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Introduction

Proper nutrition is a cross-cutting component for ensuring a population’s health

and economic and social development. Due to accelerated nutritional, epidemiological,

and demographic transition in certain regions of the developing world, especially in

overpopulated urban areas, a double burden of malnutrition (DBM) has been a growing

health concern, which may lead to important metabolic disorders during the lifespan with

costly health care (1).

The double burden of malnutrition in children is increasing in developing countries

and may occur in settings of poverty and inadequate sanitation (2). DBM is defined as a

simultaneous occurrence of overweight/obesity and undernutrition afflicting countries at an

individual or societal level, frequently associated with micronutrient deficiency (1). DBM

may affect children living in developing countries in poverty conditions when a low-density

nutrition intake is shifted to a high-caloric and high-fat Westernized diet, increasing the risk

for non-communicable chronic diseases (2).

The COVID-19 pandemic may have fueled the prevalence of DBM in emerging

economic countries, such as Brazil and India, which may lead to unprecedented and

escalating increases in obesity rates (3). Under adverse environments and unhealthy diets,

DBMmay coexist with and favor environmental enteric dysfunction (EED), with underlying

chronic intestinal inflammation and intestinal microbiota imbalances (4, 5).

Children from low-income families are often exposed to poor hygiene, unsanitary

conditions, and difficult access to health care (6). When poor environmental conditions

collide with continuous unhealthy and unsafe diets, such a combination may substantially

increase the risk of a vicious cycle of enteric infections and malnutrition in children,

disturbing their developmental trajectories (7). DBM and EED may be a cause and

consequence of this vicious cycle, and if persistent, can lead to intestinal microbiota

disturbances allowing more pathogenic microbial communities to thrive, with impaired

intestinal barrier function and disrupted immune activation, with mucosal and systemic

inflammatory effects (8).
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GRAPHICAL ABSTRACT

Poor environmental conditions combined with continuous unhealthy and unsafe diets may substantially increase the risk of a vicious cycle of enteric
infections (EED—environmental enteric dysfunction) and malnutrition (DBM—double burden of malnutrition) in children. Gut melatonin, mainly
produced by the intestinal microbiota, can modulate the composition, variety, and dynamics of the microbiota itself and may a�ect and be a�ected
by intestinal microbiota alterations due to DBM and EED.

Melatonin is a critical pineal gland-derived hormone regulating

the circadian rhythm; nonetheless, it has been associated with

immunoinflammatory functions in different body systems (9).

Melatonin is also significantly produced by the gastrointestinal

(GI) tract, which harbors highly expressed melatonin receptors,

and regulates the intestinal barrier function (10). This opinion

paper brings to attention that DBM compounded with the EED

in growing children under adverse environments may negatively

influence the intestinal microbiota homeostasis and hence the GI

tract-related melatonin function.

Gut derived-melatonin

Melatonin, N-acetyl-5-methoxy tryptamine, is a tryptophan-

derived hormone synthesized mainly by the pineal gland but also

by the retina, platelets, skin, and intestinal mucosa (9, 11). In the

GI tract, melatonin is produced by enteroendocrine, endothelial,

natural killer cells, and intestinal bacteria (10). In Wistar rats, gut

melatonin levels are markedly high, reaching about 4–100 ng/g

of wet organ weight (12). Intestinal melatonin is produced even

during daylight hours when its synthesis by the pineal gland is low.

Notably, animals lacking the pineal gland show stable amounts of

melatonin in the GI tract (13).

Melatonin receptors (MT) are widely distributed at various

sites within the Gl tract, including the intestinal mucosa. MT1 and

MT2 receptors are found in blood vessels, epithelium, submucosa,

and myenteric plexus. In the large intestine, MT1 and MT2 are

more expressed in the epithelium (14). In addition, the enzymes

necessary for melatonin synthesis are highly expressed in the GI

tract (15). When intestinal inflammation prevails, changes in gene

expression can lead to lower amounts of melatonin (14).

The rat intestinal mucosa undergoes morphological changes,

with increased inflammatory responses, when endogenous

melatonin suppression occurs following acute inhibition of MT1

and MT2 receptors by luzindole (16). Conversely, an association

between bacteria that produce short-chain fatty acids (Alistipes sp

and Blautia sp) with increased expression of melatonin has been

found in the colon (17). Melatonin supplementation seems to have

a protective action on the intestinal mucosa, improving pathogenic

microbial composition in the colon, helping to prevent or treat

intestinal infections (18).

Several factors, including diet and intestinal microbiota,

influence intestinal melatonin levels. In absolute values, the

amount of gut melatonin is 400 times higher than the pineal

gland. Reductions in endogenous melatonin affect the intestinal

microbiota and intriguingly trigger Alzheimer’s disease-like

phenotypes, including hippocampal Iba-1 activation, Aβ protein

deposition, with impaired spatial memory ability in mice (11).

Another source of intestinal melatonin is the intestinal microbiota,

which can also induce colonic melatonin receptor expression by

a mechanism of action involving short-chain fatty acids (17).

The exogenous use of melatonin causes changes in the intestinal

microbiota, which help the melatonergic system’s function with

increased intestinal epithelial regeneration (19).

Melatonin exogenous administration improves already

installed intestinal damage, such as mucosal disruption and

neutrophil infiltration, favoring antioxidative processes, reducing
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the generation of oxygen free radicals, and protecting the integrity

of intestinal mucosal cells (20). Melatonin supplementation

influences appetite, improving satiety and affecting plasma

leptin levels, which are higher in supplemented individuals (21),

suggesting a role for melatonin in regulating food intake.

Melatonin protects the intestinal barrier function, mainly due

to its anti-inflammatory and antioxidant actions, and increases

the abundance of bacterial populations (22). The gut microbiota

is important in modulating the metabolism of tryptophan,

an essential amino acid precursor to melatonin. Tryptophan

metabolization pathways also exist in some members of the

human intestinal microbiota, such as Clostridium sporogenes and

Ruminococcus gnavus,which can decarboxylate tryptophan into the

neurotransmitter tryptamine in the large intestine (23).

Gut-derived melatonin may be
a�ected by intestinal microbiota
alterations due to the double burden
of malnutrition and EED

Some factors can interfere with the gut microbiome, such

as diet, genetics, age, gender, lifestyle, infections, diseases, and

exposure to maternal and environmental microbiota (24). Genetics

can explain changes in this microbiota by up to 12%. The

dietary patternmodifies themicrobiota’s composition, changing the

proportion between the phyla and the variety of microorganisms

and explaining this variation by up to 57% (25). The gut microbiota

is important in the gut-brain axis as it regulates the secretion

of brain hormones, such as brain-gut peptides from intestinal

endocrine cells, and bacterial compounds can cross the blood-brain

barrier, regulating brain functions (26). We do not know whether

altered microbiota and endogenous intestinal melatonin crosstalk

to affect brain functions in children. This is an important gap in

knowledge that should be addressed by innovative research.

Microbiota imbalance toward reductions in commensal

bacteria, with alterations in the composition and quantity of

intestinal microorganisms, is a key factor affecting gut nutrient

bioavailability (24). Intestinal microbiota dysregulation facilitates

and is facilitated by the luminal-to-blood translocation of

pathogenic bacteria, with adverse effects on the intestinal epithelial

barrier homeostasis, compromising its modulation by commensal

bacteria (27).

A dietary pattern characterized by a high-fat content induces

lipogenesis and causes intestinal microbiota imbalance. Oral

melatonin supplementation in mice challenged with high fat

intake leads to a greater diversity of the intestinal microbiome,

characterized by a relative abundance of Bacteroides, Alistipes,

and Parasutterella and reduced numbers of Lactobacilli. Notably,

melatonin effects on the intestinal microbiota were reversed in

animals treated with antibiotics (28). Melatonin supplementation

alters the intestinal microbiota constitution, reduces the Firmicutes

against Bacteroidetes, increases Akkermansia, and adjusts the

abundance of Alistipes, Anaerotruncus, and Desulfovibrionaceae

to previous levels, with beneficial effects against obesity, insulin

resistance, hepatic steatosis, and low-grade inflammation (29).

The impact of antibiotics use and melatonin supplementation (4

mg/kg in drinking water for 2 weeks) on high-fat diet-induced

intestinal inflammation and gut dysbiosis has been investigated in

rats. The findings reveal that even a brief exposure to a high-fat

diet leads to a state of hepato-intestinal inflammation and shifts

in bacterial populations that can be exacerbated through antibiotic

administration but ameliorated by melatonin supplementation

(30). Melatonin signaling may be a communication link between

the intestine and the central nervous system, as it modulates the

circadian rhythm, intestinal microbial metabolism, and intestinal

immune system, activating the release of cytokines (10).

Children afflicted with EED often live in poor settings of

the developing world, especially in tropical areas with relatively

yearly constant daylight, thus affecting circulating melatonin levels

(31). Lifestyle habits, high-caloric Western diets, and other factors

influence melatonin synthesis and intestinal inflammation (28).

High-stress levels can impact the pineal production and release

of melatonin. The characteristics of ambient light also affect

this production and directly impact physiological and immune

functions (32).

Data on melatonin levels and intestinal barrier function

biomarkers are still scarce in the literature, and such a paucity

of studies with EED experimental models hamper findings from

being applied in clinical settings. In addition to its antioxidant

function, melatonin may contribute to increasing mucosal blood

flow, strengthening the GI and immune system, controlling

fecal moisture, reducing intestinal peristalsis, prolonging intestinal

transit time, and protecting the GI tract from damage caused

by digestive enzymes and hydrochloric acid, altering intestinal

secretions (22). This favors epithelial regeneration and increases

local microcirculation, promoting lower intestinal permeability.

A gut microbial community with a reduced relative abundance

of Bacteroides and increased Lactobacillus and Firmicuteswas found

to be associated with marked intestinal permeability and systemic

and local inflammation in an endogenous melatonin reduction

mouse model (33). In addition, there was less resistance to

stress when subjected to high-fat consumption, influencing weight

gain and the development of hepatic steatosis. Fecal microbiota

transplantation improves systemic inflammation and intestinal

permeability by modulating the gut microbiota.

A healthy intestinal microbiota and reduced circulating

LPS/endotoxemia would facilitate melatonin-protective

antioxidant functions and improve chronic inflammation

(24). Of note, maternal melatonin supplementation had a

significant effect on the intestinal microbiota and decreased

inflammatory mediators in the offspring following LPS injection

(34). Accumulating evidence supports endogenous melatonin’s

influence on the intestinal microbiome, homeostasis, and stress

resistance (33), suggesting that its reduction is a risk factor for

EED complications.

The gut microbiome can directly influence children’s growth.

In a model of chronic malnutrition induced by diet, without

intestinal inflammation, the mouse microbiota enriched by

Lactiplantibacillus plantarum (strain LpWJL) provided greater

growth and metabolic and hormonal alterations, with higher levels

of IGF-1 and insulin. This bacterium promotes the signaling of

NOD2, an innate immunological receptor in the crypts that is
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inhibited due to malnutrition, with improvements in intestinal

cell proliferation and nutritional absorption, increasing mouse

growth (35). Melatonin found in the breastmilk can influence the

composition, variety, and dynamics of the intestinal microbiota

over time, as well as modulating absorption of molecules

by the intestinal epithelia (36). This effect may regulate the

intestinal microbiota and influence the short and long-term

malnutrition states.

Intestinal pathogenic microbial populations may impair the

beneficial effects of melatonin. Melatonin supplementation to

mice challenged by a colitis model led to increased intestinal

inflammation and permeability with augmented tissue levels

of TNF and circulating mononuclear cells and neutrophils.

The pro-inflammatory effect of melatonin was associated with

reduced Bacteroidetes and abundance in the Actinobacteria and

Verrucomicrobia phyla, and when the dysbiosis was corrected, this

effect was not observed (37).

As far as we know the scientific literature on melatonin and

EED/DBM is still missing, therefore it is difficult to distinct

the underlying effects and mechanisms of melatonin’s efficacy in

such conditions (EED/DBM) comparing to other well-recognized

gastrointestinal diseases. Up to date, beneficial effects of melatonin

supplementation has been found in animal models of obesity and

metabolic syndrome (38), intestinal bowel disease (39) and irritable

bowel syndrome (40), mostly by antioxidant, anti-inflammatory

and regulatory intestinal microbiota’s effects. We expect that

some of the underlying mechanisms of melatonin’s protective

mechanisms on these conditions also happen to EED/DBM.

One gap of knowledge is that most of the melatonin studies

come from experimental models and more clinical studies are

needed to address the effects of melatonin on the double burden of

malnutrition, especially in children under adverse environments.

Conclusion

This opinion article raises awareness that GI-tract-related

melatonin function may be altered by DBM and EED (both

conditions may interfere with intestinal microbiota), negatively

affecting children living in adverse environments. More studies

are needed to assess further the gut microbiome’s modulatory

effects under DBM and EED, and their crosstalk with melatonin

function. Improvements in this knowledgemay favor breakthrough

nutritional interventions to ameliorate nutrient deficiency and

healthier intestinal microbiota to halt short and late-onset

overweight/obesity and its long-term risks. Further research is

warranted to address whether melatonin supplementation can help

to improve pathogenic gut microbiota and intestinal inflammation

in experimental models of DBM and EED, possibly guiding future

clinical studies in pediatric populations.
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