (95). Kim et  al. (96) found that EGCG 
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blocked the transition of VSMCs from G1 to S phase by initiating the 
expression of p21/WAF1, which in turn inhibited NF-kappaB and 
AP-1-mediated VSMC proliferation. Additionally, the antiproliferative 
effects of TPs include interactions with growth factors involved in the 
proliferation and migration of VSMCs, such as fibroblast growth 
factor (bFGF) (97, 98). EGCG also significantly inhibits c-Jun nuclear 
translocation and AP-1 binding activity and reduces iNOS expression 
(99). Moreover, TPs can interact with the matrix metalloprotein 
(MMP) system, which contributes to the migration, proliferation, and 
neointima formation of VSMCs after vascular injury (100). In a rat 
model of carotid artery injury, catechins reduced MMP-2 activity by 
upregulating matrix metalloproteinase (MMP)-2 and TIMP-2, thereby 
inhibiting neointimal proliferation and improving vascular 
remodeling (100). Furthermore, in a carotid artery injury model, 
EGCG reduced VSMC proliferation by inhibiting extracellular signal-
regulated kinase (ERK), but c-jun and p38 signaling was not affected 
(101). Moreover, EGCG was shown to inhibit the expression of 
apoptosis-related proteins and attenuate apoptosis in VSMCs induced 
by H2O2 (102).

4.5. Anti-inflammation

Acute and chronic inflammation plays a key role in the 
development of CVD (103, 104). TPs can modulate immune responses 
and have potential anti-inflammatory activity. For example, in rats fed 
an atherosclerotic diet, the administration of 0.2% green tea extract 
(Polyphenon®) resulted in a significant reduction in serum 
inflammatory markers (CRP) (103). A clinical study showed that 
consistent use of green tea or green tea extract significantly reduced 
serum amyloid alpha, which is an important CVD risk factor, in obese 
individuals with metabolic syndrome (105). In another randomized, 
double-blind trial, long-term black tea consumption reduced platelet 
activation and lowered plasma CRP levels in healthy men, leading to 
long-term cardiovascular health maintenance (106). Moreover, in 
female rats with chronic inflammation, supplementation with TPs 
suppressed the innate immune response to chronic inflammation, 
thereby alleviating the development of myocardial fibrosis (107). In 
the early stages of atherosclerosis, leukocytes adhere to vascular 
endothelial cells and gradually migrate to the vessel wall. EGCG 
significantly reduced the migration of neutrophils to the endothelial 
cell monolayer by inhibiting chemokine production (108). In vitro 
experiments revealed that EGCG treatment inhibited TNF-α-induced 
adhesion of THP-1 cells to human umbilical vein endothelial cells 
(109). Moreover, EGCG reduced the expression of intracellular 
adhesion molecule 1, which affected the adhesion and migration of 
peripheral blood monocytes and CD8+ T cells (110). In RAW264.7 
macrophages, EGCG inhibited NF-κB activation and reduced 
lipopolysaccharide (LPS)-induced TNFα production in a dose-
dependent manner (111). In obese mice fed a HFD, TPs reduced the 
serum levels of TNFα, IL-1β and IL-6 by inhibiting the activation of 
NF-κB (28). Lu′an GuaPian tea, which is a green tea, is rich in 
kaempferol-3-O-rutinoside (KR), which can protect against 
cardiovascular disease by inhibiting TLR4/MyD88/NF-κB signaling 
and protect against myocardial injury (112). In addition, endothelial 
cells control vascular tone and permeability and are important for 
maintaining vascular homeostasis (113). Reddy et al. (113) found that 
EGCG reduced inflammation and decreased vasodilation by inhibiting 

the NF-κB pathway, thereby protecting against endothelial dysfunction 
and delaying the onset of CVD. In addition to the NF-κB signaling 
pathway, TPs improved the species abundance of the intestinal 
microbiota in the cecum, thereby improving the intestinal 
inflammatory response (114). Additionally, TPs could increase the 
expression of intestinal tight junction proteins to maintain the 
integrity of the intestinal barrier, thereby improving intestinal flora 
dysbiosis and reducing systemic inflammatory responses in obese 
mice (28, 115).

4.6. Improving the vascular endothelium 
function

The pathophysiological features of the cardiovascular system 
are characterized by a decrease in protective vasoactive substances 
in the endothelium, which is called endothelial dysfunction (43, 
44). Numerous studies have shown that TPs improve endothelial 
cell function, lower blood pressure and have vasodilatory effects 
(116–118). For example, in obese prehypertensive women, short-
term daily intake of GTE could improve endothelial function (119). 
Excessive accumulation of ROS is one of the important causal 
factors leading to endothelial cell dysfunction and hypertension 
(120). In bovine carotid artery endothelial cells (BCAECs), TPs 
could inhibit ROS production by reducing nicotinamide adenine 
dinucleotide phosphate (NADPH) expression, thereby alleviating 
angiotensin (Ang) II-induced endothelial cell hyperpermeability 
and possibly preventing the development of CVD (120). Moreover, 
in endothelial cells, TPs can bind endothelial extracellular 
superoxide dismutase (eEC-SOD) to inhibit LDL oxidation and 
thus counteract atherosclerosis (121). Endothelial nitric oxide 
synthase (eNOS) is a source of nitric oxide in endothelial cells and 
plays an important role in maintaining the function of endothelial 
cells (122). Caveolin-1 (Cav-1) is a negative regulator of eNOS that 
can affect cardiovascular function in multiple ways (123). Liu et al. 
(123) found that in BCAECs, TPs activated ERK1/2 and inhibited 
p38MAPK signaling in a dose-dependent manner, downregulating 
Cav-1 expression and thereby protecting endothelial cells. In 
addition, TPs can reduce the expression and secretion of 
plasminogen activator inhibitor-1 (PAI-1), a regulator that plays a 
key role in AS and hypertensive disease, in endothelial cells in a 
time-and dose-dependent manner, contributing to cardiovascular 
protection (123). In isolated rat mesenteric arteries, (-)-epicatechin 
increased NO concentrations in the vasculature and promoted 
vasodilation by activating iberiotoxin-sensitive K+ channels (116). 
A clinical study showed that acute black tea intake could activate 
NO production in endothelial cells, thereby reducing the risk of 
CVD (124). Kim et al. (125) found that EGCG increased LC3-II 
production and autophagosome formation in primary bovine aortic 
endothelial cells (BAECs), thereby reducing lipid accumulation and 
improving the development of CVD.

4.7. Inhibiting angiogenesis

Angiogenesis is an important pathological cause of the 
development of CVD (126). For instance, myocardial infarction 
(MI) is mainly associated with partial or complete occlusion of 
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microvessels at the site of the lesion (126). Myocardial ischemia–
reperfusion mainly refers to the production of necrotic material 
by ischemic cells when a patient has a myocardial infarction (127). 
After revascularization, blood passes through the necrotic 
myocardium in a short time to create reperfusion damage and 
increase cellular necrosis, which aggravates the symptoms of 
infarction and leads to malignant arrhythmias (127). To combat 
these conditions, restoring blood supply to the infarcted area can 
reduce cardiac remodeling and improve myocardial function 
(126). Vascular endothelial growth factor (VEGF), a homodimeric 
vasoactive glycoprotein, is a key regulator of angiogenesis. VEGF 
levels are significantly elevated in the serum of patients with 
different CVDs and are often associated with a poor prognosis 
(126). A growing number of studies have shown that TPs can 
protect against CVD by suppressing VEGF-mediated angiogenesis. 
In HUVECs, EGCG blocks the formation of the vascular 
endothelial growth factor receptor 2 complex, which in turn 
inhibits VEGF-mediated angiogenesis (128, 129). In a high-
cholesterol diet male New Zealand White rabbit atherosclerosis 
model, green tea consumption significantly reduced VEGF 
expression in foam cells and smooth muscle cells, and it is 
hypothesized that green tea may slow the progression of 
atherosclerosis by reducing VEGF-induced angiogenesis (128). 
EGCG also inhibits angiogenesis by reducing the expression of the 
angiogenic factor bFGF (basic fibroblast growth factor) (130). 
After EGCG pretreatment, endothelial cells could induce the 
expression of membrane-type-1 matrix metalloproteinase (MT1-
MMP), which promoted endothelial cell migration, and Cav-1, 
which caused tube formation, was significantly decreased, 
suggesting that EGCG inhibits angiogenesis (131).

4.8. Antiatherosclerosis

AS is the underlying cause of CVD (132). The development of AS 
has been associated with multiple molecular mechanisms, including 
endothelial dysfunction, inflammation, oxidative stress, and 
dysfunctional lipid metabolism (132). The protective effect of TPs on 
AS has been widely reported (133, 134). For example, a clinical study 
from Japan showed that patients who consumed >3 cups of green tea/
day had a lower prevalence of coronary artery disease (CAD) than 
those who consumed <1 cup/day, suggesting that green tea intake 
may help improve coronary artery atherosclerosis in the Japanese 
population (135). TPs inhibit oxLDL production and thus IKB kinase 
(IKK)-mediated NF-κB activation in a dose-dependent manner and 
reduce the production of the proinflammatory cytokine TNF-α (134). 
In a mouse model of AS, EGCG reduced proinflammatory genes and 
increased antioxidant protein expression in the mouse aorta, and 
serum C-reactive protein, monocyte chelator protein-1 and ox-LDL 
were significantly decreased after EGCG treatment (133). Theaflavins 
in tea not only reduced the concentrations of F(2)-isoprostane, 
vascular superoxide, vascular leukotriene B(4) and plasma-SP-
selectin in the aorta but also enhanced eNOS activity, thereby 
improving NO bioavailability to alleviate the development of AS in 
apolipoprotein E-deficient (ApoE−/−) mice (136). Changes in the 
gut microbiota are also closely associated with the development of AS 

(137). Liao et al. (137) found that TPs promoted the proliferation of 
intestinal bifidobacteria in ApoE−/− mice, thereby reducing total 
cholesterol and LDL cholesterol levels and reducing HFD-induced 
AS plaques. In addition, TPs increased the expression of autophagic 
markers (such as LC3, Beclin1 and p62) in the vascular wall of mice, 
ameliorated lipid metabolism disorders and inhibited AS plaque 
formation (138).

4.9. Inhibiting thrombosis

Platelet activation and subsequent thromboembolism are 
important pathophysiological mechanisms of ischemic CVD 
(139). The antithrombotic effect of green tea catechins is 
achieved mainly through the inhibition of platelet aggregation 
(140). EGCG has been reported to exert its inhibitory effect on 
platelet viability through several mechanisms: the inhibition of 
collagen-mediated phospholipase (PL) Cgamma2, blockade of 
protein tyrosine phosphorylation, and the enhancement of 
Ca2(+)-ATPase activity, thereby reducing platelet aggregation and 
alleviating atherothrombosis (140). In addition, GTC did not 
alter anticoagulant activity but mainly altered antiplatelet 
activity to exert antithrombotic effects in human platelet 
aggregation assays induced by ADP, collagen, epinephrine, and 
the calcium ion polymer A23187 in vitro (141). EGCG has also 
been shown to stimulate tyrosine phosphorylation of platelet-
associated proteins (e.g., Syk and SLP-76) and reduce the 
phosphorylation levels of focal adhesion kinases, thereby 
improving platelet aggregation (142). Moreover, Kang et al. (143) 
found that catechol modulates the reduction in intracellular 
calcium levels in platelets, which led to Ca2+-ATPase activation 
and the inhibition of IP3 production, thereby inhibiting 
fibrinogen-GPIIb/IIIb binding and reducing platelet aggregation. 
Inflammatory and oxidative responses caused by endothelial cell 
injury play equally important roles in thrombosis (144). A recent 
study showed that EGCG combined with warfarin significantly 
reduced thrombus weight in a rat model of deep vein thrombosis 
(144). Further in vitro studies showed that the combination of 
EGCG and warfarin protected HUVECs from oxidative stress 
and prevented apoptosis, and the specific mechanism involved 
the inhibition of HIF-1α-mediated activation of PI3K/AKT and 
ERK1/2 signaling (144).

4.10. Myocardial protective effects

Ischemia is an extremely common pathological process in 
myocardial lesions (145). The protective effect of TPs against 
myocardial injury may be due to their ability to inhibit oxidative 
stress associated with ischemic injury (145). For example, in a 
cardiac hypertrophy model in rats established by abdominal aortic 
constriction (AC), myocardial tissue had increased malondialdehyde 
(MDA) levels and decreased superoxide dismutase (SOD) activity 
(146). In contrast, after EGCG treatment, the MDA levels in 
myocardial tissue decreased, and SOD activity increased. These 
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results suggest that EGCG ameliorates myocardial injury in rats by 
inhibiting oxidative stress (146). In a rat model of diabetic 
cardiomyopathy, TPs significantly improved myocardial function in 
rats, and cardiomyocyte disorders and hypertrophy were 
significantly improved (147). An in-depth study revealed that TPs 
significantly upregulated LC3-II/I and Beclin-1 expression and 
reduced SQSTM1/p62 expression in rat myocardial tissue (147). In 
addition, ingestion of TPs significantly alleviated heat stress injury 
in hen cardiomyocytes at 38°C, as evidenced by the downregulation 
of myocardial injury-related indicators (LDH, CK, CK-MB and 
TNF-α), and the mechanism mainly involved Keap1-Nrf2-ARE and 
heat shock protein (Hsp)-related heat stress responses (69). 
Interestingly, a recent study showed that despite the low plasma 
concentration of polyphenols, polyphenols were transported to the 
arterial intima at pH 7.4 in the form of bound lipoproteins, and 

polyphenol levels were significantly elevated in endothelial cells and 
macrophages (148). Thereafter, such high local concentrations of 
polyphenols protect the heart through direct antioxidant effects 
(148). In addition, TPs alleviate myocardial fibrosis in female rats 
by attenuating chronic inflammation and suppressing innate 
immune responses (149).

Overall, TPs improve aging-related CVDs in the following five 
ways (Figure 1, Table 2): (1) TPs cause activation of autophagic 
flux; (2) TPs inhibit ox-LDL-mediated NF-κB, ERK1/2, p38MAPK, 
and JNK-induced inflammatory responses; (3) TPs activate the 
NRF2-mediated antioxidant signaling pathway; 4; (4) TPs improve 
vascular endothelial cell function via PI3K/AKT/eNOS pathway; 
(5) TPs inhibit VEGF-mediated angiogenesis. By modulating 
these molecular mechanisms, TPs can improve aging-
related CVDs.

FIGURE 1

Molecular mechanism of tea polyphenols (TPs) to improve aging-related cardiovascular diseases (CVDs). AKT, AKT serine/threonine kinase 1; eNOS, 
nitric oxide synthase 3; ERK1/2, mitogen-activated protein kinase 1; GPX4, glutathione peroxidase 4; HO-1, heme oxygenase 1; ICAM-1, intercellular 
adhesion molecule 1; JNK, mitogen-activated protein kinase 8; LC3, microtubule associated protein 1 light chain 3; MMP-2, matrix metallopeptidase 2; 
mTOR, mechanistic target of rapamycin kinase; MyD88, MYD88 innate immune signal transduction adaptor; NADPH, 2,4-dienoyl-CoA reductase 1; 
NF-κB, nuclear factor kappa B subunit 1; NRF2, NFE2 like bZIP transcription factor 2; ox-LDL, oxidized low density lipoprotein; p38MAPK, mitogen-
activated protein kinase 14; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta; SOD, superoxide dismutase 1; VEGF, vascular 
endothelial growth factor A; VEGFR-2, kinase insert domain receptor.

TABLE 2 References related to molecular mechanism diagrams.

Title References

Tea polyphenols enhanced the antioxidant capacity and induced Hsps to relieve heat stress injury (69)

(-)-Epicatechin gallate blocks the development of atherosclerosis by regulating oxidative stress in vivo and in vitro (87)

The inhibitory effect of (-)-epicatechin gallate on the proliferation and migration of vascular smooth muscle cells weakens and stabilizes atherosclerosis (150)

Green tea polyphenols inhibit human vascular smooth muscle cell proliferation stimulated by native low-density lipoprotein (151)

EGCG protects vascular endothelial cells from oxidative stress-induced damage by targeting the autophagy-dependent PI3K-AKT–mTOR pathway (152)

(-)-Epigallocatechin-3-gallate inhibits eNOS uncoupling and alleviates high glucose-induced dysfunction and apoptosis of human umbilical vein 

endothelial cells by PI3K/AKT/eNOS pathway

(153)

EGCG protects against homocysteine-induced human umbilical vein endothelial cells apoptosis by modulating mitochondrial-dependent apoptotic 

signaling and PI3K/Akt/eNOS signaling pathways

(154)

Potent inhibition of VEGFR-2 activation by tight binding of green tea epigallocatechin gallate and apple procyanidins to VEGF: relevance to 

angiogenesis

(155)
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5. Conclusion

Natural substances originating from natural food and plants are 
of great interest due to their low toxicity, low cost and easy availability. 
However, the underlying physiological mechanisms of these 
substances are not fully understood, especially with respect to the 
cardiovascular system.

The pathophysiological process of CVD is multifactorial and can 
be affected by tea components in several processes: anti-hypertension, 
lipid-lowering effects, anti-oxidation, anti-inflammation, anti-
proliferation, anti-angiogenesis, anti-AS, recovery of endothelial 

function, anti-thrombosis, myocardial protective effect (Figure  2). 
However, a large number of unresolved issues exist that limit the 
clinical use of TPs. The debated issues are mainly related to dose, 
specificity, potency, feasibility and short-or long-term side effects in 
humans. Although naturally occurring polyphenols are generally 
considered pharmacologically safe, it is also important to note the 
presence of deleterious effects of these compounds in the body, which 
are largely dependent on their distribution in the body and the type of 
cells on which they act. In addition, the bioavailability of TPs is 
relatively low when administered orally, and the effective transport of 
TPs to target organs is an important issue (156). Moreover, some 

FIGURE 2

TPs improve aging related-CVDs in ten ways. CVDs, cardiovascular diseases; EC, (-)-epicatechin; ECG, (-)-epicatechin-3-gallate; EGC, 
(-)-epigallocatechin; EGCG, (-)-epigallocatechin-3-gallate; TPs, tea polyphenols.
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components of tea polyphenols can also interact with nutrients in the 
body as well as conventional drugs, which are also potential safety 
issues (156). To address these issues, animal experiments, large cohort 
studies and human intervention trials are very necessary in the future.

In conclusion, a growing body of data suggests that TPs have an 
important role in the prevention and treatment of CVD by interfering 
with multiple signal transduction pathways. However, the specific 
molecular roles of TPs in various cells need to be studied in great depth.
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