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Background: Dietary intake is widely known to play a crucial role in achieving 
peak bone mass among children and adolescents. Unfortunately, this information 
is lacking among Arab adolescents, an understudied demographic that has 
recently been observed to have a high prevalence of abnormal mineralization 
markers [low serum 25(OH)D, high serum alkaline phosphatase (ALP), low calcium 
(Ca) and/or inorganic phosphate (Pi)] suggestive of biochemical osteomalacia 
(OM, defined as any 2 of the 4 parameters). In order to fill this gap, we aimed to 
evaluate the associations of serum markers of biochemical OM with dietary intake 
of macronutrients, vitamins and trace minerals.

Methods: Saudi adolescents (N  =  2,938, 57.8% girls), aged 12–17  years from 60 
different schools in Riyadh, Saudi Arabia were included. Dietary intake of nutrients 
was calculated following a semi-quantitative 24  h dietary recall over 3 weekdays 
and 1 weekend-day using a validated food frequency questionnaire. Compliance 
to reference daily intake (RDI) of macronutrients, vitamins and trace minerals 
were calculated. Fasting blood samples were collected and circulating levels of 
25(OH)D, ALP, Ca, and Pi were analyzed.

Results: A total of 1819 (1,083 girls and 736 boys) adolescents provided the dietary 
recall data. Biochemical OM was identified in 175 (9.6%) participants (13.5% in girls, 
3.9% in boys, p  <  0.01) while the rest served as controls (N  =  1,644). All participants 
had serum 25(OH)D levels <50  nmoL/L. Most participants had very low dietary 
intakes of Ca (median  ~  290  mg) and vitamin D (median  ~  4  μg) which are far below 
the RDI of 1,300  mg/day and 20  μg/day, respectively. In contrast, excess dietary 
intakes of Pi, Na, K, and Fe were observed in all participants. In the biochemical 
OM group, thiamine and protein intake were significant predictors of serum 
25(OH)D, explaining 4.3% of the variance perceived (r  =  0.23, adjusted r2  =  4.3%, 
p  =  0.01). Among controls, dietary vitamin C and vitamin D explained 0.6% of the 
total variation in serum 25(OH)D (r  =  0.09, adjusted r2  =  0.6%, p  =  0.004).

Conclusion: Arab adolescents do not meet the RDI for dietary Ca and vitamin D, 
and none have sufficient vitamin D status (25(OH)D levels >50  nmol/L) but they 
exceed the RDI for dietary Pi. Interpreting these data in the light of the increased 
prevalence of rickets in Arab countries, food fortification to optimise vitamin D 
and Ca intake in Saudi adolescents should be considered.
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1. Introduction

Sustaining a healthy diet has been consistently considered a major 
factor for preventing major chronic non-communicable diseases 
(diabetes, hypertension, atherosclerosis, etc.) and mortality (1, 2). 
Despite this established fact, the most recent Global Nutrition Report 
(2022) has implicated that among the greatest global public health 
challenges in modern times are poor or unhealthy diet characterized 
by over consumption of highly processed foods that are low in 
nutrients, and malnutrition (3). In fact, a recent large-scale data 
gathered from 185 countries between 1990 and 2018 demonstrated 
that while diet quality was considered acceptable for infants and 
children globally, this pattern appears to worsen over time among 
older children and adolescents, having relatively lower quality scores 
compared to adults. This poor-quality score among adolescents needs 
to be addressed as it can substantially affect their bone health, among 
others, as it has been established that peak bone mass can 
be significantly altered by nutrition aside from genetics (4). Dietary 
calcium and protein in particular impact bone capital, both of which 
are found in dairy products, and children who consume fewer dairy 
products are more susceptible to fragility fracture as adults (5). 
Unfortunately, this poor dietary pattern is most notable in the Middle 
East and North Africa (MENA) with folate, iron and vitamin D being 
the most common micronutrient deficiencies (6, 7). Vitamin D 
deficiency is overwhelmingly common in this region, particularly in 
Saudi  Arabia (SA) where the prevalence remains high, despite 
abundant year-round sunshine (8). Common factors for vitamin 
deficiency in SA include extreme heat during summer season, as well 
as cultural/religious factors such as the full covering of (mostly) 
women when going outdoors (8). In SA alone, vitamin D deficiency 
has been linked to a host of extra-skeletal disorders such as 
cardiovascular disease (9), type 2 diabetes mellitus (10), and premature 
biological ageing (11). Most of these studies however were conducted 
in adults, and available data on extra-skeletal effects of vitamin D 
deficiency in younger Arab populations are scarce.

Among the more well-known effects of chronic, severe vitamin D 
deficiency in children and adolescents are nutritional rickets and 
osteomalacia (OM) (12, 13). Their exact prevalence is difficult to 
ascertain, as they mostly remain clinically underdiagnosed in apparently 
healthy children and adolescents until symptoms such as hypocalcaemic 
complications, bone pain, stunted growth and skeletal deformities 
become apparent (14). The gold standard to confirm a diagnosis of OM 
is taking a transiliac bone biopsy, which due to its invasive nature is 
rarely performed. Therefore, non-invasive alternatives such as 
biochemical markers of OM are gaining more interest lately, despite 
being an old concept (15). Rickets and OM produce an identical, typical 
biochemical disease signature (above all elevated levels of parathyroid 
hormone and alkaline phosphatase). Several operational definitions of 
biochemical OM have been proposed for epidemiologic studies (15–
17). Despite the absence of large-scale studies, nutritional rickets and 
OM have been reported to be increasing globally, especially among 

high-risk populations such as dark-skinned individuals and migrant 
populations (18). To allow early recognition of these hypomineralization 
disorders, it is therefore essential to establish diagnostic biomarkers.

We have previously investigated the prevalence of biochemical 
OM, defined as having any 2 of the 4 circulating serum markers of 
impaired mineralization, namely low 25OH vitamin D (25(OH)
D < 30 nmoL/L), elevated alkaline phosphatase (ALP) for age and sex, 
low calcium (Ca, <2.1 mmoL/L) or low inorganic phosphate (Pi, age 
and sex-configured values) in a cohort of 2,938 Arab adolescents aged 
12–17 years. This study found an over-all prevalence of biochemical 
OM of 10% (15% in girls and 4% in boys) (19).

Given that 1 in every 10 Arab adolescent in SA has biochemical 
OM, it is crucial to investigate the influence of diet in the bone health 
of this understudied population, which, to the best of our knowledge, 
has never been undertaken on a large-scale. In the present study, 
we evaluated dietary recall data in the same cohort, to determine the 
differences in dietary intake of macronutrients, vitamins and trace 
minerals in Arab adolescents with and without biochemical OM and 
explore the association of these nutrients with OM based on 
biomarkers of bone mineralization.

2. Methods

This observational study is part of a large project aimed at 
establishing the prevalence of biochemical OM among Arab 
adolescents, which was conducted between September 2019 and 
March 2021 (19). The study was done in collaboration with the 
Ministry of Education in SA. Healthy adolescent boys and girls (no 
acute medical condition or signs and symptoms that required 
immediate clinical attention, physically and mentally able to engage 
in school activities) aged 12–17 years enrolled in more than 60 
preparatory and secondary schools in Riyadh, SA, were actively 
recruited to determine the prevalence of biochemical OM (19), and 
its association with dietary intake of vitamins and minerals in this 
population (present study). Institutional Review Board (IRB) approval 
was obtained from the College of Medicine, King Saud University, 
KSU, Riyadh, SA (E-21-6,095, approved 18 January 2019; amended 7 
April 2022). Only adolescents who provided consent/assent, blood 
samples and dietary recall information were included. Participants 
were excluded if they did not consent and/or were medically unfit 
(with physical and/or mental diseases/disabilities that can interfere 
with blood and data collection) to participate. Expatriate (non-Saudi) 
adolescents were excluded by default as they were mostly enrolled in 
community/private schools not covered by the government.

2.1. Data collection

Via flyers and school announcement, interested participants 
were invited to visit the primary care center nearest to their 
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respective schools in the morning and preferably on a fasted state 
(8 h minimum). At the primary care center, a trained research 
nurse, in conjunction with the in-house primary care physician, 
screened for eligibility and consented, as detailed in previous 
studies involving school participants (20, 21). Following screening, 
anthropometric measurements and blood samples were collected. 
Height (cm) and weight (kg), together with waist (cm) and hip 
circumferences (cm) were measured using standardized tools with 
the participants wearing light clothing. Blood pressure (BP, mmHg) 
was measured twice using appropriate cuffs with a 5 min resting 
interval and the mean was noted. Body mass index (BMI, kg/m2) 
and waist-hip-ratio (WHR) were calculated. LMS method was used 
to calculate BMI z-scores by using growth reference data for boys 
and girls for aged 5–19 years (22).

2.2. Blood sample collection and analysis

Fasting venous blood samples were collected, centrifuged on-site 
and labelled for immediate transport with packed ice to the Chair for 
Biomarkers of Chronic Diseases (CBCD) in KSU, Riyadh, SA, where 
all sample analysis was conducted. Fasting blood and serum samples 
upon arrival were immediately stored at −80°C for later use. Markers 
of bone mineralization which include circulating 25(OH)D, Ca, Pi, 
alanine transaminase (ALT) and ALP were measured using available 
facilities in CBCD which are routinely calibrated, as described in 
detail previously (19). Briefly, serum 25(OH)D was quantified using a 
chemiluminescent immunoassay (DiaSorin, Saluggia, Italy) [inter-
assay coefficient of variation (CV) of 10.6% and intra-assay CV of 
5.4%, with a lower detection limit of 10 nmol/L], while trace minerals 
(Pi, Ca and iron (Fe)), albumin and ALP were assessed using a 
biochemical analyzer (Konelab, Vintaa, Finland) that was routinely 
calibrated using manufacturer-provided quality control samples 
(Thermo Fisher Scientific, Espoo, Finland). The serum Ca*P product 
was calculated (in mmol2).

2.3. Dietary information

Participants were given the option to provide dietary 
information on the same day or within the week following blood 
extraction. A semi-quantitative validated 24 h food recall (23) was 
administered in a structured face-to-face interview with a trained 
dietician. Detailed information of all foods and beverages consumed 
by the participant in a 24 h period over 3 weekdays and one 
weekend-day was gathered as done in previous studies (24). For 
accuracy of data collection, participants were shown food model 
illustrations with varying dish, cup and utensil sizes to capture 
actual intake. The dietary recall collected was then entered digitally 
on a food software (ESHA’s Food Processor® Nutrition Analysis, 
OR, United  States) to assess participant’s total energy (kcal), 
macronutrients (fat, protein, carbohydrates (CHO) and fiber), trace 
minerals (Na, K, Ca, Pi, and Fe) and vitamin intakes (vitamin A, 
thiamine, riboflavin, vitamins B12, C and D) relevant to the present 
study. Nutrient recommendations were based on those published by 
the US Food and Nutrition Board (FNB) of the National Academy 
of Medicine (25). Reference daily intakes (RDI) were plotted with 
the obtained nutrient intake of participants to compare whether 

their consumption was within recommendations. All results 
obtained were shared individually with the participant and/or 
parent/guardian, together with the blood results and accompanying 
advice from the primary care physician. Adequacy index was 
calculated as daily nutrient intake/recommended allowance for sex 
and age × 100 and compared with the RDI of FNB (25, 26).

2.4. Biochemical OM

Participants were stratified according to the definition of 
biochemical OM, which, in the present study, used the previous 
operational classification of any two of the four serum markers of 
impaired mineralization (19) which include low 25(OH)D 
(<30 nmol/L), elevated ALP according to age- and sex-specific 
reference ranges (27), and either low Ca (<2.1 mmol/L) and/or low Pi 
according to pediatric ranges (28) (Supplementary Table S1).

2.5. Data analysis

Data were analyzed using SPSS v21.0 (Chicago, Illinois). Normal 
continuous variables were presented as mean ± standard deviation 
(SD) and non-normal continuous variables as median (quartile 1–
quartile 3). Frequencies were presented in percentage (%). 
Independent sample t-test and Mann–Whitney U test were used to 
compare participants with biochemical OM and those without, 
adjusted for sex. Pearson bivariate correlation analysis was also done 
to determine the associations between markers of impaired 
mineralization related to biochemical OM and nutritional intake 
(energy, macronutrients, vitamins, and trace minerals) in all 
participants and according to biochemical OM status. Lastly, stepwise 
regression analysis was applied to identify significant predictors using 
the markers of biochemical OM (Ca, Pi, 25(OH)D and ALP) as 
dependent variables and the dietary nutrient intake as independent 
variables. Value of p was considered significant at <0.05.

3. Results

Out of the original 2,938 adolescents who provided blood samples, 
only 62% or N = 1819 completed the 24 h dietary recall questionnaires. 
Hence, a total of 1819 (1,083 girls and 736 boys) were included in the 
present observational study (Figure  1), of whom 175 (9.6%) had 
biochemical OM (13.5% in girls, 3.9% in boys, p < 0.01). None of the 
participants had sufficient 25(OH)D level (above or equal to 
50 nmoL/L).

3.1. Clinical characteristics according to 
biochemical OM status

Table  1 shows the differences in anthropometric indices and 
biochemical profiles of adolescents with biochemical OM (N = 175) 
and without (N = 1,644 controls). Girls significantly outnumber the 
boys in the biochemical OM group (83% versus 17%; p < 0.001). There 
were no significant differences in age and anthropometrics in both 
groups even after adjusting for sex. Systolic BP was noted to be higher 
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in the control group but lost significance after adjustments for sex. 
Unadjusted comparisons in markers of biochemical OM showed 
significantly higher circulating levels of Ca, Pi, Ca*P, ALP, 25(OH)D, 
ALT, and Fe in the control group as compared to the biochemical OM 
group (Value of ps < 0.05). However, after adjusting for sex, only serum 
Ca, Pi, Ca*P product and 25(OH)D remained significantly higher in 
the control group (Value of ps < 0.001). As for % adequacy, lower 
intakes were observed only in dietary vitamin D and Ca among the 
dietary vitamins and minerals assessed (Table 2).

3.2. Dietary intake according to 
biochemical OM status

Differences in caloric and nutrient intake in those with and 
without biochemical OM are shown in Table 2. No differences were 
observed in macro- and micronutrient intake in both groups even 
after adjusting for sex. Age-appropriate RDI for each vitamin and 
mineral were compared to the actual median intake values obtained 
and showed that for all participants, excess intake of dietary Na, K, Pi, 
and Fe were observed. In contrast, none of the participants met the 
RDI for Ca. In terms of vitamin intake, participants were able to meet 
the RDI for most vitamins (A, thiamine, riboflavin, vitamins B12 and 
C) with the exception of vitamin D.

3.3. Associations of markers of biochemical 
OM with nutrient intake

Bivariate associations of dietary intake and markers of biochemical 
OM for all participants are presented in Table 3. Modest but significant 
inverse associations were observed between serum Ca and dietary 
fiber (r = −0.06; p < 0.05) as well as dietary Na, K, Pi, Fe, and vitamin 
A (all r = −0.05; p < 0.05). On the other hand, serum Pi was significantly 

and inversely associated with all macronutrients, as well as most 
vitamins and minerals with the exception of Ca, riboflavin and 
vitamin D. Similar inverse and significant associations were also 
observed between circulating serum ALP and macronutrients as well 
as most trace minerals with the exception of Ca. Serum ALP was the 
only marker for biochemical OM associated with dietary vitamin D 
intake (r = −0.06; p < 0.01), together with vitamins A, B12, and 
C. Lastly, serum 25(OH)D was not significantly associated with any of 
the macronutrients, vitamins and minerals (Table 3).

Stratification according to biochemical OM status revealed 
significant associations between markers of interest [Ca, Pi, ALP, and 
25(OH)D] and dietary intake (macronutrients, trace minerals, and 
vitamins; Table 4) which were not observed when all participants were 
considered. In the control group, only dietary fiber was inversely 
and significantly associated with serum Ca (r = −0.05; p < 0.05). 

TABLE 1 Anthropometric and biochemical characteristics of participants.

Parameters Control Biochemical 
OM

Value 
of p

Adjusted 
p-value

N 1,644 175

Age (years) 15.0 ± 1.7 14.8 ± 1.7 0.08 0.28

Boys 707 (43.0) 29 (16.6)
<0.001 –

Girls 937 (57.0) 146 (83.4)

Height (cm) 159.6 ± 10.3 158.5 ± 9.1 0.20 0.80

Weight (kg) 61.2 ± 16.5 62.2 ± 15.9 0.44 0.10

BMI (kg/m2) 23.9 ± 5.7 24.6 ± 5.9 0.10 0.09

BMI Z-score 0.0 ± 1.0 0.0 ± 0.1 0.51 0.61

Underweight 93 (5.7) 8 (4.6) 0.24 0.58

Overweight 464 (28.2) 53 (30.3) 0.38 0.85

Waist (cm) 73.2 ± 16.3 72.6 ± 15.1 0.69 0.26

Waist Z-score 0.54 ± 1.19 0.56 ± 1.16 0.78 0.22

Central Obesity 615 (37.4) 66 (37.7) 0.82 0.49

Hips (cm) 86.3 ± 18.0 87.4 ± 18.9 0.46 0.18

WHR 0.9 ± 0.1 0.8 ± 0.1 0.20 0.47

Systolic BP 

(mmHg)
116.3 ± 16.4 113.2 ± 17.8 0.03 0.21

Diastolic BP 

(mmHg)
72.4 ± 12.1 72.8 ± 12.1 0.68 0.60

Ca (mmol/L) 2.6 ± 0.3 2.3 ± 0.4 <0.001 <0.001

Pi (mmol/L) 1.5 ± 0.4 1.2 ± 0.3 <0.001 <0.001

Ca*P Product 3.8 ± 1.2 2.7 ± 1.0 <0.001 <0.001

ALP (U/L)
64.2 (43.3–

91.5)
63.9 (42.3–98.9) <0.001 0.11

25(OH)D 

(nmol/L)

33.3 (23.9–

44.7)
21.9 (17.5–25.7) <0.001 <0.001

ALT (U/L)
11.0 (8.1–

15.5)
11.0 (7.3–17.2) 0.02 0.97

Fe (μg/L)

876.8 

(607.5–

1099.9)

743.5 (476.6–

1151.5)
<0.001 0.76

Data presented as mean ± SD for normal variables and Median (Quartile 1–Quartile 3) for 
non-normal variables; p < 0.05 adjusted for sex considered significant.

FIGURE 1

Participant flow chart.
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Significant inverse associations with serum Pi were also observed with 
all macronutrients as well as dietary K, Pi, Fe, vitamin A, thiamine, 
and vitamin C. Similar significant but stronger inverse associations 
were seen with serum ALP and macronutrients, all minerals except 
Ca and most vitamins except thiamine and riboflavin. Again, no 
associations were elicited between serum 25(OH)D and dietary intake 
in the control group. In the biochemical OM group, no significant 
associations were seen between serum Ca and dietary intake of all 
nutrients assessed. Serum Pi in the biochemical OM group was not 
associated with any of the dietary vitamins, but was inversely 
associated with most minerals except Ca, as well as CHO and energy. 
Lastly, 25(OH)D showed significant positive associations with all 
macronutrients only after stratification and in the biochemical OM 
group. These significant positive associations were also observed in all 
minerals except Ca as well as all vitamins except thiamine (Table 4).

Figure 2A shows the box plot of ALP and 25(OH)D concentration 
according to biochemical OM status. Median concentrations of ALP 
(p < 0.001) and 25(OH)D (p < 0.001) were significantly lower in 
participants with biochemical OM as compared to controls. Figure 2B 
shows the mean serum concentrations of Ca (p < 0.001) and Pi (p < 0.001), 
both of which were significantly lower in participants with biochemical 
OM than controls. Figures 3A–C show the box plot of dietary Ca, Pi, and 
vitamin D intake among boys and girls, respectively. The median intake 
of Ca (p = 0.002) was significantly lower in boys than girls, while Pi intake 
(p < 0.001) was significantly lower in girls than boys. No significant 
difference in vitamin D intake was observed between boys and girls. 
Figure 4 shows the plotted associations between dietary Ca and Pi and 
boys and girls and showed no significant association with 25(OH)D.

TABLE 2 Nutrient intake according to biochemical osteomalacia status.

Parameters Intake Adequacy (%) RDI* Control 
(N  =  1,644)

Biochemical OM 
(N  =  175)

Adj. p-
value

Mean (SE) Mean (SE) Median (IQR) Median (IQR)

Energy (Kcal) 7290.9 (538.3) 364.5 (26.9) 2000 3212.3 (1754–5,746) 3348.2 (1841–6,757) 0.27

Fat (g) 436.3 (39.1) 559.7 (50.1) 78 g 154.1 (80–304) 175.4 (101–374) 0.36

Protein (g) 345.5 (42.4) 691.6 (85.0) 50 g 113.3 (67–220) 124.6 (66–267) 0.23

CHO (g) 655.1 (22.8) 238.2 (8.3) 275 g 427.3 (215–726) 418.8 (214–834) 0.55

Fiber (g) 45.0 (1.6) 162.8 (5.8) 28 g 29.6 (14–52) 28.6 (15–61) 0.69

Minerals

Na (mg) 8119.8 (385.8) 541.3 (25.7) 1,500 mg 4087.7 (2347–8,774) 4680.1 (2244–10,981) 0.45

K (mg) 11378.3 (635.8) 242.1 (13.5) 4,700 mg 6471.2 (3220–11,214) 6615.8 (3083–12,781) 0.58

Ca (mg) 612.9 (33.8) 47.5 (2.6) 1,300 mg 293.5 (136–513) 265.0 (103–536) 0.42

Pi (mg) 5106.2 (431.1) 408.5 (34.5) 1,250 mg 2245.9 (1399–3,922) 2256.7 (1426–4,180) 0.52

Fe (mg) 79.7 (6.6) 454.0 (37.7) 18 mg 40.8 (20–78) 43.8 (18–82) 0.59

Vitamins

Vitamin A (μg) 2030.8 (76.3) 225.6 (8.5) 900 μg 1039.1 (506–2,306) 1319.3 (456–2,610) 0.6

Thiamine (mg) 4.7 (0.4) 440.6 (41.1) 1.2 mg 1.6 (0.9–3.3) 1.7 (0.9–4.6) 0.09

Riboflavin (mg) 13.9 (2.5) 1095.4 (194.3) 1.3 mg 4.1 (2.2–9) 5.0 (2.8–12) 0.15

Vitamin B12 (μg) 79.1 (26.9) 3388.5 (1151.8) 2.4 μg 10.2 (5–21) 9.9 (4.7–26) 0.41

Vitamin C (mg) 206.7 (10.2) 231.9 (11.4) 90 mg 111.6 (44–244) 103.7 (39–202) 0.97

Vitamin D (μg) 8.1 (0.6) 44.0 (3.5) 20 μg 4.0 (2–8) 4.2 (2–10) 0.45

Data presented as median (Q1–Q3); p-value obtained from Mann–Whitney U test; p < 0.05 adjusted for sex considered significant; *Based on reference caloric intake (2,000 calories) for adults 
and children aged 4 years and above (21).

TABLE 3 Correlations between nutrient intake adequacy (%) and markers 
of biochemical osteomalacia (all participants).

Nutrient 
parameters

Ca Pi ALP 25(OH)D

Energy (Kcal) −0.04 −0.07** −0.11** 0.01

Fat (g) −0.05* −0.08** −0.11** 0.00

Protein (g) −0.03 −0.07** −0.11** 0.01

CHO (g) −0.04 −0.06* −0.10** 0.02

Fiber (g) −0.04 −0.05* 0.01 0.01

Minerals

Na (mg) −0.05* −0.05* −0.12** 0.00

K (mg) −0.05* −0.07** −0.12** 0.01

Ca (mg) 0.00 0.00 −0.01 0.02

P (mg) −0.05 −0.06** −0.13** 0.00

Fe (mg) −0.05* −0.06** −0.06* 0.00

Vitamins

Vitamin A (μg) −0.05 −0.06* −0.12** 0.00

Thiamine (mg) 0.03 −0.06* 0.04 −0.05*

Riboflavin (mg) −0.02 −0.02 −0.01 −0.03

Vitamin B12 (μg) 0.00 −0.02 0.01 −0.03

Vitamin C (mg) −0.02 −0.05* −0.05 0.03

Vitamin D (μg) −0.01 0.01 −0.01 −0.07**

Data presented as correlation coefficient (R); ** and * indicates significance at <0.01 and 
<0.05, respectively.
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Supplementary Table S2 shows the unadjusted anthropometric 
and clinical differences according to sex. Boys were significantly 
older (p < 0.001), have higher BMI (p < 0.001), waist (p < 0.001), 
WHR (p < 0.001), systolic BP (p < 0.001), Ca (p < 0.001), Pi 
(p < 0.001), ALP (p < 0.001), 25(OH)D (p < 0.001), and Fe 
(p < 0.001) as compared to girls. On the other hand, girls have 

higher hip circumference (p = 0.004) and diastolic BP (p < 0.001) 
as compared to boys.

Supplementary Table S3 shows the nutrients intake and % 
adequacy of participants according to sex. Results showed that boys 
reported significantly higher intake of dietary fat (p < 0.001), protein 
(p < 0.001), energy (p < 0.001), vitamin A (p < 0.001), thiamine 

TABLE 4 Correlation between markers of biochemical OM and nutrient intake nutrient intake adequacy (%) according to OM status.

Nutrient 
parameters

Controls Biochemical OM

Ca Pi ALP 25(OH) D Ca Pi ALP 25(OH)D

Energy (Kcal) −0.03 −0.06* −0.11** −0.01 −0.07 −0.15* −0.12 0.21**

Fat (g) −0.03 −0.07** −0.11** −0.01 −0.11 −0.11 −0.15 0.20**

Protein (g) −0.02 −0.06* −0.11** −0.01 −0.07 −0.14 −0.13 0.23**

CHO (g) −0.03 −0.05 −0.10** 0.01 −0.08 −0.15* −0.14 0.19*

Fiber (g) −0.04 −0.05 0.01 0.00 −0.02 −0.03 0.03 0.13

Minerals

Na (mg) −0.04 −0.04 −0.12** −0.01 −0.11 −0.17* −0.14 0.20**

K (mg) −0.04 −0.06* −0.12** 0.00 −0.12 −0.16* −0.16* 0.21**

Ca (mg/day) 0.02 0.00 0.01 0.00 −0.07 −0.04 −0.02 0.13

Pi (mg) −0.03 −0.06* −0.13** −0.02 −0.10 −0.15 −0.15* 0.22**

Fe (mg) −0.04 −0.06* −0.06* −0.01 −0.08 −0.11 −0.02 0.16*

Vitamins

Vitamin A (μg) −0.04 −0.05* −0.12** −0.02 −0.12 −0.13 −0.13 0.22**

Thiamine (mg) 0.02 −0.03 0.05 −0.04 0.08 −0.16 0.06 −0.05

Riboflavin (mg) −0.01 0.00 −0.01 −0.04 −0.03 −0.04 0.04 0.13

Vitamin B12 (μg) 0.02 −0.01 0.03 −0.04 −0.02 −0.01 −0.02 0.13

Vitamin C (mg) −0.03 −0.05* −0.06* 0.02 0.01 −0.03 −0.02 0.14

Vitamin D (μg) 0.01 0.03 0.01 −0.09** −0.13 −0.05 −0.05 0.13

Data presented as Pearson correlation coefficient; ** and * indicates significance at <0.01 and <0.05, respectively.

FIGURE 2

(A) Median serum ALP and 25(OH)D of all participants and according to biochemical OM status and (B) Mean serum Ca and Pi of all participants and 
according to biochemical OM status.
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FIGURE 3

Median dietary intakes of (A) Ca, (B) Pi, and (C) Vitamin D in all participants and in boys and girls. The dashed gray lines indicate the RDI for each 
micronutrient.

FIGURE 4

Associations between dietary Ca intake and 25(OH)D in (A) boys and (B) girls and Pi intake with 25(OH)D in (C) Boys and (D) Girls. Orange dots 
represent Biochemical OM cases while blue dots represent controls.
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(p = 0.018), riboflavin (p < 0.001), Na (p < 0.001), K (p < 0.001), Pi 
(p < 0.001), and Fe (p < 0.001) than girls. On the other hand, girls 
reported significantly higher intake of vitamin C (p = 0.05) and Ca 
(p < 0.001) as compared to boys. In both boys and girls, lower intake 
of vitamin D and Ca based on % adequacy were observed.

3.4. Significant dietary predictors of 
variations in markers of biochemical OM

Stepwise regression analysis was performed to identify which dietary 
nutrient were significantly contributing to the variations in circulating 
markers of biochemical OM (Supplementary Table S4). Results revealed 
that for all participants, thiamine was inversely correlated (p = 0.02) with 
serum Pi in all participants, explaining 0.2% of the variances in serum Pi 
(r = 0.05, adjusted r2 = 0.2%, p = 0.03). Furthermore, dietary K (p = 0.001), 
energy (p = 0.02), and vitamin A (p = 0.05) were inversely correlated with 
serum ALP while fiber (p < 0.001), thiamine (p = 0.001), and Ca 
(p = 0.001) were positively correlated with ALP, explaining 2.9% of the 
total variance (r = 0.18, adjusted r2 = 2.9%, p = 0.001). No significant 
predictors were found for serum Ca and 25(OH)D. Stratification 
according to biochemical OM status revealed no significant predictors 
for serum Pi, Ca and ALP. However, thiamine was inversely associated 
(p = 0.04) while protein was positively associated with (p = 0.002) serum 
25(OH)D, with both variables explaining 4.3% of the variation in serum 
25(OH)D (r = 0.23, adjusted r2 = 4.3%, p = 0.01) in the biochemical OM 
group. In controls, no significant predictors were found for serum Pi and 
Ca. However, CHO (p = 0.001), K (p < 0.001), and fat (p = 0.01) were 
inversely correlated with serum ALP while fiber (p < 0.001), thiamine (β 
p = 0.001), and Ca (p = 0.001) were positively correlated, cumulatively 
explaining 3.1% of the variation in serum ALP (r = 0.19, adjusted 
r2 = 3.1%, p < 0.001). Lastly, dietary vitamin C was positively associated 
(p = 0.02), while dietary vitamin D (p = 0.002) was positively correlated 
with serum 25(OH)D, explaining 0.6% of the total variation in serum 
25(OH)D (r = 0.09, adjusted r2 = 0.6%, p = 0.004).

4. Discussion

The transition of dietary behavior from children to adolescents 
coincides with a period of more, but not full independence in decision 
making. It is a crucial period when food preferences are largely influenced 
by peers and advertisements on various platforms, and less by what is 
served at home (29). The present study aimed to determine the influence 
of dietary intakes on circulating biomarkers of hypomineralization 
among Arab adolescents and found a substantial nutrient imbalance in 
this population, most notably the very high consumption of foods rich 
in dietary Pi, Na, K, and Fe exceeding the RDI, with a concomitant very 
low intake of dietary Ca and vitamin D. We were able to demonstrate that 
the combination of low dietary Ca and low vitamin D status is associated 
with the biochemical OM signature. Furthermore, the significant 
associations of vitamin D status to most dietary intakes including dietary 
vitamin D were only apparent in the biochemical OM group, while the 
significant associations of serum ALP and Pi with dietary intakes elicited 
in all participants modestly varied but remained persistent even after 
stratification according to biochemical OM status.

The suboptimal nutrient intake of adolescents in the present study, 
that is, failing to meet the dietary recommendations, is similar to that 
reported in adolescent populations in industrialized or developing 

nations (30, 31). The abnormally high median levels of dietary Na, K, 
and Pi reflect the increased consumption of processed and frozen foods, 
junk foods and carbonated beverages, to name a few. These foods are 
known to contain these trace minerals in large amounts, particularly Pi 
derivatives which are abundant in fast foods (32). This is in sharp 
contrast with the very low intakes of dietary Ca and vitamin D 
independent of biochemical OM status. Dietary Ca in particular is 
significantly lower in boys than girls. Lower intakes of Ca and vitamin 
D have been more recently documented in a cohort of 631 Saudi 
adolescents aged 11–18 years (33). Excessive media use, which promotes 
sedentary lifestyle and negatively affects food choices is particularly 
common among Saudi adolescents (33), and aggravates this situation. 
Furthermore, the high consumption of phosphate-derivative foods such 
as processed foods and beverages confirm a previous survey among 
almost 11,000 Saudis especially in the young population (34). 
Interestingly, the low dietary Ca intake in Saudi adolescents extends to 
their adult counterparts already at risk of osteoporosis, with an average 
Ca intake of only 445 mg/day (RDI of 1,300 mg/day) (35).

It is worth noting that the influence of dietary intake on markers of 
bone mineralization appears to be more pronounced among adolescents 
with biochemical OM, suggesting a compensatory mechanism. Among 
participants with biochemical OM for instance, protein and thiamine 
intake were significant predictors of 25(OH)D variation. Fortunately, 
protein intake of participants was well above the RDI and well within 
limits for thiamine, suggesting that Arab adolescents consume large 
amounts of animal-based food in their diet which is compatible with the 
traditional Saudi diet. Due to the desert environment, vegetables and 
fruits are infrequently consumed within the region as a whole (36), and 
apart from dates, the population relies mainly on meat and carbohydrates 
as their main diet. Aggravated by the country’s current Westernisation, 
this unbalanced diet has progressively deteriorated to include high 
amounts of carbonated drinks (such as soda) and processed foods which, 
as mentioned, are high in Pi content (37). Despite the well-known inverse 
association between Ca and Pi in bone health (high Pi intake may 
decrease Ca absorption and high Ca may inhibit Pi uptake in the gut) 
(38), the elevated dietary Pi intake in our cohort did not protect from 
developing biochemical OM as the Ca-P product remained low in the 
OM group independent of Pi intake, indicating that association alone 
does not imply causation. The significant association of dietary vitamin 
D intake with serum 25(OH)D among only those without biochemical 
OM is worth noting since this association, while significant, was very 
small (r2 < 1%) in terms of affecting the participants’ vitamin D status, 
suggesting that other major factors (i.e., sun exposure, outdoor physical 
activity, vitamin D supplements) not assessed in the present study are 
largely influencing the vitamin D status of this population.

ALP was noted to be significantly and inversely associated with most 
macronutrients as well as dietary mineral intake in the present study, 
which can probably explain why in our previous study, elevated ALP was 
also the least common among the 4 markers of impaired mineralization 
(19). Although ALP isoenzymes were not measured in the present study, 
it has been observed in animal studies that high protein diet as well as 
high fat diet with vitamin D restriction can reduce ALP activity (39, 40). 
The elicited inverse associations of all dietary intake parameters with 
ALP observed in the present study should be interpreted with caution 
however, since ALP levels are expected to be  high in adolescents, 
particularly boys, secondary to pubertal bone growth development (41).

Lastly, thiamine and protein were found to be predictors of 25(OH)
D in the OM group in the present study, which, at 4% variance, is 
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modest but still statistically significant. Since thiamine is not 
conventionally known to affect vitamin D metabolism, this association 
can be explained by the unhealthy dietary choices of participants. A 
similar study done among Brazilian adolescents aged 10–19 years found 
that processed and ultra-processed foods was associated with adequate 
intake of thiamine and inadequate intake of vitamin D and calcium, 
among others (42), demonstrating a comparable inverse association 
between thiamine and vitamin D. On the other hand, the significant 
association of protein intake to 25(OH)D cannot be fully explained and 
may require additional investigation detailing specific types of meats 
that held higher levels of vitamin D. Nevertheless, both protein and 
vitamin D intake are integral in musculoskeletal health, with the latter 
being a significant contributor in maintaining muscle mass and the 
former as an anabolic stimuli for muscle protein synthesis (5, 6).

The authors acknowledge several limitations. While the objectives 
were focused on differences and associations of dietary intake with 
biochemical OM and markers of impaired mineralization, other factors 
such as obesity, sunlight exposure and supplement intake were not 
considered, which could have a profound effect on these markers, 
25(OH)D in particular since no observed differences were seen in the 
dietary vitamin D intake of both groups (43). Supplement intake in this 
age group however is low especially in females (44). Participants were 
recruited uniformly during summer time, which from previous 
observations translate to higher prevalence of vitamin D deficiency as 
compared to winter season in SA due to sun avoidance behaviour (45). 
Serum PTH was not assessed since prerequisites for analysis were not 
met. Hence, the association of PTH with dietary intake in this population 
was not captured. The operational diagnosis used for biochemical OM is 
only suggestive and not definitive, since histologic analysis for 
confirmation was not done. Lastly, the inherent memory recall bias in 
collecting dietary data, despite being performed by a dietitian, is a 
limitation. Nevertheless, the study is one of the largest of its kind to 
confirm whether the recent worsening dietary pattern in terms of quality, 
as observed among adolescents in the Middle East and SA in particular, 
is associated with biochemical OM. The findings emphasize the 
imperative need for food fortification with vitamin D and Ca to optimise 
nutrition in this vulnerable population who largely fail to meet the RDI 
(46–49). Additionally, the current national and regional guidelines for 
vitamin D supplementation are limited to the general adult population 
(50, 51). We recommend including the youngest and most vulnerable 
group of children and adolescents into these public health guidelines, in 
analogy to similar calls for political action worldwide (52, 53).

In conclusion, there is an alarming imbalance in the dietary intake 
of Saudi adolescents, with very low intakes of dietary Ca and vitamin 
D and high intakes of dietary Pi together with Na, K, and Fe. This 
imbalance modestly but significantly affects circulating markers of bone 
mineralization, contributing to the high prevalence of biochemical OM 
in Saudi adolescents, particularly girls. Food fortification of essential 
nutrients such as vitamin D and Ca may help reverse this nutrient 
disparity since supplementation alone has varying degrees of success.
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