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The reward system has been proven to be contributed to the vulnerability of

obesity. Previous fMRI studies have shown abnormal functional connectivity of

the reward system in obesity. However, most studies were based on static index

such as resting-state functional connectivity (FC), ignoring the dynamic changes

over time. To investigate the dynamic neural correlates of obesity susceptibility,

we used a large, demographically well-characterized sample from the Human

Connectome Project (HCP) to determine the relationship of bodymass index (BMI)

with the temporal variability of FC from integrated multilevel perspectives, i.e.,

regional and within- and between-network levels. Linear regression analysis was

used to investigate the association between BMI and temporal variability of FC,

adjusting for covariates of no interest. We found that BMI was positively associated

with regional FC variability in reward regions, such as the ventral orbitofrontal

cortex and visual regions. At the intra-network level, BMI was positively related

to the variability of FC within the limbic network (LN) and default mode network

(DMN). At the inter-network level, variability of connectivity of LN with DMN,

frontoparietal, sensorimotor, and ventral attention networks showed positive

correlations with BMI. These findings provided novel evidence for abnormal

dynamic functional interaction between the reward network and the rest of the

brain in obesity, suggesting a more unstable state and over-frequent interaction of

the reward network and other attention and cognitive networks. These findings,

thus, provide novel insight into obesity interventions that need to decrease the

dynamic interaction between reward networks and other brain networks through

behavioral treatment and neural modulation.
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1. Introduction

Long-term sedentary office and high-calorie food consumption lead to excessive
fat accumulation, which has become a primary contributing reason for weight
gain in modern society (1). WHO criteria define overweight in adults as a body
mass index (BMI) of 25–29.9 kg/m2 and obesity as a BMI of 30 kg/m2 or
higher (2). Obesity is the biggest worldwide health problem and is associated with
chronic diseases such as type 2 diabetes, stroke, cancer, depression, and anxiety (3).
More than 1.9 billion adults are overweight, among whom 650 million are obese.
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If these trends continue, global obesity prevalence will surpass
18% in adults by 2025 (4). However, treatments for obesity have
been sub-optimal, which is partly because understanding of its
neurobiological correlates remains to be limited.

Obesity and related overeating are associated with hyperactivity
in the limbic network (LN) such as the orbitofrontal cortex [OFC
(5)], which is hedonically driven and involved in the control of
food intake, even in the presence of satiety (6). Relative to those
with normal weight, obese people had higher responses to the
limbic reward system and its connections to visual food cues (7, 8).
Resting-state functional magnetic resonance imaging (rs-fMRI)
can measure the intrinsic functional organization of the brain, of
which functional connectivity (FC) is widely used as an indicator
of synchronization between regions (9). A number of rs-fMRI
studies showed that BMI was associated with abnormal FC across
networks, such as LN, attention network, sensory motor network
(SMN), default mode network (DMN), and frontoparietal network
(FPN) (10–12). Nevertheless, some studies did not find these
correlations (13, 14). One possible reason for these inconsistent
results is that the majority of earlier studies have applied a “static”
FC, which ignored the variability of FC between regions over
time (15).

Using dynamic, rather than static, connectivity analysis could
best explain the variability of neurobiological correlates in
obese individuals (16). It sheds new insights on the dynamic
spatiotemporal organization of resting brain activity and captures
FC related to obesity. Recently, some studies adopt this method
to capture FC abnormality related to obesity. For instance, Tan
et al. (17) found that obese individuals showed disrupted dynamic
FC between basal ganglia and salience network involving visceral
sensory and autonomic information. In addition, Park et al. (16)
found that abnormal obesity showed aberrant dynamic FC across
different networks including FPN, SMN, DMN, basal ganglia, and
visual network (VN). However, these studies used the k-means
clustering method to investigate the connectivity state changes
of the whole brain, ignoring the dynamic connectivity profile of
particular brain regions and networks (18).

A recent approach allows to measure the temporal variability
of FC of a specific brain region and network over time and
reflects the flexibility and adaptability of brain function, which have
been applied in many diseases by showing significant variability
changes between groups and regions, showing significant variability
correlated with behavior (18–20). This method provides a dynamic
insight into the understanding of the underlying neuroimaging
basis of obesity. To date, evidence on the temporal variability of
FC of individual differences in BMI remains limited. This approach
can fill this knowledge gap to reveal the abnormality of regional and
network-level dynamics of functional connectivity related to BMI.
In this study, we aimed to investigate the relationship of BMI with
the temporal variability of FC at integrated multilevel perspectives
(regional, intra-network, and inter-network), in adults from the
Human Connectome Project (HCP) dataset. First, we constructed
the temporal variability of regional FC architecture (20). Similarly,
the within- and between-network temporal variabilities of FC
architecture were constructed using the method introduced by Sun
et al. (19). Linear regression analysis was used to investigate the
association between BMI and temporal variability of FC, adjusting
for covariates of no interest. Given that LN involved in reward

TABLE 1 Demographic characteristics of participantsa.

Variable

Body mass index (BMI), mean (SD), kg/m2 25.86 (4.41)

Age, mean (SD), years 28.61 (3.75)

Female (Sex), N (%) 223 (52.10)

Education, mean (SD), years 14.86 (1.80)

Handedness, mean (SD)b 64.65 (45.24)

Race N (%)

White 310 (72.43)

Other 118 (27.57)

aFurther definitions are available at the Human Connectome Project Data Dictionary.
bHandedness of participants from −100 to 100 is assessed using the Edinburgh Handedness

questionnaire.

processing contributing to the vulnerability of obesity and that
obese individuals showed higher FC in reward-related regions
(21), we hypothesized that BMI was positively associated with the
regional and network-level variability of FC in LN.

2. Materials and methods

2.1. Participants

Participants were selected from the 1,200 Subjects Release of
the Human Connectome Project (HCP) from the Washington
University–University of Minnesota (WU–Minn HCP)
Consortium (22). Detailed information about the HCP database
is provided in the 1,200 Subjects Data Release Reference Manual
(https://www.humanconnectome.org/, accessed on 10 March
2021). In this study, the exclusion criteria of participants indicated
as follows: (1) participants with missing demographic variables
such as age, sex, education, and race or family information; (2)
participants with a history of hyper/hypothyroidism or other
endocrine problems; (3) women who had recently given birth; and
(4) participants with mean frame-wise displacement [FD (23)]
>0.25. To this end, we obtained a total of 954 participants from 428
families. Considering the BMI is highly heritable [ranging from
0.47 to 0.90 (24)], we randomly selected one participant from one
family to eliminate the heritability influence, as conducted by other
studies, employing the HCP dataset (25). Finally, 428 participants
for which fMRI images and BMI were used for the current analyses
were included (see Table 1 for details). Full informed consent from
each participant was obtained by WU–Minn HCP Consortium,
and research procedures and ethical guidelines were followed in
compliance with WU institutional review board approval.

2.2. MRI scanning protocols

Rs-fMRI data were collected in four runs of ∼15min, each
on a Siemens 3T Tim Trios MRI scanner using the multi-band
EPI pulse sequence. For the maximum number of available data,
only the left-to-right phase encoding direction was utilized (26, 27).
During scanning, participants were required to keep their eyes open
with relaxed fixation, think of nothing, and not fall asleep. The
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rs-fMRI scanning parameters were as follows: a resolution of 2mm2

isotropic; TR = 720ms; TE = 33ms; flip angle = 52◦; FOV = 208
× 180; 72 slices. T1-weighted images were collected by using the
MPRAGE sequence with the following scanning parameters: TR=

2,400ms; TE = 2.14ms; flip angle = 8◦; FOV = 224 × 224; voxel
size= 0.7× 0.7× 0.7 mm3; 256 slices.

2.3. MRI preprocessing

Rs-fMRI data were preprocessed by the minimal preprocessing
pipeline, including fMRIVolume and fMRISurface pipelines. The
first pipeline removed spatial distortions, realigns volumes to
compensate for subject motion, registers the fMRI data to the
structural, reduces the bias field, normalizes the 4D image to a
global mean, and masks the data with the final brain mask. The
second pipeline aimed to take a volume timeseries and map it
to the standard CIFTI grayordinate space used for subsequent
resting-state analyses [see Glasser et al. (28) for more details]. To
reduce the biophysical noise, we regressed our linear trend and
further used CompCor to regress out nuisance covariates including
five principal components of white matter and cerebrospinal fluid
signals, and Friston 24 head motion parameters. Volumes that FD
exceeded 0.5mm were scrubbed. All images were filtered using
a band-pass filter [1/w−0.1Hz, high pass filtering using 1/w is
suggested to remove spurious fluctuations in dynamic FC, when a
certain window size w is given (29)].

2.4. Temporal variability of FC

2.4.1. Regional-level variability
We used the 300 ROI set from Greene lab as nodes of the whole

brain functional network (30) because it further added additional
nodes from subcortical and cerebellar structures based on Power
264 atlas (31). To characterize the temporal variability of a specific
brain region, all BOLD time series were first segmented into n

overlapping windows with length l (19, 20, 32). Within the ith
window, a q × q Pearson correlation matrix (q = the number of
nodes) describes the FC architecture of the whole brain (Fi). The
FC architecture of ROI k at time window i is denoted by F(i,k),
which represents the whole-brain functional architecture of region
k. Then, the variability of FC architecture for a brain region k is
defined as follows:

Vk = 1− corrcoef (F(i, k), F(j, k)), i, j = 1, 2, 3, · · · , n; i 6= j

Similarly, we computed Vk at different window lengths [l =
20, 22, 24, . . . 40 s, (19, 20, 32)] and then took the arithmetic
average value as the final variability to avoid the arbitrary choice of
time window length. Notable, higher Vk of a region indicates that
more functional communities of this region will be involved across
time (20).

2.4.2. Within- or between-networks variability
In order to assess the dynamic interactions within- and

between-networks, we divided the 300 ROIs into nine prior brain

networks, which are consisted of seven networks defined by Yeo
et al. (33), including VN, dorsal attention network (DAN), ventral
attention network (VAN), SMN, FPN, DMN, and LN. The basal
ganglia and cerebellum were treated as a single network, given it
was poorly defined into different resting-state FC networks as well
as its special role in understanding pathophysiologic mechanisms
in obesity (34, 35). Then, we defined variability of functional
architecture within- or between-networks in a similar method
adopted in the regional variability above (19). For a given brain
network m, all FCs within this network in window i were reshaped
as 1D vector, Fmi; similarly, for all FCs’ between-network, I and p in
window i were denoted as 1D vector, Fmi,lmi,p. Then, the variability
of FC architecture within-network m across n windows (which is
shortened as within-network variability in the follow-up sections)
is defined as follows:

Vwm = 1− corrcoef (Fmi, Fmj), i, j = 1, 2, 3, · · · , n; i 6= j

The variability of FC architecture between-network l and p is
defined as follows:

Vblp = 1− corrcoef (F(mi, lmi, p), F(mj, lmj, p)),

i, j = 1, 2, 3, · · · , n; i 6= j

A high value of within- or between-network variability means
the FC architecture within the network, or the interaction
between networks, has frequent information communication
across different time windows but does not maintain a stable
pattern (19).

2.5. Statistical analysis

For each regional node or network, the association between the
variability of FC and BMI was investigated using linear regression
analyses. We first examined the relationships between BMI and
basic demographic variables. We found that BMI did not show
a significant correlation with age (r = 0.0009, p = 0.85), sex (t
= 1.86, p = 0.063), handedness (r = −0.077, p = 0.113), and
race (t = 0.261, p = 0.795). However, BMI was significantly
correlated with years of education (r = −0.165, p = 0.001). To
rule out the potential effect of these basic demographic variables
on the relationship between BMI and dynamic FC, age, sex, years
of education, handedness, race (categorized as white or other),
and mean FD were considered as covariates of no interest in
the regression model. Considering the distribution of BMI did
not follow the normal distribution (Kolmogorov–Smirnov test, p
< 0.05), we used a permutation analysis of linear models (36),
to determine the significance for all association analyses. The
fundamental advantage of permutation inference is its reliance on
weak assumptions regarding the data. By simply rearranging the
observations, a null hypothesis can be tested in a straightforward
manner. Despite the existence of nuisance effects or apparent
outliers in the data, permutation inference retains its potency and
effectively maintains type I error rate control (36). False discovery
rate (FDR) correction was used to correct for multiple comparisons
(37). We considered an FDR-corrected value of p < 0.05 to
be significant.
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FIGURE 1

Brain regions demonstrate a significant correlation between BMI and regional temporal variability of FC architecture. The size was weighted by the

partial correlation value. All results were shown after FDR corrected (p < 0.05).

3. Results

3.1. Demographics characteristic

Demographics and other behavioral characteristics
of the final sample are shown in Table 1. The
sample comprised 205 men and 223 women, had a
mean age of 28.61 ± 3.75 years, was predominantly
Caucasian (72.43%), and had a mean BMI of 25.86 ±

4.41 kg/m2.

3.2. Associations between BMI and
variability of regional FC

The variability of FC in ventral OFC and the regions of VN
(such as bilateral superior and middle occipital gyrus and lingual
gyrus) were found to be positively associated with BMI (Figure 1
and Table 2).

3.3. Associations between BMI and
within-network variability of FC

At the within-network level, BMI was positively
related to within-network variability in LN (partial r =

0.18, p < 0.001) and DMN (partial r = 0.12, p = 0.01,
Figure 2).

TABLE 2 Significant associations between BMI and variability of regional

FC.

MNI coordinate (X Y Z) r p-value Network

23.96 31.94 −17.78 0.157 0.001 Limbic

8.36 47.59 −15.18 0.167 <0.001 Limbic

27.06 16.22 −16.93 0.178 <0.001 Limbic

−26.39 −90.23 3.12 0.159 0.001 Visual

−17.87 −68.03 4.81 0.166 <0.001 Visual

−8.43 −80.5 7.44 0.153 0.002 Visual

6.21 −81.41 6.11 0.170 <0.001 Visual

8.45 −71.84 10.79 0.167 <0.001 Visual

19.81 −65.56 1.72 0.163 <0.001 Visual

19.64 −85.62 −2.39 0.176 <0.001 Visual

25.66 −79.47 −15.56 0.167 <0.001 Visual

−49.14 −26.3 5.18 0.151 0.002 Sensorimotor

3.4. Associations between BMI and
between-networks variability of FC

At the inter-network level, variability of FC between LN and
SMN (partial r = 0.14, p = 0.004), VAN (partial r = 0.141, p =

0.003), DMN (partial r = 0.16, p = 0.001), and FPN (partial r =
0.15, p= 0.002) showed positive correlations with BMI (Figure 3).
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FIGURE 2

BMI relations to increased variability of FC within network-level. (A) Positive correlation between BMI and variability of FC within the limbic network.

(B) Positive correlation between BMI and variability of FC within DMN. All results were shown after FDR corrected (p < 0.05).

FIGURE 3

BMI relations to increased variability of FC between networks. (A) Positive correlation between BMI and variability of FC between limbic network and

sensorimotor network (SMN). (B) Positive correlation between BMI and variability of FC between limbic network (LN) and ventral attention network

(VAN). (C) Positive correlation between BMI and variability of FC between limbic network and default mode network (DMN). (D) Positive correlation

between BMI and variability of FC between limbic network and frontoparietal network (FPN). All results were shown after FDR corrected (p < 0.05).
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4. Discussion

In this current study, we investigated the association between
BMI and variability of the dynamic functional brain network
at regional, within-network, and between-network levels. At the
regional level, we found that BMI was correlated with the temporal
variability of FC in ventral OFC and visual regions. At the network
level, the within-network variability of FC in LN and DMN
showed a significantly positive association with BMI. In addition,
the between-network variability of FC in LN with FPN, SMN,
VAN, and DMN was also positively correlated with BMI. These
findings provided novel evidence for abnormal dynamic functional
interaction between the reward network (LN) and the rest of
the brain in obesity, suggesting a more unstable state and over-
frequent interaction of the reward network and other attention
and cognitive networks. These findings provided novel evidence for
the neurobiology theory of obesity that highlights the critical role
of brain regions related to reward in susceptibility to obesity (5).
These findings also provide novel insight into obesity interventions
that need to decrease the dynamic interaction between reward
network and other brain networks through behavioral treatment
and neural modulation.

4.1. BMI associated with variability of
regional FC in ventral OFC and visual
regions

The variability of FC architecture in ventral OFC and the
regions of VN (such as bilateral superior andmiddle occipital gyrus
and lingual gyrus) was found to be positively associated with BMI.
OFC involves in food reward processing and is most important
for eating and obesity (12, 38, 39). Occipital and lingual gyrus
are important in discriminating high- from low-caloric foods and
have greater response to high-caloric foods (40, 41). Neuroimaging
studies exploring the relationship between food cue-reactivity and
obesity in adults have consistently found reward regions (e.g., OFC)
and VN (42–44). Individuals with higher BMI had altered resting-
state FC in OFC and visual areas (45), which was correlated with
food bias (46). It should be noted that the variability of FC for a
given region measures the temporal variability of FC between this
given region and the rest of the regions of the brain across time
windows. Therefore, higher BMI was linked to greater variability of
FC in OFC and visual areas, which possibly indicated that high BMI
may be related to more frequent information interaction between
regions involving in food reward and attention and the rest of
the brain.

4.2. BMI associated with within-network
variability of FC

We found that BMI was positively related to within-network
variability in LN and DMN. This result indicated that FC within LN
and DMN network is changing synchronously across different time
windows in individuals with higher BMI. Recent studies also found
that obese individuals had disrupted dynamic FC in reward and

default mode networks (17, 47). It is known that LN is the brain
region most associated with food motivation (48, 49). Relative to
children with normal weight, obese children had hyper-responsive
to food stimuli in LN whether satiety or hunger (50). In addition,
a previous resting-state fMRI found that obesity had stronger FC
within LN than lean subjects (51). Our result of higher variability of
FC in LN revealed that the unstable state of reward function at rest
may be the neural correlates of individuals with higher BMI. DMN
is a self-reflection and task-negative network that is anticorrelated
with areas involved in executive control (52, 53). A previous
study found that obese individuals showed altered spontaneous
synchronicity within DMN (54). The higher variability of FCwithin
DMN may suggest that abnormal self-integration is associated
with higher BMI. Taken together, the higher variability within LN
and DMN suggested an unstable pattern within LN and DMN,
which provides dynamic neural interaction evidence related to
obese vulnerability.

4.3. BMI associated with between-network
variability of FC

Notably, between-networks variability of LN with FPN, SMN,
VAN, and DMN showed a positive correlation with BMI. Similarly,
the limbic reward system and its connections showed greater
response to visual food cues in obese people, relative to those
with normal weight (7, 8). Several neuroimaging studies have
been proven that the stable and dynamic connections between
these networks represented BMI variability (17, 45, 55–58).
Dysfunctional FPN is widely considered the neural basis of obesity
and overeating (59), which is indicative of executive control
function (16). SMN is considered to govern the translation from
goal-directed action to habitual behavior in obese individuals
(60, 61). The activation of VAN mainly detects an attention
bias to energy-dense and palatable food and over-consumption
in disinhibited individuals (62). DMN involves self-reflection
and integrating internal and external information (63). Evidence
from fMRI studies manifested that the interaction between LN
and this network was responsible for food reward processing
(64, 65). We speculate these findings that individuals with high
BMI may have more frequent information changes between
LN and these cortical networks (involved in executive control,
habitual behaviors, attention bias, and self-reflection), which
further demonstrates that the limbic reward network plays a core
role in the vulnerability of obesity from the perspective of temporal
variability of FC.

4.4. Future directions and limitations

First, this was a cross-sectional study and therefore
cannot indicate causal directionality, which requires a
longitudinal study to further explore whether alterations
in dynamic functional connectivity occur before or after
weight gain. Second, this study used self-reported BMI.
Future studies may consider the use of a medical body
composition analyzer to measure BMI, which is more
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accurate than self-reported. Third, although several key
covariates were considered in the analyses, the possible
influence of other unmeasured variables such as genetics
and personality on associations cannot be ignored.
Finally, all participants in the study were selected from a
young adult group. Caution is needed when generalizing
our findings.

5. Conclusion

This current study reported alterations of temporal variability
associated with BMI at regional, within-network, and between-
network levels. Our results showed that high BMI was associated
with greater regional variability in the ventral OFC and visual
regions and higher temporal variability within LN as well as
between LN and FPN, SMN, VAN, and DMN networks. These
findings provided novel dynamic neural interaction evidence for
the neurobiology theory of obesity that highlights the critical
role of the brain system related to reward in susceptibility
to obesity, which highlights that obesity interventions need
to decrease the dynamic interaction between reward network
and other brain networks through behavioral treatment and
neural modulation.
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