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Background: Recurrent pregnancy loss (RPL) was associated with an elevated risk

of pregnancy complications, particularly preterm birth (PTB). However, the risk

factors associatedwith PTB in RPL remained unclear. Emerging evidence indicated

that maternal exposure to metals played a crucial role in the development of

PTB. The objective of our study was to investigate the individual and combined

associations of nutritional trace metals (NTMs) during pregnancy with PTB in RPL.

Methods: Using data from a recurrent pregnancy loss cohort (n= 459), propensity

score matching (1:3) was performed to control for covariates. Multiple logistic

regression and multiple linear regression were employed to identify the individual

e�ects, while elastic-net regularization (ENET) and Bayesian kernel machine

regression (BKMR) were used to examine the combined e�ects on PTB in RPL.

Results: The logistic regression model found that maternal exposure to copper

(Cu) (quantile 4 [Q4] vs. quantile 1 [Q1], odds ratio [OR]: 0.21, 95% confidence

interval [CI]: 0.05, 0.74) and zinc (Zn) (Q4 vs. Q1, OR: 0.19, 95%CI: 0.04, 0.77)

was inversely associated with total PTB risk. We further constructed environmental

risk scores (ERSs) using principal components and interaction terms derived from

the ENET model to predict PTB accurately (p < 0.001). In the BKMR model, we

confirmed that Cu was the most significant component (PIP = 0.85). When other

metals were fixed at the 25th and 50th percentiles, Cu was inversely associated

with PTB. In addition, we demonstrated the non-linear relationships of Zn with

PTB and the potential interaction between Cu and other metals, including Zn, Ca,

and Fe.

Conclusion: In conclusion, our study highlighted the significance of maternal

exposure to NTMs in RPL and its association with PTB risk. Cu and Zn were

inversely associated with PTB risk, with Cu identified as a crucial factor. Potential

interactions between Cu and other metals (Zn, Ca, and Fe) further contributed

to the understanding of PTB etiology in RPL. These findings suggest opportunities

for personalized care and preventive interventions to optimize maternal and infant

health outcomes.
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1 Introduction

Recurrent pregnancy loss (RPL), commonly defined as

experiencing two or more consecutive failed clinical pregnancies,

has emerged as a critical public health concern (1). Recent evidence

suggest the association of RPL with an elevated incidence of

adverse pregnancy outcomes, notably preterm birth (PTB) (2).

Previous studies have reported that the occurrence of PTB in

RPL ranged from 4.9% to 19.6%, significantly higher than the

general population (3). However, the precise risk factors for PTB in

RPL remained unclear. Growing evidence suggested that prenatal

exposure to metals may exert a noteworthy influence on PTB (4, 5).

Thus, in our study, we sought to explore whether exposure to

nutritional trace metals (NTMs) also played a pivotal role in PTB

among women with RPL.

A mounting body of evidence indicated the significant

involvement of metal exposure in the development of PTB (6–

13). Previous studies have primarily focused on investigating

the individual effects of endocrine-disrupting or nutritional trace

metals on the subsequent risk of PTB (14–18). However, adopting

a “single metal” approach may not fully capture the complexity of

interactions among metals. Instead of examining individual metal

exposure, assessing the effects of multiple metal exposure, which

offered a more comprehensive view of intricate interactions, non-

linear associations, and combined effects, maybe more relevant and

useful in predicting PTB (19).

Among previous studies that have examined maternal metal

exposure in relation to PTB, only a few have evaluated the

combined effects, and no study has investigated this association in

RPL. Furthermore, these studies have yielded conflicting results.

For instance, in a prospective cohort study, Wang et al. reported

positive associations between magnesium (Mg), copper (Cu), and

titanium (Ti) and PTB, while calcium (Ca), zinc (Zn), strontium

(Sr), iron (Fe), and lead (Pb) showed negative associations (12).

In a prospective birth cohort in rural Bangladesh, Huang et al.

identified titanium (Ti), arsenic (As), and barium (Ba), which were

detected in cord serum, as crucial predictors of PTB (7). Moreover,

in the PROTECT cohort in Northern Puerto Rico, Ashrap et al.

reported that lead (Pb), manganese (Mn), and zinc (Zn) detected

in maternal blood were associated with an increased risk of PTB

(6). However, Ren et al. indicated that Fe and Zn in hair had the

strongest inverse effects on spontaneous PTB (13). In conclusion,

the association between metal exposure and preterm birth varied

with sample type, sampling time, composition of metal mixture,

and statistical models.

Existing studies have mainly focused on the toxic effects

of endocrine-disrupting metals. However, the effects of NTMs

deserve attention, as they can be influenced by prenatal nutritional

supplements and diet (20, 21). Additionally, maternal blood

reflected long-term effects more accurately and was less susceptible

to external impurities (22, 23). Other limitations from previous

studies included the use of the single-metal model, which may

not fully capture complicated interactions, non-linear associations,

and combined effects (24). Finally, no studies have reported the

association between NTMs and PTB in RPL.

To address these research gaps, our study aimed to investigate

the association between NTMs in maternal blood and PTB in a RPL

cohort in Northeast China.We hypothesized that there would be an

inverse association between NTMs and the risk of PTB in RPL.

2 Materials and methods

2.1 Study population

We utilized data from the “Recurrent Pregnancy Loss Cohort

Study (RPLCS)”, a sub-cohort of China Medical University

Birth Cohort (CMUBC). The RPLCS was designed to examine

the association between adverse exposure and mother–infant

outcomes. In brief, we mainly recruited pregnant women with

a history of RPL between May 2018 and January 2023 from

Shengjing Hospital of China Medical University, which admitted

the largest population of RPL patients in Northeastern China.

We enrolled pregnant women who met the following inclusion

criteria: women who were planning to conceive or had already

conceived; had a history of pregnancy loss (≥2); without anymental

disease; and agreed to participate in the project and follow-up.

After the screening process, 1,588 women were deemed eligible

to participate, out of which 947 agreed to participate. For the

current analysis, we excluded non-RPL cases (n = 55), those with

uterine anatomical abnormalities (n = 89), ineffective treatment of

immune and endocrine abnormalities during pregnancy (n= 126),

mother-paired loss to follow-up (n = 31), multiple pregnancies

(n = 65), pregnancy termination (birth defects, abortions, or

intrauterine deaths) (n = 116), and chronic diseases (n = 6). As

a result, 459 singleton mother–infant pairs were included in the

final analysis.

At the enrollment visit, face-to-face interviews were conducted

using structured questionnaires administered by trained doctors

to collect information on demographic and socioeconomic status

and medical history. Subsequently, we collected the information

from medical records and prospectively followed up until delivery,

pregnancy termination, or loss of follow-up. Participants were

followed up at 19.6 (±3.58) weeks of gestation for the detection

of NTMs in maternal blood, including Cu, Zn, Fe, Mg, and Ca.

All participants provided written informed consent, and the ethics

committee of China Medical University approved the study.

2.2 Exposure: nutritional trace metals

Nutritional trace metals (Zn, Cu, Fe, Ca, and Mg) were

detected in the second trimester (pregnancy weeks: 19.6 ± 3.58)

in maternal blood. Sample collection, preservation, and detection

were performed at the Central Laboratory of Shengjing Hospital

of China Medical University. Detailed methods including: using

atomic absorption spectrometry to measure the concentrations of

Zn, Cu, and Fe and the methane-based xylenol blue (MXB) color

development method and molybdate direct method to measure

the concentrations of Ca and Mg separately (25). The NTMs

were measured using the atomic absorption spectrometer system

BH5300S (Boya (Beijing), China) and the ARCHITECT automated

biochemical analysis system c16000 (Abbott, USA). The protocol

was qualified by the ChinaMetrology Accreditation (CMA) system.
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The units for Zn, Cu, and Fe were µmol/L, while the units for

Ca and Mg were mmol/L. We converted the detection results to

units of µg/L by multiplying with the molecular mass, enabling

comparison with other studies. In the subsequent analysis, we

transformed the continuous concentrations into quantiles.

2.3 Outcomes: preterm birth in RPL

The gestational week was calculated and corrected based on an

ultrasound examination. In China, RPL was defined as two or more

consecutive abortions (26). PTB was defined as a case group with a

live birth within a gestational age between 28 and 36+6 weeks. Two

subtypes of PTB were further distinguished: spontaneous preterm

birth (sPTB) and iatrogenic preterm birth (iPTB) (27). Iatrogenic

preterm birth refers to pregnancies that require early termination of

pregnancy due to obstetric complications ormedical comorbidities.

Thus, we considered a successful pregnancy with PTB in RPL as the

primary outcome. Conversely, women who delivered at≥37 weeks

in RPL were regarded as controls.

2.4 Covariates

The demographic and socioeconomic status and medical

history of participants were collected at the time of recruitment.

Pregnant women provided information about their age at

enrollment, educational attainment, household income per month,

and detailed adverse pregnancy histories through interviewer-

administered questionnaires. We treated maternal age, pre-

pregnancy BMI, spontaneous abortion frequency, and gestational

weeks of detection as continuous variables. We categorized

maternal educational attainment into three groups (senior high

school or below, university or college, and postgraduate or above);

household income per month (Chinese Yuan,U) into three groups

(≤7,000, 7,000–<10,000, and >10,000); calcium supplement into

four groups (600mg qd, 600mg bid, 600mg tid, and unknown);

iron supplement into two groups (yes vs. no); gender of infants

into two groups (male vs. female); and hypertensive disorders

in pregnancy (yes vs. no). We calculated pre-pregnancy body

mass index (BMI) by dividing weight (kilograms) by the square

of measured height (meters) and treated pre-pregnancy BMI as

continuous variables (28).

2.5 Statistical analysis

To reduce heterogeneity in our study, we implemented

propensity score matching (PSM) with a 1:3 protocol to minimize

selection bias and control for potential covariates. Maternal age,

gestational weeks of detection, pre-pregnancy BMI, education

attainment, household income per month, calcium supplement

usage, iron supplement usage, and number of abortions were

used as matching factors. We adopted the nearest neighbor

score matching principle and excluded four unmatched cases.

Continuous variables were reported as mean ± standard deviation

(SD), while categorical variables were reported as frequency

(percentage).We compared PTB and control groups using the non-

parametric test and the chi-square (χ2) test. Subsequently, we used

the multiple logistic regression model to assess the association by

calculating crude and adjusted odds ratios (ORs) and their 95%

confidence intervals (CIs) for PTB and sPTB in RPL. Furthermore,

themultiple linear regressionmodel was also utilized to evaluate the

association between concentrations of NTMs and gestational weeks

of delivery.

To produce accurate estimates and avoid collinearity, we

utilized elastic-net regularization (ENET) to identify significant

metals as predictionmarkers (29). ENET combined the strengths of

the Lasso and Ridge models, providing enhanced prediction power.

For the ENET regression, we demonstrated the optimal values

of α and λ through 10-fold cross-validation, aiming to minimize

misclassification error. In this analysis, we only penalized the metal

variables, while the covariates (same as the single-metal model)

were included in the model. The NTMs with non-zero coefficients

from the ENETmodel represented the key contributors driving the

associations with PTB. Subsequently, we extracted the important

components and interaction terms to calculate the environmental

risk scores (ERSs) (30). We constructed the K–M survival analysis

model to assess the association between ERSs and PTB in RPL,

using PTB as the survival outcome and gestational week of delivery

as the survival time.

Before establishing the BKMR model, we applied ln-

transformation to the concentrations of NTMs (22). Bayesian

kernel machine regression (BKMR) was utilized to estimate the

overall effect, identify key components in the mixture driving

the associations with PTB in RPL, capture the potential non-

linear relationships, and identify interactions between the NTMs

(31). The posterior inclusion probabilities (PIPs) can gauge the

importance of each NTM. Variables with PIP values greater

than 0.5 were considered statistically significant. We conducted

component-wise variable selection for the five metals and evaluated

the individual and combined effects with 50,000 iterations of the

Markov chain Monte Carlo (MCMC) sampler (8). Furthermore,

we validated the stability of our conclusions using the ROC

curves. Additionally, we constructed the product of Zn and Cu

concentrations and employed logistic regression to assess the

combined effect of these two metals on PTB in RPL. All analyses

were performed using R 4.2.2 software (R Core Team, Austria) and

the following packages: MatchIt (version 4.5.0), glmnet (version

4.1.6), BKMR (version 0.2.2), and pROC (1.18.4).

3 Results

3.1 Characteristics of participants

In our study, 459 singleton mother–infant pairs were included

in the final analysis (Figure 1). Moreover, 8.3% of participants

experienced preterm birth (38 out of 459 participants). After

applying propensity score matching (PSM) in a 1:3 ratio, some

participants dropped out due to a lack of appropriate matching.

At last, we included 94 controls and 34 PTB patients in the

final analyses. Compared with term delivery, those with PTB

had a slightly higher BMI (22.8 ± 3.65 vs. 23.9 ± 3.48) and

were more likely to have lower levels of educational attainment
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FIGURE 1

Flow chart.

(frequency of senior high school or below: 16.4% vs. 31.6%)

and showed a lower likelihood of using iron supplements (11.4%

vs. 0) in the total population. In the PTB group, participants

tended to have more hypertensive disorders in pregnancy (5.9%

vs. 18.4%). However, there were no significant differences in age

at enrollment, household income per month, calcium supplement

usage, or gestational weeks of detection between the two groups.

We used PSM to minimize selection bias and avoid collinearity.

In the PSM sets, no significant differences were observed

between women with and without PTB in RPL (Table 1). The

detailed concentration of NTMs in the included participants is

presented in Supplementary Table S1. Additionally, we compared

the concentrations of the NTMs with previous studies, as shown in

Supplementary Table S2.

3.2 Single NTM and PTB in RPL: multiple
logistic and linear regression models

Table 2 shows the associations between individual NTM and

PTB risk in RPL, which are assessed using the multiple logistic

regression model. The crude model (Model 1) was derived without

controlling for covariates. After adjusting for potential covariates

(Model 3), we observed that higher concentrations of Cu (quantile

4 [Q4] vs. Q1, odds ratios [OR]: 0.21, 95%CI: 0.05, 0.74; Q3 vs.

Q1, OR: 0.23, 95%CI: 0.06, 0.79) and Zn (Q4 vs. Q1, OR: 0.19,

95%CI: 0.04, 0.77) were associated with a lower probability of PTB.

However, no significant associations were found for other single

exposures (Fe, Ca, and Mg). Similar results were obtained when

associations between individual NTM exposure and sPTB in RPL

were assessed. The concentration of Cu was associated with a lower

risk of sPTB in RPL (Q4 vs. Q1, OR: 0.05, 95%CI: 0.002, 0.40; Q3

vs. Q1, OR: 0.22, 95%CI: 0.04, 0.9). However, consistent results were

not observed for Zn in sPTB in RPL.

We further investigated the association between individual

NTM and gestational weeks of delivery using the multiple linear

regression model (Table 3). In the adjusted model (Model 3), the

concentrations of Zn (β : 0.08, 95%CI: 0.06, 0.11, p < 0.05) and Cu

(β : 0.32, 95%CI: 0.25, 0.38, p< 0.05) were positively associated with

gestational weeks of delivery.

3.3 Multiple NTMs and PTB in RPL:
elastic-net regularization model (ENET)

In the ENET model, we determined the main components

and interaction terms using the ln-transformed and scaled values

of the nutritional trace metals concentrations while adjusting

for the same covariates in the single-metal model. λ and α

were determined as 0.03795 and 0.9, respectively, through 10-

fold cross-validation (Supplementary Figure S1). As shown in

Figure 2A, the ENET model revealed non-zero coefficients (β 6=0)

for three individual components and three interaction terms after

adjustment for covariates. Two metals (Zn and Cu) were inversely

associated with PTB in RPL (β < 0), while Mg exhibited a

positive association with PTB in RPL (β > 0). Notably, Cu

showed the largest magnitude of β coefficient (β = −0.382),

signifying the change in log-odds of PTB per increment in

standardized ln-transformed and scaled metal concentrations. In

addition, Cu demonstrated significant interactions with Ca (β =

0.283), Zn (β =0.277), and Fe (β = 0.066), all of which were

positively associated with PTB in RPL. For further analyses, we

constructed environmental risk scores (ERSs) according to the

fitted ENET model and categorized individual ERSs into quartiles.

As shown in Figure 2B, higher ERSs values were significantly

associated with shorter gestational weeks of delivery in the K–M

survival analysis.
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TABLE 1 Demographic characteristics of participants according to the case and control group in RPL.

Variables All participants Propensity score-matched sets

Control
(n = 421)

Preterm birth
(n = 38)

p valuea Control
(n = 94)

Preterm birth
(n = 34)

p valuea

Age (years) 33.0± 4.8 32.9± 3.6 0.93 32.7± 3.75 33.5± 3.27 0.30

BMI (kg/m2) 22.8± 3.65 23.9± 3.48 0.07 22.9± 3.38 23.3± 3.33 0.55

Educational level (%) 0.07 0.91

Senior high school or below 69 (16.4) 12 (31.6) 22 (23.4) 7 (21.2)

University or College 325 (77.2) 25 (65.8) 68 (72.3) 25 (75.8)

Postgraduate or above 27 (6.4) 1 (2.6) 4 (4.3) 1 (3.0)

Household income per month (CNY) 0.52 0.75

≤7,000 141 (32.8) 14 (36.8) 33 (35.1) 10 (30.3)

7,000–<10,000 208 (49.4) 20 (52.6) 47 (50.0) 19 (57.6)

>10,000 77 (17.8) 4 (10.5) 14 (14.9) 4 (12.1)

Calcium supplement usage (%) 0.99 NA

600mg bid 231 (54.9) 14 (55.3) 150 (35.2) 14 (35.9)

600mg qd 146 (34.7) 21 (36.8) 232 (54.5) 21 (53.8)

600mg tid 42 (10.0) 4 (7.89) 42 (9.9) 4 (10.3)

Unknown 2 (0.4) 0 (0.0) 2 (0.5) 0 (0)

Iron supplement usage (%) <0.05∗ NA

Yes 48 (11.4) 0 (0) 49 (11.5) 0 (0)

No 373 (88.6) 38 (100) 377 (88.5) 39(100)

Number of abortions 2.29± 0.77 2.53± 0.89 0.12 2.41± 0.932 2.48± 0.834 0.69

Gestational weeks of detection 19.6± 3.55 19.6± 3.63 0.80 19.4± 3.35 19.3± 3.78 0.85

Gestational hypertension <0.05∗ 0.77

Yes 25 (5.9) 7 (18.4) 12 (12.8) 5 (14.7)

No 396 (94.1) 31 (81.6) 82 (87.2) 29 (85.3)

aNonparametric test and chi-square (χ2) test between the control and case groups.

BMI, body mass index.
∗p < 0.05.

3.4 Multiple NTMs and PTB: Bayesian
kernel machine regression

We first identified the significant metal components in the

mixture and assessed their individual and combined effects on

PTB in RPL in the BKMR model using the ln-transformed

concentrations. Supplementary Table S3 shows that two metals,

Cu (PIP = 0.84724) and Zn (PIP = 0.81200), were selected

as significant variables in the mixture with PIP values >0.5.

Figure 3A illustrates the combined effects of the metal mixture

(comprised of five metals) on the latent continuous binary outcome

of PTB in RPL. The results indicated a decreasing trend in PTB

risk as the cumulative level across all metal exposures increased,

although the findings were not statistically significant (p > 0.05).

The independent effect of each metal on the mixed exposure is

shown in Figure 3B. Visually, when the concentrations of other

metals were constantly fixed at their 25th and 50th percentiles

respectively, Cu was still significantly associated with a lower

risk of PTB in RPL. Univariate dose–response relationships were

estimated to explore potential non-linear correlations. As shown

in Figure 3C, when each metal was fixed at its median value, Zn

exhibited a non-linear association with PTB. Moreover, Zn had a

negative linear relationship with preterm birth at higher levels (the

confidence intervals at lower and higher distributions are wide due

to sparse data). Additionally, Figure 3D demonstrates the bivariate

exposure-response functions for each pair of metals on PTB in RPL.

Notably, when Cu was fixed at the 25th quantile, the slope between

other metals (Zn, Fe, and Ca) and PTB was different from that

when Cu was fixed at the 50th or 75th percentile, indicating the

existence of potential interactions between Cu and other metals

(Zn, Fe, and Ca). To validate the combined effect of Zn and Cu,

we found that their interaction significantly reduced the risk of

preterm birth (Q4 vs. Q1, OR: 0.14, 95%CI: 0.03, 0.54), as shown

in Supplementary Figure S2. To validate the external applicability

and robustness of our results, we conducted the ROC curve analysis

(Supplementary Figure S3). The results indicated that total scores
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TABLE 2 The association between single nutritional trace metal and preterm birth.

Preterm birth (n = 34), OR (95%CI) Spontaneous preterm birth (n = 19), OR (95%CI)

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Zn Q1 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

Q2 1.00 (0.34, 2.90) 0.97 (0.31, 2.95) 0.97 (0.32, 2.96) 1.50 (0.38, 6.57) 1.28 (0.30,5.87) 1.28 (0.30,5.93)

Q3 1.15 (0.40, 3.32) 1.16 (0.37, 3.72) 1.13 (0.35, 3.64) 1.83 (0.48, 7.86) 1.33 (0.30, 6.39) 1.44 (0.31, 7.23)

Q4 0.23 (0.05, 0.85)∗ 0.22 (0.04, 0.85)∗ 0.19 (0.04, 0.77)∗ 0.38 (0.05, 2.13) 0.31 (0.04, 1.82) 0.28 (0.02, 1.83)

Cu Q1 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

Q2 0.66 (0.23, 1.85) 0.60 (0.19, 1.82) 0.61 (0.19, 1.85) 0.48 (0.13, 1.64) 0.47 (0.11, 1.78) 0.43 (0.10, 1.63)

Q3 0.34(0.10, 1.02) 0.25 (0.07, 0.84)∗ 0.23 (0.06, 0.79)∗ 0.32 (0.08, 1.16) 0.24 (0.05, 0.94) 0.22 (0.04, 0.90)∗

Q4 0.27 (0.08, 0.85)∗ 0.22 (0.05, 0.75)∗ 0.21 (0.05, 0.74)∗ 0.08 (0.00, 0.47)∗ 0.05 (0.00, 0.38)∗ 0.05 (0.002, 0.40)∗

Fe Q1 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

Q2 0.38 (0.11, 1.23) 0.39 (0.10, 1.34) 0.35 (0.09, 1.24) 0.28 (0.04, 1.37) 0.23 (0.03, 1.27) 0.21 (0.03, 1.20)

Q3 0.67 (0.22, 1.95) 0.65 (0.20, 2.08) 0.63 (0.19, 2.02) 0.61 (0.14, 2.42) 0.55 (0.12, 2.36) 0.53 (0.11, 2.37)

Q4 0.91 (0.32, 2.58) 0.88 (0.27, 2.82) 0.85 (0.26, 2.78) 1.17 (0.34, 4.16) 1.06 (0.26, 4.40) 1.04 (0.24, 4.61)

Ca Q1 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

Q2 1.49 (0.49, 4.71) 1.55 (0.47, 5.34) 1.56 (0.47, 5.41) 1.25 (0.33, 4.86) 1.16 (0.27, 5.04) 1.20 (0.28, 5.17)

Q3 1.00 (0.30, 3.33) 0.73 (0.20, 2.68) 0.74 (0.20, 2.75) 0.80 (0.18, 3.37) 0.59 (0.11, 2.82) 0.63 (0.12, 3.09)

Q4 1.79 (0.58, 5.73) 1.62 (0.50, 5.49) 1.60 (0.49, 5.45) 1.00 (0.22, 4.27) 0.86 (0.18, 3.86) 0.84 (0.17, 3.83)

Mg Q1 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

Q2 0.84 (0.26, 2.67) 0.81 (0.24, 2.70) 0.84 (0.24, 2.85) 0.39 (0.05, 1.96) 0.38 (0.05, 2.08) 0.47 (0.06, 2.67)

Q3 1.69 (0.54, 5.30) 1.57 (0.48, 5.25) 1.67 (0.50, 5.67) 1.20 (0.27, 5.14) 0.86 (0.17, 4.00) 1.07 (0.21, 5.26)

Q4 1.61 (0.54, 4.90) 1.74 (0.55, 5.72) 1.73 (0.53, 5.70) 2.06 (0.60, 7.68) 1.84 (0.48, 7.49) 2.05 (0.53, 8.56)

Table analyzed using multiple logistic regression.

Model 1: crude model.

Model 2: adjusted for age, BMI, educational attainment, household income per month.

Model3: adjusted for Model 2+ number of abortions+ hypertensive disorders in pregnancy.

OR, odds ratio; Q1, quantile 1; Q2, quantile 2; Q3, quantile 3; Q4, quantile 4; Zn, zinc; Cu, copper; Mg, magnesium; Ca, calcium; Fe, iron; BMI, body mass index.
∗p < 0.05.

TABLE 3 The association between single nutritional trace metal and

gestational weeks of delivery.

Metal Gestational weeks of delivery (weeks)

Model 1 Model 2 Model 3

Zn 0.14 (0.12, 0.17)∗ 0.09 (0.07, 0.12)∗ 0.08 (0.06, 0.11)∗

Cu 0.22 (0.16, 0.29)∗ 0.30 (0.23, 0.36)∗ 0.32 (0.25, 0.38)∗

Fe 0.04 (−0.03, 0.10) 0.00 (−0.06, 0.07) 0.00 (−0.07, 0.06)

Ca −0.01 (−1.69 1.67) −0.02 (−1.76, 1.71) −0.03 (−1.77, 1.72)

Mg −0.06 (−1.84, 1.73) −0.05 (−1.89, 1.78) −0.05 (−1.90, 1.79)

Table analyzed using multiple linear regression.

Model 1: crude model.

Model 2: adjusted for age, BMI, education attainment, household income per month.

Model3: adjusted for Model 2+ number of abortions+ hypertensive disorders in pregnancy.

OR, odds ratio; Q1, quantile 1; Q2, quantile 2; Q3, quantile 3; Q4, quantile 4; Zn, zinc; Cu,

copper; Mg, magnesium; Ca, calcium; Fe, iron; BMI, body mass index.

calculated by PIPs held predictive value in the overall population,

particularly among mothers delivering female infants (AUC: 0.66,

95% CI:0.53, 0.79).

4 Discussion

In our study, we employedmultiple logistic regression, multiple

linear regression, elastic-net regularization model, and Bayesian

kernel machine regression model to investigate the associations

between maternal NTMs in the second trimester and PTB in RPL.

Across all these methods, Cu was consistently identified as the most

significant component among the NTMs and exhibited an inverse

association with PTB in RPL. Furthermore, Cu showed a potential

interaction with Ca, Zn, and Fe in the ENET and BMKR models.

Moreover, the non-linear relationship between Zn and PTB was

found in the BKMR model. Finally, we used K–M survival analysis

and ROC curve analysis to assess the robustness of our results.

The study identified Cu as the most important factor among

NTMs for PTB in RPL, which was similar to the previous

findings in non-RPL. For instance, in a case–control study in

Iran, Gohari et al. reported that Cu and Zn serum levels in

mothers with preterm delivery were significantly lower than in

mothers with term delivery (32). However, the sample collection

was conducted at delivery, not in the second trimester. Moreover,

Li et al. reported that lower Cu levels in the umbilical cord had
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FIGURE 2

Multiple NTMs and preterm birth in RPL: elastic-net regularization model: (A) coe�cient chart; (B) K–M survival analysis; model was adjusted for

pre-pregnancy BMI, educational attainment, household income per month, age, number of abortions, and hypertensive disorders in pregnancy.

a significantly higher risk of PTB (OR: 5.06, 95%CI:2.74, 9.34)

and early-term birth (OR:1.36, 95%CI:1.10, 1.69) (33). No studies

demonstrated the association between lower Cu levels in maternal

blood in the second trimester and PTB in RPL. There were some

inconsistent findings with our results. For example, Ashrap et al.

confirmed no statistically significant association between maternal

blood concentrations of Cu in the second trimester and PTB (6).

Additionally, Hao et al. reported that serum Cu concentrations in

the first trimester were positively associated with spontaneous PTB

in a prospective cohort study in China (14). A recent meta-analysis

showed that women with pregnancy loss showed significantly

lower Cu concentrations than normal pregnant women, which

demonstrated that Cu homeostasis was negatively associated with

pregnancy loss (SMD = −1.42, 95% CI: −1.97 to −0.87, p <

0.001) (34). Furthermore, in the LIFECODES birth cohort, Kim

et al. reported that maternal urinary Cu in the third trimester was

associated with an increased risk of PTB (10). A possible reason

might be attributed to differences in sample types and specific

trimesters. Compared with our study in RPL [median (IQR):

1,131.92 (1,123.49, 1,520.66), µg/L], the investigations conducted

by Ashrap et al. [mean (SD): 1,622 ± 1.25, µg/L] and Hao et al.

[median (IQR): 1,720 (1,360, 1,980), µg/L] exhibited higher Cu

(Cu) concentrations in their populations (6, 14). Conversely, Li

et al. observed relatively lower Cu concentrations [median (IQR):

298.2 (123.1, 699.6), µg/L] in their study, akin to our findings (33).

In other words, there may be a tendency toward an association

between Cu and PTB. Low-dose exposure increases the risk of PTB;

however, high-dose exposure may also elevate the risk of PTB.

Previous studies indicated that increasing urinary Cu levels were

associated with higher oxidative stress biomarkers (35). Excessive

Cu excretion in urine led to insufficient antioxidant capacity, which

might represent an important etiology for PTB. Recent studies have

also shown that Cu deficiency is more prevalent in adult women

than men in China (36). Therefore, the adverse effects of low

Cu levels or even Cu deficiency on pregnancy outcomes deserved

significant attention, especially for RPL.

Cu is an essential mineral that plays a crucial role in various

physiological processes (37). The mechanisms underlying how

lower levels of Cu contributed to PTB were multifaceted. Infection

and aseptic inflammation were the main causes of PTB (38).

Moreover, Cu was intricately involved in the development of

immune cells and the signal transduction of immune responses.

Thus, lower levels of Cu can lead to immune cell dysfunction

and an increased risk of infection (39, 40). Furthermore, Cu

played a significant role in neutralizing harmful free radicals and

reducing oxidative stress (41, 42). As a component of enzyme

structures, Cu was also essential in the synthesis of elastin and

collagen, which contributed to enhancing uterine elasticity (43).

Additionally, Cu was involved in the production of nitric oxide

(NO) and angiogenesis, which helped regulate blood vessel dilation

and blood flow to the uterus (44, 45). Interestingly, PTB and

low-birth-weight infants tended to have lower Cu levels at birth,

which may be related to maternal exposure to Cu deficiency.

Understanding these mechanisms was important for developing

effective strategies to prevent and manage PTB in RPL associated

with Cu homeostasis (46).

Our findings unveiled a potential non-linear correlation

between Zn concentrations and the risk of PTB in RPL. In a similar

vein, Ashrap et al. demonstrated a comparable U-shaped pattern

in Zn concentration, yet their findings indicated an association of
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FIGURE 3

Combined e�ect of the NTMs on preterm birth in RPL estimated by BKMR (A) overall e�ect of NTMs on preterm birth (estimates and 95%CI); (B)

independent e�ect of NTMs on preterm birth (estimates and 95%CI); (C) univariate cross-section (non-linear relationship); (D) bivariate

exposure-response functions for each of two metals on preterm birth; model was adjusted for pre-pregnancy BMI, educational attainment,

household income per month, age, number of abortions, and hypertensive disorders in pregnancy.

higher concentrations with an increased risk of PTB (6). These

non-linear patterns indicated that both excessive and insufficient

exposure might have an impact on PTB, which underscored

the intricacies of micronutrient interactions and their potential

influence on pregnancy outcomes. Another important finding in

our study was the potential interactions of Cu with Zn, Fe, and

Ca, as revealed by both the ENET and BKMR models in RPL. This

was consistent with the study by Liu et al., who reported similar

potential interactions between Zn and Cu with PTB in non-RPL

(8). The antagonistic relationship between Zn and Cu and PTB has

been extensively studied. For example, Baecker et al. observed that

Cu supplementation in pregnant female rats led to a significant

decrease in brain Zn levels, particularly in the hippocampus

(47). Furthermore, Kinnamon reported competition between Cu

and Zn in the fetus and placenta, indicating the importance of

optimizing the ratio of these elements during pregnancy to enhance

reproductive outcomes (48). Interestingly, another case–control

study conducted by Priya et al. demonstrated potential interactions

between Fe and Cu in the case of polycystic ovary syndrome (49).

Andersen et al. proposed that Cu deficiency not only affected the

concentration of Fe but also indirectly impacted Fe transporters,

which affected the delivery of Fe to the fetus (50). From the
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perspective of utilization, nutrient metals play a crucial role as

signal transduction molecules in the development of the immune

system, blood formation, antioxidant stress, cell differentiation,

and apoptosis (51). They were involved in a complex regulatory

network that controls these physiological processes.

There were several strengths of our study. First, we employed

a population-based cohort design in the context of RPL, which

allowed us to capture a representative and special sample in

northeastern China, enhancing the generalizability of our findings.

Second, to ensure the reliability and validity of our results,

we employed multiple statistical models. Specifically, we utilized

logistic regression, linear regression, the ENET model, and the

BKMR model. Each model had its own unique advantages

and limitations. This comprehensive approach strengthened the

robustness of our conclusions and provided a more comprehensive

understanding of the associations between NTMs and PTB

in RPL.

Our study had several limitations. First, the sample size

of our study was limited due to the difficulty of recruitment,

which constrained the assessment of the association between

NTM deficiency and PTB. Second, we did not apply the same

detection method to various metals, which was distinguished

from previous studies; however, it does not affect the accuracy

of the results (8). Third, the concentration of NTMs was

only detected in the second trimester, which may not reflect

the concentration status of the first and third trimesters.

However, limited studies investigated the exposure to the

second trimester of PTB. Finally, there could still be some

potential covariates due to unmeasured factors, such as maternal

dietary information.

5 Conclusion

To summarize, we have recognized the individual and

combined associations between NTMs and the risk of

PTB in RPL. Detailed investigations revealed that maternal

blood Cu and Zn levels in the second trimester were

inversely associated with PTB in RPL. Additional studies

are warranted to confirm these associations in RPL and

understand the mechanisms behind the risk of NTMs and

PTB in RPL.
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