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Objective: The causal relationship between early life adiposity and gestational 
diabetes mellitus (GDM) and the underlying mechanisms remains unclear. This 
study aimed to investigate the independent causal association between early life 
adiposity and GDM and identify potential metabolic mediators and their mediating 
effects on this relationship.

Methods: Using genome-wide association study (GWAS) summary statistics 
from the publicly available database of early life adiposity (5,530 cases and 8,318 
controls) and GDM (11,279 cases and 179,600 controls), a two-step, two-sample 
Mendelian randomization (MR) was conducted to estimate the causal mediation 
effects of lipidomic biomarkers including low-density lipoprotein cholesterol 
(LDL-C), high-density lipoprotein cholesterol (HDL-C), triglyceride, apolipoprotein 
A-Ι, and apolipoprotein B on the relationship between early life adiposity and 
GDM.

Results: Genetically predicted childhood adiposity was positively associated with 
risk of GDM (OR: 1.21, 95%CI: 1.09–1.34, p  =  4.58  ×  10−4). This causal relationship 
remained after accounting for adult adiposity traits in the multivariable MR 
analyses. Two-step MR identified three candidate mediators that partially 
mediated the effect of early life adiposity on GDM, including HDL-C (5.81, 95%CI: 
3.05–8.57%), apolipoprotein A-Ι (4.16, 95%CI: 1.64–6.69%), and triglyceride (2.20, 
95%CI: 0.48–3.92%).

Conclusion: This MR study demonstrated that the causal effect of childhood 
obesity on future GDM risk was independent of adult adiposity. We  identified 
three mediators, including HDL-C, apolipoprotein A-Ι, and triglyceride, in this 
association pathway. Our results provide insights into the pathogenesis of GDM 
and suggest additional prevention and treatment targets for GDM related to early 
life adiposity.
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1. Introduction

Gestational diabetes mellitus (GDM) is hyperglycemia that 
develops during pregnancy and usually resolves after birth (1). GDM 
affects up to 30% of pregnant women worldwide depending on the 
population, screening method, and diagnostic criteria (1). GDM has 
long been linked to adverse obstetric and neonatal outcomes and is 
mainly associated with higher infant birth weight (2). Moreover, GDM 
has been recognized as a risk factor for future cardiometabolic diseases 
in mothers and offspring (3). Observational and interventional studies 
have identified several modifiable and nonmodifiable risk factors for 
GDM, including advanced maternal age, family history of diabetes, 
previous GDM, previous macrosomia, overweight/obesity, and 
cigarette smoking, some of which are targeted in preventive and 
therapeutic strategies (4–7).

Childhood obesity poses a major threat to global public health, 
with an increasing prevalence in most parts of the world over the past 
decades (8). Irrespective of adiposity later in life, increasing childhood 
obesity may have significant consequences for population health, 
given evidence from observational studies and Mendelian 
randomization (MR) studies linking early life excess body weight to 
higher risks of chronic diseases, including hypertension and type 2 
diabetes (9–11). Thus, childhood and adolescence may be critical 
periods during which adiposity affects the risk of developing metabolic 
disorders in adulthood. However, few studies have examined the 
impact of childhood obesity on the risk of developing GDM. Thus, 
whether childhood obesity contributes to the development of GDM 
later in life remains unclear.

MR uses genetic variation as an instrumental variable (IV) to 
estimate the causal association between exposure and outcome (12). 
Compared with traditional observational analyses, MR analyses are 
less prone to confounding and reverse causation, given the random 
allocation and fixed nature of genetic variants (13). Univariate MR 
(UVMR) analysis can estimate the total effect of early life adiposity on 
GDM risk (14). Moreover, multivariable MR (MVMR) allows the 
estimation of the independent effects of childhood obesity on GDM 
risk, independent of adult body size (15–17). It can also be used to 
examine the mediation between early life adiposity and GDM (18).

In this study, we conducted a two-sample MR analysis to examine 
the independent causal association between childhood obesity and 
GDM risk. Furthermore, we  used two-step MR to investigate the 
potential mediators and quantify their mediating effects on 
this relationship.

2. Materials and methods

2.1. Study design

MR was conducted in two stages. In stage 1, we  performed a 
two-sample UVMR using summary-level data to assess the causal effect 
of childhood obesity on the risk of GDM. We then used MVMR to 
estimate the independent effect of childhood obesity on GDM after 
accounting for adult adiposity measures. In stage 2, we first screened for 
lipid traits, including low-density lipoprotein cholesterol (LDL-C), 
high-density lipoprotein cholesterol (HDL-C), triglyceride, 
apolipoprotein A-Ι, and apolipoprotein B, as potential mediators of the 
association between childhood obesity and GDM. We then performed 

a two-step MR to evaluate the mediation effect of each selected mediator 
on the causal relationship between childhood obesity and GDM.

2.2. Data sources

2.2.1. Early and later life adiposity traits
We obtained genome-wide association study (GWAS) summary 

statistics of childhood obesity from the Early Growth Genetics (EGG) 
Consortium (19). The GWAS meta-analysis consisted of 14 relevant 
studies, with 5,530 cases (≥95% body mass index [BMI] reached before 
the age of 18 years) and 8,318 controls (<50% BMI consistent throughout 
all measures during childhood) (Table 1). The childhood BMI was 
calculated from the height and weight measurements obtained at ages 
2–18 years, except for Avon Longitudinal Study of Parents and Children 
(ALSPAC), which leveraged BMI data available from the first four 
clinical examinations prior to 2 years old. The summary-level data for 
adult BMI were accessed from a GWAS meta-analysis, which included 
association results for up to from 125 studies, 82 with GWAS results 
(n = 236,231) and 43 with results from Metabochip (n = 103,047) (20). 
The GWAS summary statistics for adult waist circumference (WC) and 
waist-to-hip ratio (WHR) were obtained from the previously described 
meta-analysis, which included 142,762 individuals of European ancestry 
from 57 cohorts genotyped with GWAS and 67,326 individuals from 44 
cohorts genotyped with the Metabochip (21) (Table 1).

2.2.2. Lipid traits
For lipid traits, we  obtained summary statistics for LDL-C, 

HDL-C, triglyceride, apolipoprotein A-Ι, and apolipoprotein B from 
the GWAS data provided by the UK Biobank (22) (Table  1). The 
GWAS of lipids and apolipoproteins in the UK biobank included a 
sample size ranging between 393,193 and 441,016 individuals, with a 
mean age of 56.9 years and a female representation of 54.2%.

2.2.3. GDM
Summary statistics for GDM were obtained from Release 8 results 

of GWAS data from the FinnGen consortium. This GWAS data 
included 11,279 GDM cases (identified using registry data on the 
International Classification of Diseases [ICD] 9 and 10 codes O24.4) 
with a mean age of 31.2 years (23) (Table 1).

Details of the recruitment, information on genetic data, and 
measurements of baseline characteristics of each cohort are obtained 
from the original study.

2.3. Selection of genetic IVs

To obtain reliable IVs, three key assumptions of MR must be satisfied 
(24). First, IVs are strongly associated with early life adiposity/lipid traits. 
Second, IVs are independent of confounders of the exposure-outcome 
relationship (excluding mediators). Third, IVs affect the outcome only 
through exposure and mediators, and not through any other paths.

We screened for genetic variants with genome-wide significance 
(p < 5 × 10−8) and linkage disequilibrium (r2 < 0.001) within a 
10,000 kb window (25). Palindromic single-nucleotide 
polymorphisms (SNPs) with incompatible alleles were also removed. 
Proxy SNPs were used when the SNPs were unavailable in the 
GWAS outcome data. The final IVs for subsequent MR studies 
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consisted of rigorously selected SNPs. To avoid a weak IVs bias, the 
F-statistic was calculated to evaluate the strength of the selected 
IVs (26).

2.4. Statistical analyses

2.4.1. UVMR and MVMR analyses
For UVMR analyses, the inverse variance-weighted (IVW) method 

was used as the main analysis (13). The MR-Egger (27), weighted median 
(28), and weighted mode methods (29) were used as sensitivity analyses 
to assess the robustness of the IVW estimate. We  performed MR 
pleiotropy residual sum and outliers (MR-PRESSO) to detect outliers 
with horizontal pleiotropy among the chosen SNPs (30). We evaluated 
heterogeneity using Cochran’s Q statistic and identified horizontal 
pleiotropy based on the MR-Egger regression model intercept (27, 31).

For MVMR analyses, the multivariate inverse variance-weighted 
(MV-IVW) method was used as the main analysis. The multivariate 
MR Egger (MVMR-Egger) method was used for sensitivity analysis.

To control for false positive rates, we used a Bonferroni-corrected 
threshold of p < 0.01 (α = 0.05/5) when analyzing the causal effects of 
childhood obesity on lipid traits, lipid traits on GDM, and lipid traits 
on childhood obesity.

2.4.2. Two-step MR analyses
We then conducted two-step MR analyses to assess and quantify 

the mediating effect of the selected mediators on the causal relationship 
between childhood obesity and GDM. The first step was to estimate 
the causal effect (β1) of childhood obesity on each chosen mediator 
using a UVMR analysis. The second step estimated the causal effect 
(β2) of each mediator on GDM risk, adjusted for childhood obesity, 
using an MVMR analysis. We calculated each mediator’s proportion 
of the total effect of childhood obesity on GDM by dividing the 
mediation effect (β1 × β2) by the total effect (32). We  derived the 
standard errors for the mediation effects using the delta method (33).

All analyses were performed using R (Version 4.1.3) with the R 
package “TwosampleMR,” “Mendelian Randomization,” and 
“MR-PRESSO” (34, 35).

3. Results

3.1. Causal effect of childhood obesity on 
GDM

In UVMR, genetically predicted childhood obesity was positively 
associated with GDM risk (OR: 1.21, 95%CI: 1.09–1.34, 
p = 4.58 × 10−4) (Figure 1). Sensitivity analyses using weighted median 
(OR: 1.41, 95%CI: 1.11–1.36, p = 9.81 × 10−4), weighted mode (OR: 
1.24, 95%CI: 1.10–1.41, p = 0.03), and MR-PRESSO methods (OR: 
1.21, 95%CI: 1.09–1.34, p = 0.02) supported the robustness of the 
IVW method (Supplementary Table S1). MR-PRESSO did not detect 
any outlier SNPs. The MR-Egger intercept test showed no evidence 
of pleiotropy (p intercept = 0.76). Cochran’s Q statistic indicated no 
potential heterogeneity among the selected SNPs (p heterogeneity = 0.07). 
The mean F-statistic for the selected IVs was 45, indicating that the 
estimates did not suffer from weak instrumental bias.

In MVMR analyses, the causal effect of childhood obesity on GDM 
remained significant after accounting for adult BMI (OR: 1.17, 95%CI: 
1.01–1.36, p = 0.03), WC (OR: 1.10, 95%CI: 1.01–1.20, p = 0.03), or 
WHR (OR: 1.21, 95%CI: 1.07–1.36, p = 1.94 × 10−3) (Figure  1). 
Sensitivity analyses using the MVMR-Egger method further confirmed 
the robustness of the MV-IVW method (Supplementary Table S2).

3.2. Causal effect of child obesity on lipid 
traits

The IVW results suggested that childhood obesity was 
negatively associated with the genetically determined level of 

TABLE 1 GWAS Data sources of the MR study.

Phenotype Data type Sample size Population Consortium/cohort

Exposure

Childhood obesity Continuous 766,345 European EGG

Adult adiposity traits

BMI (adult) Continuous 339,224 Mixed GIANT

WC (adult) Continuous 231,353 European GIANT

WHR (adult) Continuous 212,244 European GIANT

Outcome

GDM Continuous 190,879 European FinnGen

Lipid traits

LDL-C Continuous 440,546 European UK Biobank

HDL-C Continuous 403,943 European UK Biobank

Triglycerides Continuous 441,016 European UK Biobank

Apolipoprotein A-Ι Continuous 393,193 European UK Biobank

Apolipoprotein B Continuous 439,214 European UK Biobank

GDM, gestational diabetes mellitus; BMI, body mass index; WC, waist circumference; WHR, waist-hip ratio; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein 
cholesterol.
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TABLE 3 MVMR association of lipid traits with GDM risk adjust for 
childhood obesity.

Lipid traits Beta SE OR 95%CI p-value

LDL-C −0.13 0.17 0.88 0.63–1.24 0.47

HDL-C −0.27 0.08 0.76 0.65–0.89 7.36 × 10−4

Triglyceride 0.26 0.08 1.30 1.11–1.53 1.49 × 10−3

Apolipoprotein A-Ι −0.29 0.09 0.75 0.63–0.89 8.66 × 10−4

Apolipoprotein B −0.13 0.17 0.88 0.63–1.24 0.47

LDL-C (β: -0.02, 95CI%: −0.03 – −0.004, p = 7.49 × 10−3), HDL-C 
(β: −0.04, 95CI%: −0.05 – −0.03, p = 1.35 × 10−7), and apolipoprotein 
A-Ι (β: −0.04, 95CI%: −0.05 – −0.02, p = 2.28 × 10−5) and was 
positively associated with the genetically determined level of 
triglyceride (β: 0.02, 95CI%: 0.005–0.03, p = 5.29 × 10−3) (Table 2). 
The mean F-statistics for the genetic instruments were greater than 
10, indicating limited weak instrument bias (Table 2). The MR-Egger 
intercept test indicated no evidence of horizontal pleiotropy 
between childhood obesity and the selected mediators 
(Supplementary Table S3). Moreover, Cochran’s Q statistics showed 
no significant evidence of heterogeneity among the IVs 
(Supplementary Table S3).

3.3. Causal effect of lipid traits on GDM 
adjusted for childhood obesity

MVMR analyses indicated that the causal effect of HDL-C (OR: 
0.76, 95%CI: 0.65–0.89, p = 7.36 × 10−4), triglyceride (OR: 1.30, 95%CI: 
1.11–1.53, p = 1.49 × 10−3), and apolipoprotein A-Ι (OR: 0.75, 95%CI: 
0.63–0.89, p = 8.66 × 10−4) on GDM remained significant after 
accounting for childhood obesity (Table  3). The MVMR-Egger 
sensitivity analysis confirmed the robustness of the MV-IVW method 
(Supplementary Table S4).

3.4. Mediation effect of potential mediators

Two-step MR analyses indicated three potential mediators, 
including HDL-C, apolipoprotein, and triglyceride, which might 
be responsible for the causal effect of childhood obesity on GDM risk. 
HDL-C mediated the total effect of childhood obesity on GDM risk 
(5.81, 95%CI: 3.05–8.57%), followed by apolipoprotein A-Ι (4.16, 

95%CI: 1.64–6.69%), and triglyceride (2.20, 95%CI: 0.48–3.92%) 
(Figure 2).

4. Discussion

In this MR study, we  utilized two-sample and two-step MR 
approaches, for the first time, to investigate the causal associations 
between childhood obesity and GDM. Notably, we comprehensively 
explored the roles of lipid profiles in mediating the relationships of 
childhood obesity with GDM risk. Our main findings were threefold. 
First, we demonstrated that genetically predicted childhood obesity 
increased the risk of GDM, and this deleterious effect persisted after 
adjusting for adult adiposity traits, including BMI, WC, and 
WHR. Second, we found that childhood obesity was causally related 
to decreased levels of LDL-C, HDL-C, and apolipoprotein A-Ι and 
increased levels of triglyceride, while HDL-C, apolipoprotein A-Ι, and 
triglyceride were further causally associated with risk of GDM. Third, 
we identified HDL-C, apolipoprotein A-Ι, and triglyceride as potential 
mediators of the causal effect of childhood obesity on GDM.

Previous studies have identified a causal role of childhood 
obesity in the development of multiple chronic diseases, including 

FIGURE 1

UVMR and MVMR estimates for the causal, independent effect of childhood obesity on GDM risk.

TABLE 2 UVMR association of childhood obesity with each lipid trait from the IVW results.

Lipid traits No. SNP F-statistics Beta SE 95%CI p-value

LDL-C 4 42 −0.02 0.006 −0.03 – −4.0 × 10−3 7.49 × 10−3

HDL-C 2 45 −0.04 0.008 −0.05 – −0.03 1.35 × 10−7

Triglyceride 4 46 0.02 0.006 4.62 × 10−3 – 0.03 5.29 × 10−3

Apolipoprotein A-Ι 2 45 −0.04 0.008 −0.05 – −0.02 2.28 × 10−5

Apolipoprotein B 4 42 7.33 × 10−3 0.006 −0.02 – 4.55 × 10−3 0.23
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hypertension and type 2 diabetes. However, few studies have 
focused on the association between childhood obesity and 
GDM. A retrospective study of 13,031 women with anthropometric 
information measured during childhood showed that a higher 
childhood BMI was associated with an increased risk of GDM 
(36). A cohort of 1,386 GDM patients found no association 
between heavy body shape at 10 years of age and the risk of self-
reported GDM (37). A longitudinal study also showed that mean 
childhood BMI was not associated with the risk of GDM (38). The 
influence of potential confounders such as adult adiposity may 
partly explain the conflicting observations in existing studies. 
Using MR approaches to minimize potential confounding factors, 
our study built on previous evidence by demonstrating that 
childhood obesity causally and adversely affects GDM 
independently of adult adiposity. These findings highlight the 
significance of childhood obesity as a key indicator in GDM risk 
prediction and prevention.

To identify the biochemical mechanisms through which 
childhood obesity influences the risk of GDM, we further explored 
whether there are causal mediators of subsequent life trajectories 
that modulate the relationship between childhood obesity and 
GDM. We identified HDL-C, apolipoprotein A-Ι, and triglyceride 
levels as causal mediators of the impact of childhood obesity on 
GDM. Our findings are in line with the results of previous studies 
using metabolomic and lipidomic approaches, which showed that 
altered lipid traits associated with insulin resistance, inflammation 
regulation, and oxidative stress were involved in the 
pathophysiology of GDM (39, 40). However, further studies are 
required to confirm the mechanisms underlying childhood 
obesity-related GDM.

This study had several strengths. First, we designed a rigorous MR 
framework to establish causality between childhood obesity and GDM 
as well as mediation mechanisms. Second, we  employed multiple 
complementary sensitivity analyses to verify the reliability of the MR 
findings. Third, we used large-scale GWAS summary statistics, which 
increased the statistical power and accuracy of the causal 
effect estimates.

This study also had several limitations. First, we assumed that the 
associations between childhood obesity and GDM were linear in both 
UVMR and MVMR analyses. Further research utilizing individual-
level data is warranted to examine the potential nonlinear causal 
connections between childhood obesity and GDM. Second, 
we concentrated on the lipid traits that were theoretically linked to 
childhood obesity or GDM as candidate mediators. However, the 

mechanisms connecting childhood obesity and GDM were not 
fully elucidated.

In conclusion, this MR study supports the causal effect of 
childhood obesity on GDM risk. Furthermore, our findings suggest 
that this association is partially mediated by the lipid traits, HDL-C, 
apolipoprotein, and triglyceride. Understanding the causal 
relationships between childhood obesity, dyslipidemia, and GDM is 
crucial for elucidating the pathogenesis of GDM and identifying 
potential targets for early intervention.
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