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Brown rice has been advocated for as a healthier alternative to white rice. 
However, the concentration of arsenic and other pesticide contaminants is 
greater in brown rice than in white. The potential health risks and benefits of 
consuming more brown rice than white rice remain unclear; thus, mainstream 
nutritional messaging should not advocate for brown rice over white rice. This 
mini-review aims to summarize the most salient concepts related to dietary 
arsenic exposure with emphasis on more recent findings and provide consumers 
with evidence of both risks and benefits of consuming more brown rice than 
white rice. Despite risk-benefit assessments being a challenging new frontier 
in nutrition, researchers should pursue an assessment to validate findings and 
solidify evidence. In the interim, consumers should be cognizant that the dose 
of arsenic exposure determines its toxicity, and brown rice contains a greater 
concentration of arsenic than white rice.
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Introduction

In recent years, gluten-free, dairy-free, and plant-based dieting has increased in popularity, 
and rice is a common substitute. The potential health risks and benefits of consuming more 
brown rice than white rice remain unclear. Despite this, brown rice is often advocated as a 
healthier alternative to white rice in mainstream diet and nutritional messaging. Evidence of any 
protective effect of consuming more brown rice than white is limited.

Even though in-vitro and animal studies using nutrients and fiber extracted from brown rice 
have demonstrated improved cardiovascular function and prevention of heart diseases (1–5), 
these studies fail to utilize the whole grain of brown rice. Additionally, Sun et al. (6) found that 
when compared to white rice intake, brown rice intake reduced the risk of type 2 diabetes by 
16%. The study, however, lacked diversity and included a homogenous population of European 
descent health professionals.

Current literature widely includes animal studies and primarily examines the benefits of 
consuming whole grains, not specifically brown rice. Other study limitations fail to provide solid 
evidence for the health benefits of consuming brown rice over white rice. There is a clear lack of 
research focusing on human consumption of brown rice that includes a risk-benefit approach. 
Risk-benefit assessment of foods is a challenging new frontier in food safety research. The 
assessment estimates human health benefits and risks following exposure (or lack thereof) to a 
particular food or food component and integrates them into comparable measures (7–9).

What might continue diminishing the evidence between brown rice and its human health 
benefits? Brown rice contains a greater arsenic concentration than white rice, and the human 
health risks associated with dietary arsenic exposure are well-established.
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Dietary exposure to arsenic

Arsenic is ubiquitous in the environment and is a global public 
health concern. Arsenic is a well-known carcinogenic, mutagenic, and 
toxic environmental element that occurs as inorganic arsenic and 
organoarsenical compounds (10). Arsenic can be found in food, water, 
soil, and airborne particles. Inorganic forms of arsenic are found in 
the environment dissolved in water, and human exposure occurs 
through drinking water. Additionally, diet is an alternative source of 
exposure through the consumption of plant-based foods such as 
wheat, rice, and vegetables grown in contaminated soil and animal 
products such as dairy, milk, and fish exposed to contaminated feed. 
Even soil from organic farms can have remnants of arsenic due to 
historical pesticide use.

Because of the rapid globalization in the food trade, the ingestion 
of arsenic through rice consumption is not limited to a regional issue 
but a worldwide health concern (11, 12). A study of more than 204 rice 
samples sold in the U.S. found that rice grown in certain Southern 
states, which accounts for more than 47% of the U.S. market, had the 
highest arsenic content compared to the rice imported from Asia or 
grown in California (13). A 2017 study estimated Americans’ 
inorganic arsenic exposures from drinking water and rice. It 
concluded that rice consumption might account for as much inorganic 
arsenic exposure as drinking water in some U.S. populations (14).

The U.S. Environmental Protection Agency set a limit for total 
arsenic in drinking water at 10 parts per billion (ppb). However, no 
such limit exists for food or other beverages. Thus, rice can contain 
levels of inorganic arsenic that surpass the limit set for arsenic in 
drinking water. In 2014, a Consumer Reports analysis of the U.S. Food 
and Drug Administration (FDA) data on 656 rice products confirmed 
the worrisome levels of arsenic exposure from white and brown rice. 
In rice, inorganic arsenic is found in the two outer layers of the grain 
(i.e., bran and germ), and the bran and germ are removed to refine the 
grain into white rice. Thus, a greater concentration of arsenic is found 
in brown rice than in white rice. In the previously cited Consumer 
Reports study, brown rice contained 80 percent more inorganic 
arsenic on average than white rice of the same type (15).

In response to concerns raised by the public, the FDA Center for 
Food Safety and Applied Nutrition conducted an assessment based on 
the existing evidence of health risks from inorganic arsenic in rice and 
products that contain rice (16). The investigation concluded that the 
average concentrations of inorganic arsenic are 92 ppb in white rice, 
154 ppb in brown rice, 104 ppb in infants’ dry white rice cereal, and 
119 ppb in infants’ dry-brown rice cereal. The data demonstrated that 
inorganic arsenic concentration is 1.5 times higher in brown rice than 
in white rice. The expert panel concluded that the risk of exposure and 
associated health condition(s) increases proportionally with 
consumption and depends on the type of rice consumed. Notably, the 
FDA assessment focused on lung and bladder cancer. The expert panel 
concluded that cancer cases would have increased by 148.6% if rice 
consumption increased from less than one serving per day, the current 
level, to precisely one serving per day (16). Although none of the 
products analyzed in the Consumer Reports study reached the acute 

toxicity level, the health effects of long-term low-dose exposure are 
unclear. According to the U.S. FDA, the adverse health effects of 
arsenic exposure depend on various factors, such as the type of arsenic 
(organic or inorganic), the level of exposure, and the age of the person 
exposed to the arsenic. Many studies have linked arsenic exposure to 
cancers, cardiovascular disease, diabetes mellitus, hypertension, and 
obesity (17, 18).

Arsenic exposure and disease

Various studies have demonstrated that pregnant females, fetuses, 
and neonates suffer adverse pregnancy outcomes when exposed to 
arsenic (19–23). In utero, inorganic arsenic exposure was positively 
associated with DNA damage in offspring (24). Recent health risk 
assessments reported that the consumption of arsenic-containing rice 
and rice-based foods (e.g., cereals, cakes, and crackers) led to increased 
cancer risks, especially in subpopulations of infants and children 
(25–29).

In humans, inorganic arsenic compounds are converted to 
trivalent arsenic (AsIII) and pentavalent arsenate (AsV). AsV is rapidly 
converted to AsIII. AsIII species are more toxic and bioactive than AsV 
species, both because of the greater chemical reactivity of AsIII and 
because AsIII enters cells more easily (30). Both arsenic species coexist 
in drinking water with varying toxicity (31). According to the 
International Agency for Research on Cancer (IARC), there is 
sufficient evidence in humans for the carcinogenicity of mixed 
exposure to inorganic arsenic compounds, including arsenic trioxide, 
arsenite, and arsenate. Exposure to arsenic stimulates epigenetic 
disruption in various cellular processes, which can cause cancer. 
Presently, three modes (i.e., chromosomal abnormality, oxidative 
stress, and altered growth factors) of arsenic carcinogenesis have a 
degree of positive evidence, both in experimental systems (animal and 
human cells) and in human tissues (32–34). The IARC concludes that 
different inorganic arsenic species should be considered carcinogenic 
independent of the mechanisms of carcinogenic action and 
independent of which metabolites are the ultimate carcinogen (30).

Chronic arsenic exposure through consuming certain foods and 
contaminated water has been associated with an increased risk of 
prostate, lung, bladder, pancreatic, and skin cancer (31, 35–40). 
According to the U.S. National Cancer Institute, cancers of the 
digestive tract, liver, kidney, and lymphatic and hematopoietic systems 
have also been linked to arsenic exposure. Additionally, arsenic 
trioxide (As2O3) treatment in human fibroblasts was shown to disrupt 
the normal function of the DNA repair pathway and increase genomic 
instability (24), such that women carrying specific BRCA-1 mutations 
(e.g., 5382insC, C61G, and 4153delA) were found to be at higher risk 
of breast cancer with increased arsenic exposure (41).

Arsenic is one of many environmental pollutants linked to 
metabolic syndrome development (17, 18, 42). Metabolic risk factors 
that lead to a diagnosis of arsenic-induced metabolic syndrome 
include having a large waistline, high blood pressure, elevated fasting 
blood sugar, high triglyceride level, and low HDL cholesterol. Those 
risk factors are identical to the ones for cardiovascular diseases.

Epidemiological studies have shown that the cardiovascular 
system is susceptible to long-term ingestion of arsenic (43). Noticeable 
effects include hypertension and increased cardiovascular disease 
mortality (43). A growing body of literature suggests that DNA 

Abbreviations: AsIII, Trivalent arsenic; As2O3, Arsenic trioxide; AsV, Pentavalent 

arsenate; FDA U.S., Food and Drug Administration; GLUT4, Glucose transporter 

4 protein; HDL, High-density lipoprotein; U.S., The United States of America.
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methylation, one of the most frequently researched epigenetic 
mechanisms, is associated with various outcomes in response to 
exposure to heavy metals like arsenic (44–47). A recent study 
proposed epigenetic dysregulation as a critical arsenic-related 
cardiovascular disease (CVD) mechanism. Researchers conducted a 
mediation analysis to assess the potential role of DNA methylation on 
arsenic-related CVD. Results supported that blood DNA methylation 
influences arsenic-related CVD, and the results were replicated in a 
mouse model and three independent and diverse human cohorts (48).

In addition, arsenic exposure is also suspected to be related to 
obesity (24, 49). We  recently found a significant dose–response 
relationship between arsenic concentration and obesity among 270 
postmenopausal women randomly selected from a study cohort where 
most rice is produced (50). Furthermore, we also found a significantly 
positive association between weight gain velocity and salivary arsenic 
concentration in the same study. The mechanism for arsenic exposure 
and obesity is unclear. Arsenic upregulates the cytokine IL-6 
expression in various cell types (51). IL-6, a pro-inflammatory 
cytokine and an anti-inflammatory myokine, is hypothesized to 
increase the amount of free fatty acids in the body, thus increasing 
obesity. Another explanation involves regulating glucose uptake by the 
glucose transporter 4 protein (GLUT4) in adipose and skeletal muscles 
(52). A recent study determined that low-dose exposure to arsenic for 
8 weeks decreased GLUT4 expression (53). When GLUT4 is silenced, 
the glucose is not effectively transported into the cell. Research has 
further identified that steady-state glucose homeostasis dysregulations 
are due to arsenic exposure (54). Although the mechanism remained 
largely unknown, patterns of dyslipidemia influenced by arsenic have 
been identified (55).

Conclusion

There is a clear lack of research focusing on human consumption 
of brown rice that includes a risk-benefit approach. The fact that 
brown rice contains more arsenic than white rice cannot be denied, 

and the human health risks associated with dietary arsenic exposure 
are well-established. Health effects of arsenic exposure depend on 
various factors, such as the type of arsenic (organic or inorganic), the 
level of exposure, and the age of the person exposed to the arsenic. 
Arsenic exposure has been associated with cancers, cardiovascular 
disease, diabetes mellitus, hypertension, and obesity. Despite risk-
benefit assessment of foods being a challenging new frontier in food 
safety research, future studies should include an assessment to validate 
findings and solidify evidence. In the interim, consumers should 
be cognizant that the dose of arsenic exposure determines its toxicity, 
and brown rice contains a greater concentration of arsenic than 
white rice.
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