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Chronic obstructive pulmonary disease (COPD) is one of the most common

chronic diseases in the elderly population and is characterized by persistent

respiratory symptoms and airflow obstruction. During COPD progression, a

variety of pulmonary and extrapulmonary complications develop, with sarcopenia

being one of the most common extrapulmonary complications. Factors that

contribute to the pathogenesis of coexisting COPD and sarcopenia include

systemic inflammation, hypoxia, hypercapnia, oxidative stress, protein metabolic

imbalance, and myocyte mitochondrial dysfunction. These factors, individually

or in concert, affect muscle function, resulting in decreased muscle mass and

strength. The occurrence of sarcopenia severely affects the quality of life of

patients with COPD, resulting in increased readmission rates, longer hospital

admission, and higher mortality. In recent years, studies have found that oral

supplementation with protein, micronutrients, fat, or a combination of nutritional

supplements can improve the muscle strength and physical performance of these

patients; some studies have also elucidated the possible underlying mechanisms.

This review aimed to elucidate the role of nutrition among patients with coexisting

COPD and sarcopenia.

KEYWORDS

nutrition, chronic obstructive pulmonary disease, sarcopenia, skeletal muscle, dietary
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1. Introduction

Chronic obstructive pulmonary disease (COPD) causes severe global burden of disease
and socioeconomic burden and is a major cause of mortality worldwide. According to
the Lancet 2019 Global Burden of Disease, COPD induced 74.4 million global Disability-
Adjusted Life Years (DALYs) (for comparison: ischemic heart disease–182 million; stroke–
143 million; tracheal, bronchus, and lung cancer–45.9 million; stomach cancer–22.2 million;
liver cancer–12.5 million), and 71.9% of the DALYs are related to total chronic respiratory
disease (1). COPD is often associated with various extrapulmonary pathologies; however, in
the elderly, COPD often coexists with geriatric syndromes (GS), including sarcopenia, frailty,
and malnutrition. Sarcopenia is a common GS characterized by progressive muscle mass loss
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associated with increased age and decreased muscle strength, with
or without low physical performance. The clinical manifestations
of sarcopenia include decreased muscle strength, mobility, and
decreased gait speed. The prevalence of coexisting COPD and
sarcopenia is 4.4–68% (Table 1) in different countries and regions.

Patients with coexisting COPD and sarcopenia commonly
have a markedly reduced fat-free mass index (FFMI) and
typically present with reduced muscle size, muscle atrophy, and
muscle fiber shift. Multiple multicenter studies with a large
sample size have shown that, regardless of other factors, a low
FFMI is a significant predictor of mortality in patients with
moderate-to-severe COPD (13–16). In the elderly population,
lower hand grip strength is significantly associated with moderate-
to-very severe airflow limitation (Forced Expiratory Volume
in the first second <80% of predicted value) (17). Therefore,
muscle mass growth aimed at increasing FFMI is important
for maintaining the quality of life and improving prognosis in
patients with coexisting COPD and sarcopenia. Studies have
shown that sarcopenia correlates with health status, quality of
life, and survival, whereas low muscle strength is associated
with an increased risk of death from cardiovascular disease,
respiratory disease, and cancer (18–21). In recent years, studies
have explored the decline of physical capacity in patients
with coexisting COPD and sarcopenia, and have attempted to
identify specific biomarkers. Additionally, other studies have
sought to understand the pathogenesis of COPD and sarcopenia,
including the interaction between COPD and sarcopenia, and
the potential role of low nutritional intake and high energy
consumption in patients with COPD and sarcopenia (22).
Furthermore, some animal studies have attempted to explore the
intrinsic mechanisms of sarcopenia and COPD comprehensively.
Several studies have focused on providing nutritional support
to patients with COPD and enrolling them in pulmonary
rehabilitation programs to improve sarcopenia. These approaches
have the potential to positively impact intrinsic capacity (23)
and increase life expectancy in patients with coexisting COPD
and sarcopenia. An appropriate nutritional support formulation,
either single or compounded, can increase FFMI and improve
muscle function and exercise performance in patients with COPD.
A considerable amount of research has been conducted on the
components of nutritional support with the aim to identify
formulas that are beneficial to patients with coexisting COPD
and sarcopenia and clarify the underlying mechanisms of muscle
growth and function improvement. This review provides an
overview of the role of nutrition among patients with coexisting
COPD and sarcopenia.

2. Pathogenesis

2.1. Systemic inflammation

The elevated expression of multiple pro-inflammatory factors
may affect the loss of skeletal muscle mass and function
during COPD pathogenesis (24). When muscle wasting occurs,
the expression levels of pro-inflammatory cytokines and their
receptors are upregulated, leading to metabolic disturbances in
muscle tissue (25), ultimately resulting in sarcopenia (26). Besides

muscle wasting, patients with more severe COPD often have
deposits of ectopic fat, including visceral adipose tissue, and
muscle fat infiltration; both of which are associated with elevated
markers of systemic inflammation (12). Clinical studies have
found increased levels of interleukin (IL)-6, IL-10, hypersensitive
C-reactive protein (CRP), and tumor necrosis factor (TNF)-α
in patients with coexisting COPD and sarcopenia (27, 28). In
animal study, it was observed that a decrease in muscle protein
coincided with a sharp increase in pro-inflammatory cytokines
(TNF-α, IL-6, and interferon-γ) (29). Further experiments showed
that IL-6 can activate the Janus kinase/signal transducer and
activator of the transcription (STAT) signaling pathway, with
STAT transcriptional activation stimulating the expression and
activity of CCAAT-enhancer-binding proteins (C/EBPδ). This in
turn increases the expression and activity of myostatin (MSTN),
muscle atrophy F-box gene (MAFbx/Atrogin-1), muscle ring
finger 1 (MuRF1), and cysteine-aspartic proteases-3 (caspase-3)
in muscle fibers to enhance muscle protein hydrolysis (30–32).
TNF-α may inhibit the expression of selective MAFbx genic
genes in late myogenesis by activating the mitogen-activated
protein kinase (MAPK) pathway (33). Studies from different
countries and regions have concluded that there is a positive
association between a pro-inflammatory diet and sarcopenia (34–
36). Moreover, they suggested that an anti-inflammatory diet
can reduce the systemic inflammatory response and improve
sarcopenia (37, 38). However, the mechanism by which the anti-
inflammatory diet works needs to be further clarified. Further
controlled clinical trials to determine the predictive or diagnostic
role of pro-inflammatory cytokines in patients with coexisting
COPD and sarcopenia are warranted.

2.2. Hypoxia and oxidative stress

The expression of sarcoplasmic reticulum (SR) stress markers,
downstream apoptotic factors, and inflammatory factors is
increased in patients with COPD (39). Compared with healthy
controls, patients with advanced COPD have significantly lower
SR Ca2+ ATPase activity (39, 40), smaller single muscle
fiber diameters, and fewer cytoplasmic structural domains
per myonucleus (39). These changes in SR dysfunction are
accompanied by the generation of lipid peroxidation and
mitochondrial reactive oxygen species (ROS), which indicate
elevated levels of oxidative stress (41). Associated mechanisms may
include elevated neural precursor cell expressed developmentally
down-regulated protein (NEDD)4 expression in muscle (42)
and transforming growth factor (TGF)-mediated MSTN (43).
Nevertheless, there are contrasting hypotheses that a high CO2
environment can promote MSTN degradation by activating
the AMPKα2-forkhead box O-like (FoxO) 3a-MuRF1 pathway
(44, 45). Studies on the mechanisms of COPD combined with
sarcopenia have shown high heterogeneity in the fields of
hypoxia and oxidative stress; however, the sample sizes of the
relevant clinical studies are relatively small. Notably, one study
confirmed that oral supplementation of L-carnitine alleviates lipid
peroxidation and biomarkers of muscle damage (46); however,
this study was performed in healthy men, and it did not confirm
whether the same effect was also present in patients with coexisting
COPD and sarcopenia.

Frontiers in Nutrition 02 frontiersin.org

https://doi.org/10.3389/fnut.2023.1214684
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-10-1214684
A

ugust2,2023
Tim

e:15:15
#

3

N
an

e
t

al.
10

.3
3

8
9

/fn
u

t.2
0

2
3

.12
14

6
8

4

TABLE 1 Characteristics of the included studies regarding the prevalence of coexisting chronic obstructive pulmonary disease and sarcopenia.

References Country Sample size
n

Male
n (%)

Age
mean ± SD

Study
design

Diagnosis of sarcopenia Prevalence
n (%)

Muscle
mass

assessment

Muscle strength
assessment

Physical
performance
assessment

Tsekoura et al. (2) Greece 69 10 (15%) 71.33± 7.48 cross-sectional
study

BIA HGS 4MGS 17 (24.6%)

Jones et al. (3) UK 622 354 (57%) NA cross-sectional
study

BIA HGS 4MGS 90 (14.5%)

Kaluźniak-Szymanowska
et al. (4)

Poland 124 74 (60%) 69.4± 6.1 cross-sectional
study

BIA The upper limb muscle
strength:HGS

The lower limb muscle
strength: CST

6MWT 16 (12.9%)

Perrot et al. (5) France 54 37 (69%) 68± 9 cross-sectional
study

BIA HGS – 26 (48%)

Chung et al. (6) Korea 1,039 760 (73%) 64.5± 9.4 (M)
64.5± 10.2 (F)

retrospective
study

DXA – – 682 (34%)

Gologanu et al. (7) Romania 36 12 (33%) 65.6± 7.5 cross-sectional
study

BIA – 6MWT 3 (8%)

Trajanoska et al. (8) Netherlands COPD: 882
All population:

5,911

69.2± 9.1 prospective
study

DXA HGS GAITRite COPD: 70 (7.9%)
All population:

260 (4.4%)

Cebron Lipovec MPharm
et al. (9)

Slovenia 112 74 (66%) 66± 8 prospective
study

DXA – – 61 (54%)

Limpawattana et al. (10) Thailand 121 112 (92.6%) NA cross-sectional
study

DXA – 6MWT 29 (24%)

Demircioğlu et al. (11) Turkey 219 196 (89.5%) 66.9± 10.1 cross-sectional
study

BIA HGS 6MWT 97 (44.3%)

Persson et al. (12) Sweden 32 13 (41%) 68± 6 cross-sectional
study

BIA – – 21 (68%)

BIA, bioelectrical impedance analysis; HGS, handgrip strength; 4MGS, 4-metre gait speed; CST, chair stand test; 6MWT, the Six-Minute Walk Test; M, male; F, female; DXA, dual-energy X-ray absorptiometry; GAITRite, 5.79-m-long electronic walkway.
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2.3. Mitochondrial dysfunction

In patients with COPD, skeletal muscle cells show reduced
mitochondrial density and biosynthesis, reduced coupling of
mitochondrial respiratory chain complexes, and increased
mitochondrial ROS levels. Studies have found that patients with
severe COPD (Global initiative for chronic obstructive lung disease
3/4) have significantly increased total ROS and mitochondrial ROS
in quadriceps cells, as well as decreased mitochondrial membrane
potential, superoxide dismutase 2, and electron transport chain
(ETC) complex protein expression (47). Moreover, some studies
have found an elevated expression of BCL2/adenovirus E1B 19 kDa
protein-interacting protein 3–like, FUN14 domain containing 1
(FUNDC1), and parkin in the skeletal muscle of patients with
COPD. These molecules promote mitochondrial catabolism in
skeletal muscles (48). In rats with COPD, researchers observed
decreased expression of PGC-1a and SIRT3, which is thought to
be associated with skeletal muscle mitochondrial damage (49).
Oral supplementation with branched-chain amino acids (50)
and 12 weeks of progressive resistance exercise training (51)
can improve physical performance in older adults by improving
mitochondrial function. Most studies were observational and had
certain limitations, including a small sample size. However, the
specific molecular mechanisms underlying myocyte mitochondrial
dysfunction in COPD with sarcopenia require further investigation.

2.4. Disorders of muscle catabolism and
anabolism

During the development of COPD, signaling pathways that
promote skeletal muscle growth are often inhibited, whereas those
that promote skeletal muscle cell catabolism and anabolism are
activated, resulting in abnormal muscle metabolism and negative
changes in muscle strength and mass. MSTN, a member of the
TGF-β family, is secreted by myoblasts and plays a negative role
in muscle growth regulation. MSTN is significantly elevated in
the serum of patients with COPD, suggesting that MSTN may be
associated with the development of COPD and sarcopenia (41).
Muscle growth can be induced by insulin-like growth factor (IGF),
and mothers against decapentaplegic homolog 3 (MSTN-Smad3)
plays a negative regulatory role in muscle growth. Some studies
indicate that the molecular expression of the IGF-signaling pathway
is enhanced after pulmonary rehabilitation training (52), whilst the
molecular expression of the MSTN-Smad3 signaling pathway is
attenuated (53). The IGF-1/protein kinase B (Akt)/FoxO signaling
pathway affects muscle atrophy during aging. In various models of
muscle atrophy, reduced Akt activity and phosphorylation levels
of FoxO in the cytoplasm were observed, and the phosphorylation
level of FoxO in the nucleus was significantly increased (54, 55).
The inhibition of FoxO transcriptional activity suppresses MAFbx
and MuRF1 upregulation during muscle atrophy and reduces
muscle loss. Many signaling pathways and molecules involved in
skeletal muscle catabolism and anabolism have been reported in
various literature in recent years. Whether these pathways and
molecules play comparable roles in the coexistence of COPD and
sarcopenia requires further investigation. A special oral nutrition
supplement rich in whey and casein proteins that had high levels

of branched amino acids, vitamin D, and ursolic acid, was fed to a
muscle atrophy mouse model induced by restricted calorie intake,
and the catabolic and anabolic signaling pathways in the muscles
were investigated. Notably, these pathways were attenuated (56).
However, whether the same mechanism is present in patients with
coexisting COPD and sarcopenia remains to be investigated.

2.5. Unhealthy lifestyles

2.5.1. Smoking
Smoking is the most important risk factor for the development

of COPD as it induces not only COPD but also skeletal muscle
dysfunction, and the mechanisms may have commonalities with
those of the underlying coexisting COPD and sarcopenia. Carbon
monoxide in cigarette smoke can reduce the oxygen-carrying
capacity of blood and induce a left shift in the hemoglobin
dissociation curve, binding myoglobin and impeding the diffusion
of intracellular oxygen, which eventually leads to a reduction in
the oxygen supply to mitochondria in myocytes and an impaired
ability of mitochondria to utilize oxygen (57). Chronic cigarette
smoke exposure can degenerate the neuromuscular junction and
also activate the MAPK and NF-κB signaling pathways, resulting
in increased myosin hydrolysis (32). Oxidative stress in skeletal
muscle can be increased by the free radicals in cigarette smoke
(58, 59). Cigarette smoke also contains various harmful substances
that interfere with the mitochondrial respiratory chain and prevent
mitochondria from producing ATP, impairing skeletal muscle
function (60). Mice exposed to cigarette smoke have reduced Ca2+

transients in skeletal muscle fibers independent of Ca2+ release
from the SR (61). The inhibition of the lymphotoxin β- receptor
signaling pathway induced lung regeneration, attenuated airway
fibrosis, and alleviated systemic muscle atrophy in mice exposed
to cigarette smoke (62). In vitro studies have shown a decrease
in myosin in cigarette smoke-exposed myocytes, accompanied
by the elevated expression of MAFBx, MuRF-1, and ubiquitin-
specific proteases (63–65). One study found that cigarette smoke
extract induced ferroptosis via the HIF2α pathway in C2C12
myotubes (66). Furthermore, studies have demonstrated that
cigarette smoke can inactivate Akt, thus inhibiting myocyte protein
synthesis, which causes muscle atrophy. Altered protein number
and improvement in phosphorylation status have been shown after
60 days of smoking cessation in mice (67). An animal study showed
that myocyte mitochondrial dysfunction, loss of limb muscle mass,
and diaphragm atrophy caused by cigarette smoke were reversed
by short-term smoking cessation (68). Given the role of smoking
cessation in stopping or slowing the progression of COPD, various
studies have suggested that smoking cessation may have beneficial
effects on muscle function in patients with COPD.

2.5.2. Alcohol
Chronic alcohol abuse is a risk factor for COPD. The

metabolites of alcohol, acetaldehyde, and ROS can cause oxidative
stress through mechanisms related to both metabolic pathways
of alcohol: the oxidative pathway catalyzed by hepatic alcohol
dehydrogenase and the metabolic pathway via cytochrome P450
2E1 (CYP2E1) (69). Chronic alcohol intake often leads to
alcoholic myopathy via impaired mitochondrial function and self-
regeneration in skeletal muscle cells, increased inflammatory and
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fibrotic markers, and changes in pathways regulating skeletal
muscle anabolism and catabolism (70–72). IGF-1 level was
significantly decreased both in the plasma and muscles. Moreover,
the mTOR pathway was directly affected by alcohol (73). An
alternative pathway controlling muscle mass is activated mainly
by TGF-β, activin, and MSTN of the Smad family. Alcohol may
also interact with the ubiquitin–proteasome pathway, affecting
protein degradation (74). Rats chronically ingesting alcohol showed
plantaris muscle atrophy, which is mediated by the overexpression
of both MuRF-1 and MAFbx (75). The aforementioned pathways
are similar to those involved in COPD-induced muscle atrophy.
Although there is evidence that patients with COPD seemingly
have a higher alcohol intake (76), the study population was from
regions at high latitudes, and the findings of this study cannot
be extrapolated with certainty to patients globally. Even in young
individuals, repeated occasional high alcohol intake can lead to
increased levels of protein nitration, elevated levels of oxidative
damage to nucleic acids, smaller muscle fiber size, and increased
profibrotic factors, all of which eventually lead to decreased muscle
strength (77). Therefore, for patients with coexisting COPD and
sarcopenia, it is advisable to refrain from alcohol entirely. The
mechanisms of muscle atrophy and decreased muscle function
due to alcoholic myopathy have been well investigated; however,
the mechanism of the negative effects on muscle caused by the
conjunction of COPD and alcohol remains unclear. Hence, the
alcohol consumption habits of patients with COPD and the effects
of alcohol on their skeletal muscles need to be elucidated in
controlled clinical studies with large sample sizes.

2.5.3. Reduced physical activity
People with COPD often have breathing difficulties due to

progressive irreversible airflow restriction, which may reduce their
daily physical activity. Prolonged reduction in physical activity
may lead to skeletal muscle waste, which may cause several
adaptive changes, including reduced type I fibers and oxidase
capacity, muscle fiber atrophy, and decreased muscle capillaries
(78). These changes further lead to a decrease in muscle strength
and endurance. Diseases caused by inflammation and acute
hypoxia, such as COVID-19 infection, significantly reduce the
activity level of patients. Based on the pathogenesis of muscle
wasting, inflammatory factors are released in abundance during
the initiation of the disease which can further exacerbate muscle
atrophy (79). Since COPD is an inflammatory disease, it is
speculated that its inflammatory properties may accelerate the rate
of muscle atrophy, further reducing the exercise endurance of
patients with COPD and, consequently, leading to a vicious cycle
of disease progression.

Muscle protein breakdown (MPB) and muscle protein
synthesis (MPS) occur in skeletal muscle in synchronous
succession, and their dynamic balance together determines the
quality of skeletal muscle (80). One study comprising patients with
COPD, who may have had reduced physical activity status (non-
sarcopenic COPD, n = 53; sarcopenic COPD, n = 39), and a healthy
non-sarcopenic control group (n = 13) evaluated a comprehensive
set of muscle protein turnover molecular regulators by performing
muscle biopsy of the lateralis femoris muscle, demonstrating
increased protein degradation and synthetic signaling in skeletal
muscle in patients with COPD (81). This study suggests that
the increased myogenic signaling observed indicates enhanced

muscle repair and remodeling in these patients. Several studies
have shown that rather than increase in MPB, MPS is the
main determinant of disuse muscular atrophy in humans (82–
84). However, some of these findings are based on short-term
(≤3 weeks) muscle disuse in healthy individuals; in comparison,
muscle disuse in patients with coexisting COPD and sarcopenia
is long-lasting and more complicated, and further research is
needed to determine whether MPS is the main determinant in
those patients. An increase or decrease in MPB and MPS has
different effects in patients with coexisting COPD and sarcopenia
than in those with disuse muscular atrophy alone. Studies have
also shown significant differences in quadricep muscle endurance
between patients with COPD and healthy subjects, even when
their physical activity levels were similar (85). Accordingly, we
speculate that reduced physical activity can only partially explain
the pathogenesis of COPD combined with sarcopenia and that
more pathophysiological factors are involved. Combining aerobic
and resistance training with pulmonary rehabilitation in patients
with COPD improved their muscle endurance (86). Moreover, they
improved muscle strength and gait speed in elderly patients with
sarcopenia, but did not shorten the time of the 5 times sit-to-stand
test (87). The development of individualized rehabilitation exercise
strategies for patients with coexisting COPD and sarcopenia may
be beneficial for their functional maintenance.

2.6. Other possible causes

Experimental studies have found that the activated ERK1/2
subfamily of the MAPK signaling pathway was involved in the slow-
to-fast muscle fiber shift (88). Thus, similar mechanisms may cause
the muscle fiber shift in the lower limbs of patients with COPD.

The Klotho gene, detected in 1997, was first thought to be an
aging-suppressor gene (89). Homozygous mutant Klotho (KL-/-)
mice display a variety of premature aging phenotypes, including
emphysema and sarcopenia, and their lifespan is considerably
shortened (90). Studies have demonstrated that Klotho deficiency
substantially affects muscle strength, exercise endurance, and
physical activity in mice (89, 91). The Klotho protein consists
of α-klotho and β-klotho. β-klotho is a major component of
the endocrine fibroblast growth factor (FGF) receptor complex.
Animal studies showed that the exogenous FGF 19 administration
improved muscle mass and grip strength, and increased the
transverse diameter of their myotubes (92); serum FGF 21 levels
are positively correlated with aging-induced sarcopenia (93). In a
study of older adults (most of whom had sarcopenia or probable
sarcopenia), FGF 19 levels were negatively correlated with muscle
fiber length (94). However, no studies have investigated the role
of nutritional supplementation of the Klotho protein expression
to improve muscle size or physical performance in patients
with COPD and sarcopenia. The Klotho gene is a potential
pharmacological therapeutic target.

Recently, researchers have identified irisin as a hormone
secreted by skeletal myocytes (95), which is reportedly associated
with exercise capacity and skeletal muscle dysfunction in patients
with COPD (96). Its underlying mechanisms may involve (i) its
ability to increase the expression of the peroxisome proliferator-
activated receptor-γ coactivator-1-α (PGC-1α) gene, which in turn
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increases the mitochondrial content of myocytes and improves
mitochondrial function (97); (ii) the antagonism of irisin with
MSTN via the PGC-1α-FNDC5/Irisin pathway (98). Since the
above mechanisms may be limited to sarcopenia alone, it is still
necessary to conduct further in-depth studies to determine whether
the above mechanisms play a similar role in patients with coexisting
COPD and sarcopenia.

3. Role of nutrition among patients
with coexisting COPD and
sarcopenia

3.1. Macronutrients

3.1.1. Protein and amino acids
It has been proved that body weight, muscle strength, exercise

capability, and quality of life can be improved by a combination
of nutritional supplements, exercise/pulmonary rehabilitation, and
medical treatment in patients with respiratory disease (99, 100).
Importantly, these studies have consistently reported an increase
in fat-free mass (FFM).

Protein intake is particularly associated with muscle mass
maintenance. Elderly patients with sarcopenia, especially those with
COPD, have reduced protein synthesis and a high catabolic state
(101, 102) that may further increase their protein requirements
(103, 104). Therefore, adequate protein intake is critical for
individuals participating in an exercise program, whether in a
healthy or diseased state, for it can increase protein metabolism and
promote muscle repair. In addition, the Health ABC study showed
that among older adults, higher protein intake reduced lean muscle
mass loss over time, strongly supporting the idea that older adults
with sarcopenia should have an adequate protein intake (105).
Consensus on the optimal level of protein ingestion for sarcopenia
intervention is still undetermined, with recent medical suggestions
substantially varying between 1.2 and 2.0 g/kg (106). Essential
amino acids (EAA) such as leucine and its metabolite beta-hydroxy-
beta-methyl butyrate (HMB) appear to be particularly important
for increasing FFM, muscle mass, and strength when protein is
supplemented (107).

Amino acids are essential components of proteins, and multiple
studies have reported decreased plasma amino acid levels in
patients with COPD having lower body weight or reduced muscle
mass (108, 109). Leucine is three times more potent than other
essential amino acids in stimulating anabolic signals in skeletal
muscles (110). Therefore, the potential role of leucine in the
treatment of coexisting COPD and sarcopenia has aroused renewed
interest. The PROVIDE study, which comprised elderly individuals
with sarcopenia, investigated the effectiveness of a nutritional
supplement rich in vitamin D and leucine compared to an
isocaloric control and showed that the former was more effective
in improving physical function (5 times sit-to-stand test) and
appendicular muscle mass (111). HMB, a metabolite of active
leucine, prevents the loss of FFM during muscle disuse (112). In a
cohort study comprising hospitalized elderly patients, HMB yielded
improved outcomes in the treatment of malnutrition (113). The
effect of nutritional support with HMB as the main component in

improving muscle mass is independent of exercise training; hence,
HMB is a possible nutritional supplement for patients with limited
exercise capacity or bedridden patients. Unsurprisingly, nutritional
supplements combined with exercise improved the performance of
patients with coexisting COPD and sarcopenia. A clinical study
included 81 patients with COPD and low muscle mass who
participated in an outpatient pulmonary rehabilitation program
consisting primarily of supervised high-intensity exercise training
with randomized oral nutritional supplements rich in leucine,
vitamin D, and omega-3 fatty acids or placebo. The results showed
that specific nutritional supplementation alongside high-intensity
exercise training had additional benefits on overall nutritional
status, inspiratory muscle strength, and physical activity among
patients with COPD, moderate airflow obstruction, and low muscle
mass (114).

Involuntary weight loss is commonly seen in patients with
COPD (103, 115). In contrast to primary sarcopenia, malnutrition
and increased energy requirements are associated with COPD
owing to high metabolism and increased whole-body protein
turnover (109, 116). Elderly individuals with sarcopenia, especially
those with COPD, who have reduced anabolic response to protein
intake and are in a hypermetabolic state may need more protein
supplements than healthy older adults (103, 108). Therefore,
adequate protein and amino acid supplementation together with
exercise programs play a key role in the rehabilitation of elderly
patients with coexisting COPD and sarcopenia.

3.1.2. Carbohydrates and fats
Increasing calorie intake in patients with COPD can

significantly increase body weight and muscle strength through
nutritional supplementation together with nutritional advice,
improving the quality of life of patients and, in turn, potentially
reducing mortality rates (24). The hypothesis that high-fat
supplements may be more beneficial than high-carbohydrate
supplements in increasing calorie intake in patients with COPD
has been proposed in several studies (117–119).

Some fatty acids, including polyunsaturated fatty acids
(PUFA), especially omega-3 polyunsaturated fatty acids, have been
demonstrated to play a role in various inflammatory and metabolic
pathways (120–122). Moreover, systemic inflammation is related
to muscle atrophy and decreased muscle function in patients with
COPD (78). Accordingly, several studies have inferred that PUFA
may be involved in the pathogenesis of muscle atrophy in patients
with COPD (123–125).

Multiple clinical and experimental studies have suggested
that PUFA may improve response to pulmonary rehabilitation
(126). In 32 clinically stable patients with malnutrition combined
with moderate to severe COPD, body weight, muscle mass, and
strength, as well as functional performance, increased with 1.2 g/d
n-3 PUFAs combined with low-intensity exercise for 12 weeks
(125). However, a controlled trial in the Netherlands included
80 patients with COPD undergoing pulmonary rehabilitation and
randomly divided them into the PUFA and placebo groups, which
were administered 9 g of PUFA and isocaloric placebo per day,
respectively. Compared with the placebo group, the PUFA group
had more peak loads of the incremental exercise test; however,
in terms of weight, FFM, and muscle strength, the two groups
both showed a similar degree of increase. Therefore, the role of
n-3 fatty acids in patients undergoing rehabilitation needs further
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study (123). Moreover, an 8-week clinical cohort study comprising
32 patients with moderate-to-severe COPD that were provided
supplements of n-3 PUFA (1,200 mg ALA, 700 mg EPA, and 340 mg
DHA) achieved reversed muscle atrophy and improved muscle
function compared with placebo. However, after rehabilitation or
PUFA intervention, the systemic inflammation markers (CRP, IL-
6, and TNF-α) did not change (123). Nevertheless, a clinical study
revealed a correlation between serum inflammatory markers in
clinically stable patients with COPD and their dietary intake of
omega-3 and omega-6 fatty acids; specifically, individuals with
high levels of alpha-linolenic acid intake had lower serum TNF-
α concentrations and individuals with high intakes of arachidonic
acid had higher levels of IL-6 and CRP (127). These contradictory
results may be related to differences in the dose of PUFA, the
number of people included, or the duration of observation. It has
also been proposed that the mitochondrial membrane composition
and respiratory dynamics in human skeletal muscle can be altered
by supplementation with omega-3 fatty acids, thereby improving
exercise performance to some extent by improving metabolic
efficiency during exercise (128). Regardless of the mechanism
underlying COPD and sarcopenia, n-3 PUFA supplements are
recommended for the nutritional management of chronic diseases
owing to their positive effects on muscle health (129).

3.2. Micronutrients

3.2.1. Vitamins
The role of vitamins has received increasing attention for the

treatment of coexisting COPD and sarcopenia.
Patients with COPD frequently suffer from vitamin D

deficiency due to reduced activity, insufficient sunlight, and
decreased synthesis of vitamin D in the elderly owing to
changes in skin status and decreased organ function (103, 130).
Vitamin D is a fat-soluble steroid hormone that has a major
function in regulating calcium and phosphorus homeostasis and
in maintaining muscle and bone health. The active form of
vitamin D, 1,25-dihydroxyvitamin D3, controls the expression of
various genes through binding to the vitamin D receptor (VDR)
and produces physiological effects via genomic and non-genomic
pathways (131). VDR is expressed in the skeletal muscle and
induces muscle protein synthesis. The binding of vitamin D to
VDR stimulates the absorption of inorganic phosphate within
cells, which is used to produce energy-rich phosphate compounds
that are essential for maintaining muscle contractions. Vitamin
D supplementation in patients with COPD can exert complex
anti-inflammatory effects, decreases excessive ROS production,
enhances VDR gene expression and protein levels, and prevents
muscle wasting (132). One study showed that patients with COPD
who had higher levels of vitamin D exhibited superior muscle
strength and quality of life when compared to those with lower
vitamin D levels (133), confirming that vitamin D has an important
effect on skeletal muscle function. Vitamin D influences muscle
metabolism, and its supplementation has been demonstrated to
reduce the rate of COPD exacerbation, which could indirectly,
potentially decelerate sarcopenia progression in patients with
COPD (134). Moreover, vitamin D regulates FOXO3 and Notch
signaling, promotes myoblast self-renewal, maintains the satellite

stem cell pool, and benefits regeneration and repair after muscle
injury (135). However, there are conflicting reports regarding the
effectiveness of vitamin D supplementation as a therapy for COPD.
A single study demonstrated that the frequency of moderate/severe
COPD exacerbations was significantly and safely reduced by
vitamin D supplementation, but only in patients with baseline 25-
hydroxyvitamin D levels below 25 nmol/L (134). A study on the
effects of vitamin D supplementation in patients with COPD who
were vitamin D deficient revealed an advantageous impact of taking
vitamin D supplements on muscle health (136). Another study
showed that supplementing with vitamin D3 did not enhance the
effects of resistance training in elderly individuals (137). Based on
these contradictory findings, large cross-sectional and prospective
studies are needed to confirm whether vitamin D affects skeletal
muscle dysfunction in patients with COPD.

Individuals without sarcopenia consume more vitamin K in
their diet compared to those with sarcopenia (138). Vitamin K may
play a favorable role through various mechanisms. Vitamin K can
enhance muscle function by promoting vascular smooth muscle
differentiation, improving arterial function and muscle perfusion,
and serving as an electron carrier in skeletal muscle mitochondria.
There is evidence to suggest that low concentration of vitamin K is
involved in the development of COPD (139), and an increased risk
of emphysema is associated with a low intake of vitamin K (140).
However, further research to establish a direct causal relationship
between vitamin K intake and COPD is warranted.

3.2.2. Minerals
Several minerals have been confirmed to be associated with

skeletal muscle mass. Among European white people, high iron
levels predicted by genetic phenotypes are positively correlated
with sarcopenia, and serum calcium levels have a potential negative
correlation with sarcopenia (141). Iron accumulation-induced
skeletal muscle atrophy is probably related to mitochondrial
function, oxidative damage, and the ubiquitin-proteasome pathway
(142–145). However, contradictory results have been found with
iron levels and muscle function. Notably, a recent study found
that iron-deficient patients with severe COPD had low serum
ferritin levels that correlated significantly with walking distance as
measured by the six-minute walking test, suggesting a decrease in
muscle function (146).

Calcium is necessary for healthy muscle and nerve activity,
while selenium has antioxidant properties. Observational studies
have shown that serum calcium (147) and selenium (148) intakes
are significantly associated with muscle mass. Meanwhile, the
calcium sensitizer levosimendan may enhance force-generating
capacity, and improve the neuromechanical efficiency and
contractile function of diaphragm fibers by increasing calcium
sensitivity (149, 150). However, no studies have been carried out
on the effect of this medication on limb muscle contractility
in patients with coexisting COPD and sarcopenia. A previous
study has shown that calcium release and the maximal efflux rate
from the SR could be increased by selenium supplementation,
which could also improve the in vivo and in vitro skeletal muscle
performance (151). Another study showed that when the combined
dietary intake of vitamins A, E, B6, B12, folate, selenium, and
zinc was reduced in aged mice, lower oxidative capacity, muscle
mitochondrial capacity, and muscle fiber atrophy were observed
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(152). Additionally, the positive effects of selenium on skeletal
muscles seem to be independent of testosterone levels (153, 154).

Zinc slows down oxidative processes in the body and also
inhibits aromatase and 5α-reductase, which are necessary for
testosterone metabolism (155). The use of antioxidant supplements
containing zinc gluconate and selenium in combination with
pulmonary rehabilitation improves quadriceps strength and
increases the proportion of type I fibers in patients with
COPD (156).

Magnesium is considered a predictor of disease severity in
patients with COPD and can reduce systemic inflammation and
pro-inflammatory cytokine levels (157). The concentration of
ionized magnesium in polymorphonuclear cells was significantly
lower in patients with COPD than those of healthy non-smokers.
Moreover, the total Ca/total Mg ratios in the plasma and
polymorphonuclear cells of patients with COPD were significantly
greater than those of healthy non-smokers and smokers (158).
A randomized controlled trial demonstrated increased whole-
body fat-free mass, FFMI, and muscle strength in patients with
moderate-to-severe COPD who consumed whey beverages fortified
with magnesium and vitamin C (159). Other studies have also
confirmed that higher magnesium intake is significantly and
positively associated with appendicular lean mass (160). Moreover,
serum magnesium concentration is independently correlated with
muscle strength (161).

Clinical studies have reported reduced serum phosphorus
levels in patients with COPD (162–164). Fructose 1,6-diphosphate
was administered to malnourished patients with COPD in one
study and it was found to increase respiratory muscle strength;
however, the effect of the medication on skeletal muscle strength
of the limbs has not yet been studied (165). Other micronutrients,
including copper, manganese, molybdenum, and lithium, have not
yet been studied for their roles in patients with coexisting COPD
and sarcopenia. Minerals generally exert positive effects on the
muscles through indirect approaches. Further studies are required
to formulate an appropriate mineral supplementation regimen for
patients with coexisting COPD and sarcopenia.

3.3. Drugs affecting muscle metabolism

A combination of exercise training and nutritional
supplementation may not always be beneficial for patients
with coexisting COPD and sarcopenia. Therefore, pharmacological
approaches could serve as an important third choice in diversified
treatment programs for these patients.

Testosterone and anabolic steroids are known to increase
muscle mass and reduce fat mass in young and healthy adults.
Notably, they exert similar effects in patients with sarcopenia
(166). Testosterone use, alone or in conjunction with exercise, has
been reported to be related to reduced hospitalization, increased
FFM, and muscle strength in patients with COPD, but without
strengthened exercise ability (167–170). Although nandrolone
decanoate (ND), the synthetic form of testosterone, reportedly
increased exercise capacity in patients taking glucocorticoid
medication, intramuscular injection of anabolic steroids in the
form of ND provided during pulmonary rehabilitation did not
improve exercise capacity, but only showed an increase in FFM.

However, testosterone should be used with caution owing to its
significant side effects including cardiovascular events, hepatotoxic,
renal, gastrointestinal, and endocrine effects (168). However, a
recent study on aged rats showed that ND had no significant
counteracting effect on muscle regeneration decline associated with
aging (171).

Other hormones that have been shown to benefit patients
with coexisting COPD and sarcopenia include growth hormone
(GH) and ghrelin. GH supplementation increases body weight,
muscle mass, and respiratory muscle strength in patients with
COPD via several pathways (172, 173). Unfortunately, its clinical
application is limited by its negative side effects, which are similar
to those of testosterone (174). Effects of ghrelin on appetite and
feeding have also been demonstrated. For patients with COPD
or coexisting COPD and sarcopenia who have decreased appetite
and inadequate caloric intake, preventing weight loss by appetite
stimulation may be an appropriate approach (174). Improvements
in exercise capacity following ghrelin supplementation in patients
with COPD have been reported (166, 175), even though not all
studies showed its positive impact on functionality or muscle
strength (166).

Myostatin is a potent negative regulator of muscle mass and
is elevated in patients with COPD. Improving muscle growth
via the inhibition of MSTN or antagonizing its receptor (activin
IIR) may be feasible (166, 174). Bimagrumab, an activin IIR
antagonist, has been shown to improve muscle mass, strength,
and mobility in elderly patients with sarcopenia living in the
community (176). However, it did not improve functional capacity
in patients with COPD and it only increased the muscle mass
(177). The aforementioned study suggests that improving muscle
mass using anabolic drugs alone may not be sufficient to improve
physical performance; however, some COPD-specific factors may
impact physical performance by affecting muscle mass.

Current research on the treatment of patients with coexisting
COPD and sarcopenia is still in its preliminary stage. Although
many studies have demonstrated the positive effects of these drugs,
their clinical application remains limited due to their side effects. In
particular, glucocorticoids can damage multiple systems. Therefore,
it is crucial for establishing further studies on the mechanisms
and safety of potential pharmacological treatment of coexisting
COPD and sarcopenia.

4. Summary and conclusion

Current studies suggest that the pathogenesis of COPD
and sarcopenia is similar to that of other muscle loss-inducing
diseases, including myotonic dystrophy and alcoholic myopathy.
Although many studies have explored various mechanisms in the
pathogenesis of sarcopenia alone, there are few studies investigating
the mechanisms of COPD and sarcopenia. Furthermore, there
are few longitudinal studies on the pathogenesis of COPD and
sarcopenia. Many studies have focused on improving muscle loss
in these patients through nutritional support and have shown
promising results, despite few studies reporting contradictory
results. A controlled trial in the Netherlands found that nutritional
interventions (a mixture of protein, carbohydrates, fats, and
micronutrients rich in leucine, Omega-3 PUFA, and vitamin D)
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in patients with COPD and muscular atrophy may not improve
the long-term effectiveness of exercise training (178). However,
the underlying mechanisms are yet to be clarified. Standardized
experiments regarding the management of nutritional support for
patients with COPD and sarcopenia, as well as exploratory studies
on the intrinsic mechanisms of nutritional supplementation in
these patients are warranted.
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