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Objective: Schisandra chinensis (Turcz.) Baill. (S. chinensis) is a Traditional 
Chinese medicinal herb that can be used both for medicinal purposes and as a 
food ingredient due to its beneficial properties, and it is enriched with a wide of 
natural plant nutrients, including flavonoids, phenolic acids, anthocyanins, lignans, 
triterpenes, organic acids, and sugars. At present, there is lack of comprehensive 
study or systemic characterization of nutritional and active ingredients of S. 
chinensis using innovative mass spectrometry techniques.

Methods: The comprehensive review was conducted by searching the PubMed 
databases for relevant literature of various mass spectrometry techniques 
employed in the analysis of nutritional components in S. chinensis, as well as their 
main nutritional effects. The literature search covered the past 5  years until March 
15, 2023.

Results: The potential nutritional effects of S. chinensis are discussed, including 
its ability to enhance immunity, function as an antioxidant, anti-allergen, 
antidepressant, and anti-anxiety agent, as well as its ability to act as a sedative-
hypnotic and improve memory, cognitive function, and metabolic imbalances. 
Meanwhile, the use of advanced mass spectrometry detection technologies have 
the potential to enable the discovery of new nutritional components of S. chinensis, 
and to verify the effects of different extraction methods on these components. 
The contents of anthocyanins, lignans, organic acids, and polysaccharides, the 
main nutritional components in S. chinensis, are also closely associated to its 
quality.

Conclusion: This review will provide guidelines for an in-depth study on the 
nutritional value of S. chinensis and for the development of healthy food products 
with effective components.
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1. Introduction

In recent years, with the rapid development of the Traditional 
Chinese Medicine industry, people are paying more attention tos their 
health, and many health food products, especially Chinese herbal 
medicines with dual functions as medicine and food, have become 
increasingly popular. Schisandra is a medicinal and edible plant. 
Schisandra can be classified predominantly into Schisandra chinensis 
(Turcz.) Baill. (S. chinensis) and Schisandra sphenanthera Rehd. et Wils 
(S. sphenanthera). In accordance to the Compendium of Materia 
Medica, S. chinensis has higher medicinal value than S. sphenanthera 
(1). S. chinensis is a deciduous vine plant in the Magnoliaceae family, 
also known as Kadsura chinensis, Maximoviczia amurensis, 
Maximoviczia chinensis, Omija, Maximoviczia japonica, Speerostemma 
japonicum, Wuweizi (2), characterized by five tastes: sweet, bitter, 
pungent, salty, and sour (3). The species of natural S. chinensis grows 
in mixed forests and shrubs in the Northeast and North China, North 
Korea, and the Far East of Russia. Owing to its effects of astringing and 
securing, tonifying qi and engendering fluid, as well as tonifying the 
kidney and calming the heart (4). S. chinensis has been frequently used 
as a tonic Chinese medicine in clinical practice. WuWeiZiJiangNang, 
which is processed from the mature fruit of S. chinensis, is also a 
dietary supplement. Since 2007, this plant has been listed as an 
valuable medicinal plant in the International Pharmacopeia published 
by the World Health Organization (5). S. chinensis contains a variety 
of beneficial nutrients such as lignans, phenolic acids, flavonoids, 
triterpenoids, organic acids, vitamins, and polysaccharides. In 
addition to being widely used as an effective additive in medicine, 
cosmetics, and health products, it is suitable for use in tea, beverages, 
jam, and seasonings as a functional food ingredient with unique flavor 
(3, 6, 7). In recent years, research on the components and functions of 
S. chinensis was numerous and jumbled, with mainly antioxidant, 
antibacterial, anti-inflammatory, anti-aging and anticancer, as well as 
the prevention of chronic diseases related to diet and other effects 
attributed to S. chinensis extracts and its single constituent (8–11). In 
Russia, S. chinensis, as a plant adaptation agent, has been found to 
be useful in strengthening the body’s resistance to stress and offers 
stress-protective effects against various harmful factors such as hot 
and cold stimuli (12). The S. chinensis extracts serve as a good natural 
preservative, inhibiting the activity of Escherichia coli, destroying the 
cell membrane and wall of Staphylococcus aureus (13), and inhibiting 
Listeria monocytogenes, Clostridium perfringens and Salmonella (14).

In recent years, advances in chromatography-mass spectrometry 
(MS) analysis technology has greatly contributed to the rapid, high-
throughput qualitative and accurate quantification of complex 
components in Chinese medicinals (15). Recently, High-resolution 
MS (HRMS) has been used to discover new bioactive substances such 
as nutrients in herbal products and dietary supplements, to identify 
components of food pollutants, and to investigate the 
pharmacokinetics, oral bioavailability, and tissue distribution of 
effective ingredients in Chinese medicinals (15, 16). Considering the 
advantages of fast analysis speed, easy operation, and low organic 
solvent consumption, the direct analysis in real time ionization source 
coupled with quadrupole orbitrap MS (DART-Q-Orbitrap MS) has 
been applied to rapidly detecting and identifying the components of 
S. chinensis and S. sphenanthera, and identifying the differences 
between the two components at the MS level (17). In addition, the 
extractive nanoelectrospray ionization-mass spectrometer 

(EnESI-MS) with high sensitivity and specificity was formed by 
coupling the extractive nanoelectrospray ionization source and a high 
resolution mass spectrometer, which has been used to authenticate 
S. chinensis and S. sphenanthera with similar shape and different 
efficacy (18).

The above MS techniques have been mainly applied to identifying 
the active components of S. chinensis for its medicinal potential. 
Currently, there is a lack of comprehensive study or systemic 
characterization of the nutritional and active components of 
S. chinensis by using innovative MS techniques. Initial search in 
PubMed database was made. Using “Schisandra chinensis (Turcz.) 
Baill.,” “S. chinensis,” “Wuweizi,” “Kadsura chinensis,” “Maximoviczia 
amurensis,” “Maximoviczia chinensis,” “Omija,” “Maximoviczia 
japonica” and “Speerostemma japonicum,” and “mass spectrometry” as 
search terms. The search was combined with a screening for literature 
in reference sections of relevant studies. Following search criteria 
“mass spectrometry technology related to components analysis of 
S. chinensis” and “nutritional effects,” a total of 84 studies were 
included in the review, and these studies were published 
predominantly during the past 5 years. Various bioactive and 
nutritional components of S. chinensis detected by MS are 
systematically summarized in order to facilitate the discovery of new 
extraction methods and components of S. chinensis. Moreover, the 
nutritional and health functions and mechanisms of the active 
ingredients associated with S. chinensis are also evaluated. The aim of 
this review is to provide theoretical guidelines for the prevention and 
health care, as well as the therapeutic value of S. chinensis.

2. Nutritional and active components 
of Schisandra chinensis

2.1. Polyphenols

Polyphenols, also known as the “the seventh category of 
nutrients,” have avariety of functions including antioxidant, anti-
aging, antiviral, lowering blood sugar and lipids, protecting the heart 
and nerves. Flavonoids and phenolic acids, which belong to the 
polyphenols, as secondary metabolites of plants and widely present in 
fruits, flowers, seeds, leaves, roots, or other parts of plants, and they 
are associated with antioxidant properties (19). The leaves of 
S. chinensis are predominantly flavonoids and phenolic acids (20). 
High-performance liquid chromatography-diode array detection 
(HPLC-DAD) was utilized to analyze and compare the type and 
content of polyphenolic compounds in microshoot cultures of 
S. chinensis cultivated on agar medium and in the fruits and seeds of 
raw S. chinensis (21). The results showed that there were 8 types of 
phenolic acids present in the vitro culture, namely chlorogenic, 
cryptochlorogenic, gallic, neochromogenic, protocatalytic, salicylic, 
syringic and vanillic acids. Among these 8 of phenolic acids, 
neochromogenic and chlorogenic acids had the higher contents, as 
well as two types of flavonoids: kaempferol and quercitrin, with 
quercetin having the highest contents (21). The highest dry weight of 
total phenolic acids and flavonoids in S. chinensis micro bud cultures 
were 357.93 mg/100 g and 105.07 mg/100 g, respectively. These 
contents were 1.59 times and 5.95 times lower than the parental plant 
leaf extracts, and 4.30 times and 1.25 times higher than the fruit 
extracts. This study not only indicated that the contents of phenolic 
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acids and flavonoids in leaves were higher than those in fruits, but 
also provided an optimized protocol for vitro cultivation of 
S. chinensis (21).

A study evaluated the polyphenol content of the fruits and leaves 
of S. chinensis using HPLC-ultraviolet spectroscopy-MS (HPLC-
UV-MS) (22). The results showed that the main composition of 
flavonoid in the leaves was isoquercetin, followed by quercetin, while 
the main flavonoid in the fruits was rutin, but its contents were lower 
than that in leaves, which was consistent with the significantly higher 
antioxidant activity of leaf extracts compared to fruits (22). Quercetin 
is commonly used as a dietary ingredient and supplement in the daily 
diet, exerting the function of a functional food (23). Enzymatically 
modified isoquercetin (EMIQ) is an isoquercitrin derivative obtained 
from rutin through enzymatic transformations, which improves the 
bioavailability of isoquercitrin (24). Furthermore, EMIG has higher 
safety and biological activity, as well as various healthful biological 
characteristics such as antiallergic, anti-inflammatory, protecting the 
heart and nerves, and regulating lipid metabolism (24). EMIQ has 
attracted increasing attention from researchers who are working on 
making it as a food additive and as an ingredient in dietary 
supplements (24). A recent study has found that quercetin and rutin 
exhibit good radiation stability, and that exposure to ionizing radiation 
does not alter their chemical structure and antioxidant properties (25). 
In a double-blind clinical study, rutin has been shown to increase skin 
elasticity and reduce wrinkles length, area, and number when applied 
to the skin of subjects aged 30–50 (26). This anti-aging function may 
be achieved by increasing mRNA expression of collagen type I α1 and 
reducing mRNA expression of matrix metallopeptidase 1 in human 
dermal fibroblasts. In addition, it may also promote the clearance of 
aging-related reactive oxygen species (ROS) in a dose-dependent 
manner (26). Anti-hyperglycaemia effects of rutin include reducing 
the absorption of carbohydrates in the small intestine, inhibiting tissue 
gluconeogenesis, increasing tissue glucose uptake, stimulating β Cells 
to secrete insulin, and protecting the Langerhans islet from 
degeneration (27). Additionally, Rutin can reduce sorbitol, ROS, 
advanced glycation end-product precursors, and inflammatory 
cytokines, thereby preventing or treating diabetes and its 
complications (27). Furthermore, a number of neurodegenerative 
diseases have been shown to benefit from rutin, including Alzheimer’s 
disease, Parkinson’s disease, Huntington’s disease and prion disease, 
which caused by neuron loss, apoptosis, mitochondrial dysfunction, 
oxidative stress, and inflammation (28). It has been shown that rutin 
is effective in treating cancer at varying degrees by regulating cellular 
signaling pathways, such as Wnt/β-catenin, p53 independent pathway, 
PI3K/Akt, JAK/STAT, mitogen-activated protein kinase (MAPK), p53, 
and NF-ĸB pathway (29). Several studies have indicated that the 
alcohol extract and aqueous extract of S. chinensis have distinct 
components. Six phenolic acids were detected in the methanol 
extracts, including chlorogenic, p-coumaric, p-hydroxybenzoic, 
protocatechuic, salicylic, and syringic acids, while namely p-coumaric 
and syringic acid were the highest in S. chinensis extracts (30). The 
aqueous extracts of S. chinensis were analyzed using HPLC–MS. In 
addition to lignans, phenolic acids and flavonoids, as well as 
protocatechiuc and p-coumaril quinic acids were found to 
be predominant (31). There are two major categories of flavonoids 
identified: Quercetin derivatives, including glucosides, galactosides, 
and rutinosides and Kaempferol derivatives, including rutinoside and 
glucoside (31).

S. chinensis bee pollen is also an important functional food with 
a long history of sales in China. Cheng et al. (32) detected the total 
phenolic acids quantified were 36.11 mg/kg, and the total flavonoids 
quantified were 1643.31 mg/kg in S. chinensis pollen extracts by 
HPLC with DAD and electrochemical detector. The most abundant 
phenolic compound was quercetin (719.93 mg/kg), followed by 
galangin, hesperetin, and resveratrol. It is noteworthy that a species 
in the genus Schisandra is generally called Schisandra rubriflora 
(Franch.) Rehd. et Wils (S. rubriflora), native to Western Sichuan 
province of China, which is less studied and used (33). Recently, 
Szopa et  al. found that S. rubriflora contains abundant phenolic 
substances (34). Researchers identified 27 phenolic compounds from 
the S. rubriflora fruit, stem, leaf and in vitro micro stem culture 
extracts by using ultra-high-performance liquid chromatography 
with a photodiode array detector coupled to electrospray ionization 
ion trap MS (UHPLC-DAD-ESI-MS3), and demonstrated that for the 
first time there was close correlation between the total phenolic 
content of S. rubriflora and antioxidant potential (34). A flavonoid 
compound known as anthocyanins is an important component of the 
fruit pigment, playing a vital role in determining the coloration of the 
fruits (35). An optimal extraction condition could yield 29.6 mg/g of 
anthocyanins from S. chinensis fruit (36). The anthocyanins present 
in S. chinensis have been characterized using HPLC-ESI-MS. Upon 
acid hydrolysis, the purified Cya-3-O-xylrut, the mostly colorant of 
S. chinensis, was successfully purified. This compound from the water 
extract of S. chinensis accounted for more than 86% of total 
antioxidant activity (37). A HPLC-ESI-MS was utilized to determine 
the contents of four major anthocyanins, CyXylGlu, CyGluRutin, 
CyRutin and CyXylRutin in S. chinensis fruits, with CyXylRutin 
(cyanidin3-O-xyl-rutinoside) being the most abundant (35, 38). In 
S. chinensis fruits, CyXylRutin is the key anthocyanin in determining 
the reddening appearance. The genetic components involved in the 
biosynthesis of cyanidin3-O-xyl-rutinoside have been identified by 
combining SMRT sequencing with second-generation sequencing 
and targeted metabolomics analysis (38). Meanwhile, the complete 
anthocyanin biosynthesis pathway in S. chinensis was constructed, 
and five ScMYBs, three ScbHLHs, and two ScWD40s were identified 
as being involved in this process, which may function in anthocyanin 
synthesis (38). Based on these findings, further investigation into the 
molecular mechanism and the gentic regulation of anthocyanin 
biosynthesis can be carried out in order to improve the appearance 
and quality of S. chinensis fruit. The cyanidin 3-Rutinoside, one of the 
most abundant components in fruits and vegetables, was detected in 
S. chinensis using LC-ESI-triple quadrupole-MS. The study has 
demonstrated that cyanidin 3-Rutinoside can inhibit the secretion of 
inflammatory cytokines such as IL-6 and tumor necrosis factor-α 
(TNF-α) along with NF-ĸB phosphorylation. This, in turn, can 
improve allergic inflammation induced by PMA/A23187 in human 
mast cell line (39). Therefore, cyanidin 3-Rutinoside may be useful 
as a therapeutic agent in the treatment of allergic diseases. In 
addition, UHPLC-quadrupole time of flight-MS (UHPLC-Q-
TOF-MS), was used to determine the chemical structures of 
proanthocyanidins (which can be decomposed into anthocyanins) 
and identified 12 substances in S. chinensis seed coat, including Malic 
acid, Citric acid, (Epi) gallocatechin, Protocatechuic acid, 
Procyanidin trimer mixed, Procyanidin B4, Procyanidin trimer 1, 
Catechin, Procyanidin tetramer, Procyanidin trimer 2, Procyanidin 
trimer 3, Procyanidin dimer 2, and 1 with unspecified substance (40). 
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Despite this, the function of these new active ingredients have yet to 
be discovered.

2.2. Lignins

2.2.1. Types and functions of lignans in 
Schisandra chinensis

Lignans are a class of natural compounds derived from two or 
more phenylpropanoid units (a structure of C6-C3) (41). Up to date, 
more than 170 lignans have been identified from S. chinensis and 
S. sphenanthera, which can be  divided into six groups: 
dibenzocyclooctadiene ligans, tetrahydrofuran ligans, dibenzylbutane 
ligans, aryltetralin ligans, dihydrobenzofuran ligans, and furofuran 
ligans. Since Dibenzocyclooctadiene lignans are the predominant 
bioactive constituents of S. chinensis fruits, they are often referred to 
as “Schisandra lignans” in the scientific literature (42). It is noteworthy 
that during the research process, there have been multiple synonymous 
names assigned to the active components of S. chinensis lignans. The 
mixed use of these names can lead to confusion for scientists to 
understand and comprehend the active components of S. chinensis. 
The article provided supplement in organizing the synonymous names 
of S. chinensis lignans in Table 1. Lignans may exist in variety of plant 
parts, such as seeds, stems, leaves, and roots in both free and glycosidic 
forms (43). The S. chinensis fruit contains the highest amount of 
lignans, accounting for approximately 2% of its dry weight (44). A 
comparative study was conducted on the amount of lignan in 
S. chinensis extracts of fruit, leaves, stems, and roots using ultra 
performance liquid chromatography (UPLC)-Q-TOF-MS (45). The 
researchers found that the roots contained higher contents of gomisin 
D, schisandrol B, schisanterin C, kadsuranin, and kadlongilactone F 
than those in the fruits, and these components were closely related to 
their antioxidant and anti-inflammatory activities (45). The 
antioxidant capacity of the main lignans in S. chinensis extract was 
determined by using the HPLC-online TEAC method. The result 

shown that gomisin D was the only lignan that could scavenge ABTS+ 
radicals (46).

Schisandrin A, B and C, schisandrol B, schisantherin A-B were the 
main components in dibenzocyclooctadiene lignans, and there were 
significant differences in the amount of these components between 
S. chinensis and S. sphenanthera (42). The researchers cultured 
S. chinensis in a liquid medium system, and quantitatively analyzed 
the content of S. chinensis lignans using HPLC-DAD and LC-DAD-
ESI-MS (4). Results showed that four major lignans were detected, 
namely schisandrin (syn. Schisandrol A), angeloyl−/tigloylgomisin Q, 
deoxyschisandrin (syn. Schisandrin A) and gomisin A (syn. 
Schisandrol B), and their maximum dry weights were 65.62 mg/100 g, 
49.73 mg/100 g, 43.65 mg/100 g, and 34.36 mg/100 g, respectively (4). 
A study conducted using supercritical fluid chromatography and DAD 
detected the presence of 9 lignans in S. chinensis, and the results 
indicated that schisandrol A was the most abundant lignan, followed 
by schisandrin B (syn. Gomisin N) or schisandrol B (47). Therefore, 
Schisandrol A is the predominant component of lignans in S. chinensis. 
A study showed that schisandrol A has an active antidepressant effect 
on lipopolysaccharide induced depression in mice by regulating 
intestinal microbiota and inhibiting TLR4/NF-κB signal pathways in 
the hippocampus to reduce neuroinflammation (48). A study in vitro 
and vivo showed that schisandrol A inhibits pulmonary fibrosis by 
regulating TGF- β signal pathway (49). Schizandrol A promoted the 
activation of PI3K/Akt in acute myocardial ischemia mice and H9c2 
cells treated with oxygen–glucose deprivation, downregulated the 
expression of NOX2, as well as significantly reduced myocardial 
infarction area and improved biochemical indicators and cardiac 
pathological changes, thus exerting cardiac protective effects (50). 
Metabolomics analysis showed that schizandrol A could also regulate 
myocardial injury related indicators such as glycine, serine and 
threonine metabolism, as well as lysine biosynthesis under acute 
myocardial ischemic pathological conditions (50). Furthermore, 
Schizandrol A might also play a role in cardioprotective effects by 
improving oxidative stress damage (51).

Schisandrin A, B and C isolated from S. chinensis extracts process 
a variety of nutritional and pharmacological properties. Schisandrin 
A exhibits significant therapeutic effects in diverse inflammatory 
diseases through distinct signaling pathways. In human colon cancer 
HT-29 cells, schisandrin A inhibited the production of intracellular 
reactive oxygen species (ROS) and nitrogen oxidative species induced 
by mycotoxin deoxynivalenol (DON), and alleviated chronic intestinal 
inflammatory diseases (52). Schisandrin A protected intestinal 
epithelial cells from cytotoxicity induced by mycophenolic acid and 
oxidative damage caused by increasing ROS expression, playing its 
antioxidant activity (53). Therefore, schisandrin A may serve as a 
protective against intestinal injury caused by DON and mycophenolic 
acid. Schisandrin A inhibited MAPK and NF-κB signaling pathways 
to reduce inflammation and cartilage degradation induced by IL-1β, 
thus playing a therapeutic role in osteoarthritis (54). Moreover, 
Schisandrin A may also initiate autophagy (a process in which the 
body activates antioxidant mechanisms to balance oxidative stress) by 
inhibiting the mTOR pathway and activating the adenosine 
monophosphate-activated protein kinase (AMPK)-unc-51 like kinase 
1 (ULK1) signaling pathway, playing a protective role in 
lipopolysaccharide induced mouse mastitis model (55). In addition, 
schisandrin A may enhance the proliferation and differentiation of 
neural progenitor cells through cell division control protein 42, 

TABLE 1 The lignans and their synonymous names (42).

Lignans Synonymous names

schisandrin
schisandrol A, schizandrin, wuweizichun 

A, wuweizi alcohol A

schisandrin A

schizandrin A, deoxyschisandrin, 

deoxyschizandrin, dimethylgomisin J, 

wuweizisu A

schisandrol B
gomisin A, besigomsin, wuweizi alcohol 

B, wuweizichun B

schisandrin B

Schizandrin B, Wuweizisu B, Gomisin N, 

γ-Schisandrin, Isokadsuranin, 

Deoxygomisin A

Schisantherin A
Schizantherin A, Gomisin C, schisandrer 

A, Wuweizi ester A

Schisantherin B
Schizantherin B, Gomisin B, Schisandrer 

B, Wuweizi ester B

Schisandrin C Schizandrin C, Wuweizisu C

Gomisin M1 Gomisin L1

Schisanhenol Gomisin K3
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regulating cytoskeleton rearrangement and cell polarization, and 
improve the sequelae of ischemic brain injury (56).

Schisandrin B demonstrates substantially effects in ameliorating 
metabolic related diseases and repairing nervous system, primarily 
attributed to its antioxidant and anti-inflammatory functions. Non 
alcoholic fatty liver disease (NAFLD), a metabolic syndrome, is an 
increasingly serious public health problem affecting the world (57). A 
study found that schisandrin B activated autophagy by regulating the 
AMPK/mTOR pathway, promoting lipid clearance, inhibiting hepatic 
steosis, and increasing fatty acid oxidation, thus playing a role in 
preventing or treating NAFLD (58). Nevertheless, these preventive 
and therapeutic effects only observed at low doses of schisandrin B 
(50–200 mg/kg/day). A study found that high-dose schisandrin B lead 
to an increase in cholesterol and triglyceride levels in mice after a 
single injection (59). Therefore, it is necessary for researchers to 
actively explore and establish the optimal dose of schisandrin B 
treatment to ensure maximum efficacy and safety for human. 
Additionally, schisandrin B played a significant role in antioxidation, 
inhibiting cancer cell cycle arrest induced by cyclin D1, 
neuroprotection, and improvement of myocardial ischemia (60). In 
the cyclosporine A induced nephrotoxicity model of the human 
proximal tubular epithelial cell line, schisandrin B could reduce the 
cytotoxicity caused by oxidative stress during the application of 
immunosuppressants by reducing the release level of intracellular ROS 
and lactate dehydrogenase and increasing the level of mitochondrial 
membrane potential and glutathione (GSH) (61). Nuclear factor 
erythroid 2-related factor 2 (Nrf2) -mediated antioxidant response 
pathway might be the main cellular defense mechanism of antioxidant 
stress cytotoxicity (62). Researchers observed the behaviors of mice 
with and without oral administration of schisandrin B in a forced 
swimming mice model. The results indicated that schisandrin B 
increased the level of Nrf2 and decreased the level of Kelch-like 
ECH-related protein 1, an endogenous inhibitor of Nrf2. Additionally, 
schisandrin B significantly increased the expression of antioxidant 
molecules, including superoxide dismutase (SOD) and GSH (63). In 
this way, oxidative stress injury is effectively reduced and the 
symptoms of anxiety-like behavior induced by acute stress are 
alleviated, which suggested that schisandrin B may serve as a potential 
drug for treatment of anxiety disorders related to oxidative stress (63). 
The alcoholic liver disease is primarily caused by ROS. Alcohol 
exposure results in the production of ROS, such as superoxide, 
hydroxyl radical and hydrogen peroxide, and the antioxidant defense 
system in liver is inhibited, thereby leading to liver oxidative stress 
(64). Nagappen et  al. found that schisandrin B (syn. Gomisin N) 
downregulated cytochrome P450 2E1 expression, and upregulated 
antioxidant gene expression, inhibited ROS production, reduced 
inflammatory gene expression, and reduced ethanol-induced oxidative 
stress, thereby exerting partial therapeutic effects on alcoholic liver 
disease by using mice models of chronic alcoholism and HepG2 cells 
treated with ethanol in vitro (65). JiangMeiLingJiaoNang, a commonly 
used liver protective drug in clinical practice, is composed primarily 
of schisandrin A and schisandrin B as its main components. It has 
demonstrated to significantly reduce the levels of Alanine 
transaminase, indicating its efficacy in liver protection. Li et al. found 
that schisandrin B elevated the level of γ-aminobutyric acid, and 
significantly decreased the level of glutamate in the peripheral blood 
of mice and in the cerebral cortex, hippocampus and hypothalamus 

of rats, which increased the GABA/Glu ratio, thus exerting sedative 
and hypnotic effects (66). Research has shown that schisandrin A and 
schisandrin B induce proliferation, survival, differentiation, and 
neurogenesis of mouse neuroectodermal neural stem cells (67). 
Additionally, schisandrin B treatment enhanced the expression of the 
neurosphere-specific adhesion molecule Cdh2 as well as Wnt 
pathway-related genes, including MMP9, Cyclin D1, and β-catenin, 
and improved nervous system development (67). Further, the 
oxidative stress-induced decrease in testosterone biosynthesis related-
genes by using both schisandrin B (syn. Gomisin N) and schisandrol 
A, which are a potential therapeutic agent for treating male 
hypogonadism (68).

Studies have shown that excessive activation of lipolysis through 
autoreflexes increases the level of free fatty acids in patients with 
severe obesity. The release of free fatty acids from peripheral tissues in 
circulating may lead to obesity-related complications, including 
inflammation, type 2 diabetes and cancer (69). Therefore, actively 
controlling excessive steatolysis in obese patients is closely related to 
their prognosis. It has been shown that schisandrin C increases AMPK 
phosphorylation levels in a dose-dependent manner, which resulted 
in a reduciton in the protein levels of major adipogenic transcription 
factors (peroxisome proliferator-activated receptor γ and CCAAT/
enhancer-binding protein-α) associated with lipogenesis (69). 
Moreover, it repressed pancrelipase activity related to fat 
decomposition, thereby reducing lipid accumulation (69). Shisandrin 
C inhibited MAPK pathway activity in C2C12 skeletal muscle cells, 
increased antioxidant activity and reduced ROS release, decreasing 
inflammatory factor levels in these cells by regulating NF-κB and Nrf2 
translocation to the nucleus. Furthermore, it participates in 
antioxidant mechanisms by enhancing autophagy and mitochondrial 
biogenesis (70). In addition, schisandrin C has a significant antiviral 
activity. Researchers found that schisandrin C activated cyclic 
GMP-AMP synthase-stimulator of interferon genes pathway and 
increased the production of Interferon β and the expression of 
interferon-stimulated genes (IFIT1, ISG15, and CXCL10) to inhibit 
HBV replication (71). Propionibacterium acnes is a key pathogenic 
bacterium leading to acne inflammation (72). Schisandrin A, B and C 
effectively suppressed IL-1β secretion and pyroptosis by inhibiting 
NOD-like receptors family pyrin domain-containing 3 (NLRP3) 
inflammasome activation in human monocytes (THP-1 cells) infected 
with Propionibacterium acnes. The three lignans are a potential 
treatment for Propionibacterium acnes related infections, and the 
efficacy of each lignan is as follows: schisandrin C > schisandrin 
B > schisandrin A (73).

The development of the economy has led to an increase in social 
pressure, and chronic fatigue may be  one of the most significant 
factors affecting human health in the future. Lin et al. discovered that 
schisantherin A, a compound found in S. chinensis, boosted 
antioxidant and anti-apoptotic activity in mice with chronic fatigue 
(74). This protected their brains from oxidative stress, resulting in 
improved learning and memory with chronic fatigue mice. 
Schisantherin A achieved this by decreasing the levels of certain 
proteins (such as Kelchlike ECH-associated protein 1, Bax, and 
caspase3) that cause cell death, while increasing the levels of others 
(such as Nrf2, heme oxygenase1 (HO-1), and Bcl2) (74). Overall, these 
findings suggest that schisantherin A may be a promising candidate 
for treating oxidative stress-related cognitive impairments. It has been 
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found that oxidative stress negatively impacts mitochondrial 
biogenesis, and increased HO-1 expression can upregulate peroxisome 
proliferator-activated receptor-gamma coactivator 1 alpha and 
promote mitochondrial biogenesis (70, 75). During the oxidative 
stress induced by high glucose levels in diabetes, gomisin A could 
promote osteoblast differentiation by modulating the expression of 
HO-1, antioxidant enzymes, and osteoblast differentiation molecules, 
as well as the maintenance of mitochondrial homeostasis. Gomisin A 
is expected to be a potential therapeutic agent to prevent osteoporosis 
caused by diabetes (75). In addition, gomisin A can reduce the level of 
ROS in ovarian cancer cells and inhibit cancer cell proliferation by 
downregulating the expressions of cyclin-dependent kinase 4 and 
cyclin B1 (8). Gomisin A can also reduce the levels and activities of 
matrix metalloproteinase (MMP)-2 and MMP-9, and improve the 
lung metastasis of colorectal cancer cells by reducing the cell survival 
and metastasis ability of colorectal cancer cells (76). In the paracetamol 
induced acute hepatotoxicity model of mice, schisandrol B (syn. 
Gomisin A) significantly attenuated the increases in alanine 
aminotransferase and aspartate aminotransferase activity, and 
prevented the depletion of mitochondrial glutathione in a dose-
dependent manner (77). Meanwhile, schisandrol B inhibited the 
biological activation of paracetamol mediated by cytochrome P450, 
and reduced paracetamol-induced p53 and p21 activation, as well as 
increased the expression of liver regeneration and anti-apoptotic 
related proteins such as cyclin D1, proliferating cell nuclear antigen, 
and B cell lymphoma/lewkmia-2, thereby protecting the liver from 
liver injury (77).

2.2.2. Novel mass spectrometry technologies and 
extraction methods to analyze lignans of 
Schisandra chinensis

S. chinensis fermented beverage is one of the popular dietary 
supplements. Park et al. detected the effects of the fermentation 
process, fermentation time, and fermentation materials on the 
lignan contents in S. chinensis beverage by MS (6). The results 
shown that the total content of schisandrol A, schisandrol B, 
tigloylgomisin H, angeloylgomisin H, schisandrin A, schisandrin 
B, and schisandrin C in the seeds, flowers, leaves, pulp, and stem 
of S. chinensis decreased sequentially (6). And the total lignan 
content in S. chinensis beverage fermented with white sugar for 
12 months increased by 2.6 times, while fruit wine made by soaking 
fruits in alcohol had a higher total lignan content, which may 
be related to the fact that alcohol itself is a solvent for extracting 
the effective components of S. chinensis (6). Meanwhile, compared 
with unprocessed S. chinensis, wine processed S. chinensis has a 
more significant role in regulating gut microbiota derivatives 
related to GPR81 receptor-mediated lipid metabolism pathways, 
thereby improving anxiety and depression-like behaviors in rats 
(78). Taking into account the complexity of the S. chinensis 
components, further exploration of the potential value of 
S. chinensis beverages processed with alcohol is necessary. 
Separation and purification methods are essential for obtaining 
high-purity extracts from S. chinensis during the process of 
obtaining, identifying, and utilizing S. chinensis components. 
Supercritical fluid extraction with the characteristics of being 
green, mild, and selective, can effectively remove residual solvents 
from extracts (79). The lignans from different parts of S. chinensis 

plant were extracted by using supercritical fluid extraction 
technology with CO2 as the supercritical solvent and ethanol as the 
co-solvent (79). Finally, 36 compounds were isolated from leaves, 
and 43 compounds were isolated from wooden stems, while 36 
compounds were isolated from rhizomes and roots. Then the 
samples were accurately analyzed by HPLC-SPD-ESI-MS/
MS. High-precision mass spectrometric data were recorded on an 
ion trap equipped with an ESI source in the mode of negative ions 
by a three-stage ion separation mode (79). An analysis of literature 
revealed that 26 bioactive substances are classified as lignans, 
namely schisandrin C, gomisin M1, gomisin L2, gomisin M2, 
gomisin J, pregomisin, schisandrin B, schisanhenol, gomisin O, 
erigomisin O, schisandrin A, demethylated metabolites of 
schisandrol A, schisandrol A, 7, 8-Dihydroxy-schisandrin, 
tigloylgomisin O, angeloylsogomisin O, angeloygomisin H, 
micrantherin A, gomisin E, schisantherin D, benzoylgomisin O, 
benzoylgomisin H, gomisin D, gomisin G, schisantherin A and 
benzoylgomisin Q (2). There has been evidence that gomisin L1 
(gomisin M1) has strong anti-HIV properties (80). Using siRNA to 
knockdown NADPH oxidase (NOX), it was demonstrated that 
gomisin L1 increased intracellular ROS levels and promoted 
apoptosis in ovarian cancer cells through NOX (81). In addition, 
α-Iso-cubebene (ICB), another compound of 
dibenzocyclooctadiene lignans in S. chinensis, could inhibit high 
mobility group box 1 (HMGB1)-induced monocyte–macrophage 
differentiation by reducing the level of aberrantly expressed ROS 
in monocytes, which was important in the treatment of vascular 
inflammation and subsequent endothelial proliferation associated 
with vascular injury (82). Piao et  al. developed a magnetic 
separation method based on polyethylenimine-modified magnetic 
nanoparticles (PEI-MNPs). The method formed a strong cation-π 
interaction with the benzene rings of lignans through the─NH3

+ 
groups on the PEI-MNPs surface, and the methoxy on the benzene 
ring enhanced the negative electron cloud density, and 
strengthened the cation-π interactions and electrostatic adsorption 
ability (83). This method allowed for the rapid and effective 
isolation and purification of lignans, followed by the 
characterization of magnetic nanoparticles by transmission 
electron microscopy, vibrational sample magnetometer, Fourier 
transform infrared spectroscopy and X-ray diffraction (83). Finally, 
in addition to the 26 lignan components mentioned above, 13 
other components including schisandrol B, tigloylgomisin H, 
angeloylgomisin Q, gomisin F, gomisin K1, gomisin K2, 
schisantherin B, tigloylgomisin P, schisantherin C, epigomisin O, 
benzoylisogomisin O, angeloylisogomisin O, angeloylgomisin O 
have been detected (83). An integrated method based on UPLC-
high resolution (HR) MS coupled with characteristic fragment 
filtering and online database query was used for S. chinensis 
composition analysis (84). A total of 94 compounds were primarily 
or definitively characterized, including 58 lignans, 15 triterpenoids 
and 21 other compounds. After analytical comparison, 16 of these 
compounds did not match with those in the established S. chinensis 
chemical composition database and were therefore identified as 
potential new compounds. In the study, lignans were found to 
be abundant in S. chinensis, and the study recommended using 
LC–MS to identify potential new components of the plant (84). 
Using advanced HR-MS techniques, Yang et  al. isolated and 
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identified a new lignan (7R,7′R,8R,8′R)-8-hydroxypinoresinol 
8-O-β-d-glucopyranoside, named schilignan F, from the rattan 
stems of S. chinensis (85). Liu et  al. isolated a new lignan 
(schisandroside E) and a new terpenoid (schisandenoid A) from 
S. chinensis leaves by using nuclear magnetic resonance (NMR), 
MS, infrared spectroscopy, ultraviolet spectroscopy and circular 
dichroism (CD) (86). Ying et  al. structurally analyzed the 
compounds extracted from the S. sphenanthera stem by NMR, 
HR-ESI-MS and CD, and identified a new dibenzocyclooctadiene 
lignan, sphaerandrin A (87). However, the functions and value of 
these new components remain to be further investigated.

The contents of lignan in S. chinensis is also an important indicator 
for its quality. The 2020 edition of The Chinese Pharmacopeia specifies 
that the content of schisandrol B should not be less than 0.40%, while 
the US Pharmacopeia specifies that the percentage of total content of 
schisandrin, schisandrol B, deoxyschisandrin and γ-schisandrin 
should not be less than 0.95% of the lignan content based on HPLC 
(88). Schisandrol A, schisandrol B, angeloylgomisin H, gomisin G, 
schisantherin A, schisanhenol and schisandrin A were quantitatively 
analyzed in 43 batches of S. chinensis samples collected from different 
locations using HPLC-DAD-MS. The results suggested that 
schisandrol A, schisandrol B, schisandrin B, and schisandrin C could 
be  used as chemical markers in the evaluation of high quality 
S. chinensis (89). Meanwhile, researchers found that the total amount 
of nine lignans in S. chinensis collected from Heilongjiang and 
Liaoning provinces was significantly higher than that from other 
regions, indicating that the geographic environment in Northeast 
China is more suitable for the growth of S. chinensis (89). A study in 
2022 analyzed 14 preparations of S. chinensis by HPLC fingerprinting 
combined with multiple chemometric methods and discovered that 
schisandrin A, besides the four components mentioned above, could 
also be  used as a comprehensive marker for quality control of 
S. chinensis (90).

Chen et al. identified 15 components simultaneously in wild and 
cultivated S. chinensis using ultra-fast performance liquid 
chromatography coupled with triple quadrupole linear ion trap mass 
spectrometry (UFLC-QTRAP-MS/MS), including 11 lignans 
(schisandrin, gomisin D, gomisin J, schisandrol B, angeloylgomisin H, 
schizantherin B, schisanhenol, deoxyschizandrin, γ-schisandrin, 
schizandrin C, and schisantherin), and four organic acids (quinic acid, 
D(−)-tartaric acid, L-(−)-malic acid, and protocatechuic acid) (88). 
The results showed that the content of effective components in 
cultivated S. chinensis was lower than that in the wild type, and the 
wild type S. chinensis has a better quality.

2.3. Triterpenoids

Triterpenoids are found in a variety of parts of S. chinensis, 
including fruit, leaves, vine stems and roots, and are second only 
to lignans in terms of content (19). During June 2014 to November 
2021, 211 new triterpenoids were isolated and identified from 8 
species of plants in the Schisandraceae family (91). The new 
triterpenoids can be  classified as lanostanes, cycloartanes, 
dammaranes and ursanes and schinortriterpenoids. These 
compounds display a wide range of pharmacological activities, 
including antiviral, antitumor, anti-inflammatory, hepatoprotective, 

immunosuppressive activity and neuroprotective functions (91). 
Song et  al. (92) isolated a new highly oxidized triterpenoid 
schinchinenlactone D from S. chinensis roots along with three 
known triterpenoid compounds propinic lactone A, 
schisanbilactone A and kadsudilactone C using HR-ESI-MS. All 
the three compounds exhibited anti-inflammatory activity with 
exception of kadsudilactone C. Moreover, schisanbilactone A 
showed the strongest anti-inflammatory effects (92). Using 
UHPLC-Q-TOF-MS with positive or negative ions produced by 
different types of compounds, Yang et  al. identified target 
compounds using their characteristic fragments (93). There were 
a total of nine triterpenoids were identified in S. chinensis. They 
included two cycloartane-type triterpenoids, three lanostane-type 
triterpenoids, three schisanra-type triterpenoids and one other 
terpenoids (93). Using 1D and 2D NMR spectroscopy, single 
crystal X-ray diffraction, and HRMS, Qiu et al. identified three new 
triterpenoids (schisanlactone I, schinalactone D, schisanlactone J) 
from S. chinensis and four known triterpenoids (kadsuphilactone 
B, schisanlactone C, schisphendilactone B, and schinchinenlactone 
A). Despite testing these seven compounds against the HepG2 cell 
line, none of them showed any cytotoxic effect (94). In addition, 
several novel triterpenoid compounds were also isolated from 
S. sphenanthera by mass spectrometry. Liu et al. (95) isolated three 
novel (schisphenthin A, B and C) and seven known triterpenoids 
from the S. sphenanthera fruits using HR-ESI-MS and other 
spectroscopic analysis techniques. Schisphenthin A and 
schisphenthin C exhibited moderate antiproliferative effects 
against HepG2 cells. Using the same MS method, Liang et  al. 
isolated two new triterpenoids (schisphendilactone A and B) and 
three known triterpenoids (nigranoic acid, kadsuric acid and 
lancifoic acid A) from the stem of S. sphenanthera. 
Schisphendilactone B had the effect of inhibiting the activity of 
several cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, and 
SW-480), and lancifoic acid A exhibited anti-HIV-1 activity (96).

2.4. Organic acids

Organic acids are crucial for preserving the nutritional value and 
flavor of food and they are widely used as food additives for their 
preservative, acidity-regulating, and antioxidant properties (97). 
S. chinensis contains approximately 18% organic acids, mainly citric 
acid, which is the primary source of its sour taste (98). Using HPLC 
and other techniques, researchers dscovered that fresh and mature 
S. chinensis fruit contains 3.26% ± 0.06% citric acid, 1.13% ± 0.04% 
malic acid, and 0.53% ± 0.01% shikimic acid (99). In a second study, 
UHPLC-Q-TOF-MS was utilized to identify citric acid, 6-methyl 
citrate, and dimethyl citrate from S. chinensis (93). Organic acids are 
commonly used in the food industry to prevent the enzymatic 
browning of fruits and vegetables induced by polyphenol oxidase 
(100). Enzymatic browning can alter the nutritional characteristics 
and appearance of fruits and vegetables. As a result, organic acids play 
crucial role in acting as natural food preservatives (100). The presence 
of organic acids in food acts an natural antibacterial agent. A study has 
shown that organic acids may exert bacterial inhibitory effects by 
disrupting the bacterial internal balance and inhibiting enzyme 
activity (101). The orle of organic acids in nutrition and health can 
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be  explained by their ability to regulate energy and metabolism, 
strengthen the human immune system, and protect the heart (97). In 
the clinical setting, S. chinensis is commonly steamed with vinegar to 
enhance its acidic and astringent properties according Chinese 
medicine theory. Yin et  al. investigated the effects of vinegar 
processing on its organic acid composition (102). The gas 
chromatography was conducted to identify 39 organic acid 
compounds isolated from S. chinensis through a methylation reaction. 
In comparison to S. chinensis that has not been processed, processed 
S. chinensis with vinegar has a significantly high amount of levulinic 
acid. An experimental study has shown that levulinic acid inhibits the 
contractile force of isolated intestines and inhibits on the excessive 
hyperactivity of small intestinal propulsion (102).

2.5. Polysaccharides

S. chinensis fruits contain approximately 1.5% sugar, including 
polysaccharides and monosaccharides (103). Polysaccharides are 
composed of more than 10 monosaccharides linked by glycosidic 
bonds (104). A HPLC analysis of S. chinensis polysaccharides revealed 
64% glucose, 17.7% galacturonic acid, 9.0% galactose, 3.9% Rhamnose, 
3.5% mannose, 1.2% xylose, and 0.8% arabinose as monosaccharides 
(105). Likewise, the structure and content of polysaccharides were also 
different between S. chinensis and S. sphenanthera. Previous studies 
have shown that the type and content of polysaccharides isolated from 
northern S. chinensis were much higher than those from 
S. sphenanthera (1). The polysaccharides in S. chinensis and 
S. sphenanthera were analyzed by gas chromatography coupled with 
Fourier transform infrared spectroscopy, and the result revealed that 
with respect to free radical scavenging ability, protective effects on 
biomolecules, cellular antioxidant activity, S. sphenanthera had 
stronger effects than S. chinensis, which was largely due to its high 
levels of protein and uronic acid; S. chinensis had stronger cell viability, 
neutral red phagocytosis, NO production, and acid phosphatase 
activity compared with S. sphenanthera, owing to its higher mannose, 
galactose, arabinose, and glucose contents, and these functions were 
closely related to enhancement of the body’s immunity (106). Li et al. 
(7) extracted and purified S. chinensis fruit with ethanol, and the 
structural characteristics and physicochemical properties of 
polysaccharides were analyzed by using the technology of hydrophilic 
interaction liquid chromatography-negative electrospray-mass 
spectrometry (HILIC-ESI-MS) combined with microwave assisted 
mild acid (MAMA) depolymerization, which enabled the rapid 
identification of S. chinensis and S. sphenanthera by making 
polysaccharides as quality evaluation indicators of Chinese medicinals. 
In addition, the polysaccharide content of S. chinensis varied across 
different regions. Wu et al. used near-infrared spectroscopy combined 
with chemometrics to determine the total polysaccharide content of 
S. chinensis grown in the provinces of Liaoning, Jilin, and Heilongjiang. 
Results revealed that samples from Heilongjiang province had the 
highest content of polysaccharides followed by those from Jilin 
province (107).

There are a number of therapeutic effects associated with 
S. chinensis. As an example, polysaccharides were found to 
significantly lower serum transaminase levels in mice suffering from 
immunological liver injury induced by concanavalin A, inhibit the 

release of a large number of inflammatory factors, and alleviate the 
effects of oxidative stress response by regulating Nrf2/antioxidant 
response element and TLR4/NF-κB signaling pathway (108). 
Additionally, the polysaccharides isolated from S. chinensis stem also 
exerted hepatoprotective effects by increasing the expression of 
UDP-glucose pyrophosphorylase and UDP-glucose 6-dehydrogenase, 
while decreasing the expression of acetyl coenzyme A carboxylase 
and fatty acid synthase in the liver of rats with NAFLD, thereby 
alleviating the development of NAFLD (109). S. chinensis 
polysaccharides also reduced the expression of pro-inflammatory 
cytokines and the activation of glial cells in the hippocampus, 
improving cognitive performance and histopathological changes in 
mice model of Alzheimer’s disease (110). The drug of 
cyclophosphamide is an anti-tumor medication, but it has a number 
of immunosuppressive side effects which may complicate treatment. 
Consequently, it is essential for patients receiving cyclophosphamide 
treatment to take food supplements with immune regulatory 
functions at the same time. Water extraction and ethanol precipitation 
methods were used to obtain S. chinensis polysaccharides from dried 
fruits of S. chinensis, and the monosaccharide composition of 
S. chinensis polysaccharides was determined by HPLC. ICR mice 
were continuously gavaged with the polysaccharides for 21 days, and 
peritoneal injection of cyclophosphamide for 5 days starting from the 
17th day after administration (111). The experimental results showed 
that S. chinensis polysaccharides significantly inhibited 
cyclophosphamide-induced lymphocyte apoptosis and thymus and 
spleen damage, and effectively prevented cyclophosphamide-induced 
cellular immunity, humoral immunity and nonspecific immune 
damage. Therefore, S. chinensis polysaccharides may be used as an 
adjuvant immune enhancer for prevention of immune 
deficiency (111).

In recent years, researchers have continuously isolated and identified 
a variety of new polysaccharides from S. chinensis and S. sphenanthera. 
Niu et al. (112) isolated and purified a water-soluble polysaccharide 
(SSPW1) with an average molecular weight of 191.18 kDa from the 
aqueous extract of S. sphenanthera. The component of SSPW1 was 
analyzed by gas chromatography, which contained 48.92% neutral 
sugars, 5.56% proteins and 42.83% glyoxylates. The monosaccharide 
component analysis suggested that SSPW1 was composed of rhamnose, 
arabinose, mannose, galactose, and glucose. Experiments in vitro and 
vivo showed that SSPW1 had antioxidant effects and could increase body 
weight and improve glucose tolerance in diabetic rats (112). Antibiotic 
associated diarrhea is caused by the toxic side effects of antibiotics 
themselves (113). Qi et al. (114) investigated the effect of water-soluble 
polysaccharides of S. chinensis on antibiotic-associated diarrhea in rats. 
The researchers extracted polysaccharides from the dried fruits of 
S. chinensis, and the extracted polysaccharides were used in a rat model 
with antibiotic-associated diarrhea, and the monosaccharide 
composition of water-soluble polysaccharides was analyzed by using 
HPLC. The results showed that water-soluble polysaccharides might be a 
potential natural product for treatment of antibiotic-associated diarrhea 
(114). Zhao et al. isolated and identified a water-soluble low molecular 
weight polysaccharide SCPP11 from S. chinensis with a molecular weight 
of 3.4 kDa, and the structural characteristics of SCPP11 were 
comprehensively analyzed by using gas chromatography-MS (GC–MS), 
NMR, high-performance size exclusion chromatography-angle laser 
light scatteringrefractive index detector (HPSEC-MALL-RI), CD, atomic 
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force microscope (AFM) and transmission electron microscope (TEM) 
(115). The research found that SCPP11 elevated the thymic index and 
serum levels of IL-2 and TNF-a in mice with hepatocellular carcinoma, 
and significantly increased the phagocytic activity of macrophages in 
vitro, thus improving the immune response and exerting antitumor 
effects. SCPP11 might be used as a potential anticancer adjuvant in 
health foods and therapeutic drugs (116).

Zhong et al. isolated and identified a kind of polysaccharide-1 
(SCFP-1) from S. chinensis fruits, with a molecular weight of 
31.8 kDa, by gel permeation chromatography (GPC) and GC–MS, 
which mainly composed of 66.5% glucose and 29.4% arabinose 
(117). Applying polysaccharide-1 to a cough guinea pig model, it 
was found that polysaccharide-1 could reduce the cough frequency 
and airway inflammation of guinea pig models caused by cigarette 
smoke-induced cough hypersensitivity, and could significantly 
alleviate acute cough caused by citric acid. It indicated that 
polysaccharide-1 was one of the cough suppressant components of 
S. chinensis, which provided an important compositional support 
for the development of new cough suppressant drugs (117). Xu et al. 
characterized the polysaccharide components of S. chinensis extract 
and obtained a polysaccharide SCP2-1, with a molecular weight of 
5.388 kDa, consisting of glucose and galactose in a molar ratio of 
8.78:1.23 by using HPLC-GC–MS, NMR, and Fourier transform 
infrared spectroscopy (118). In the mice models of 
lipopolysaccharide-induced cognitive dysfunction, researchers 
found that SCP2-1 treatment reduced the sustained release of 
pro-inflammatory cytokines such as TNF-α and IL-1β and 
upregulated the level of anti-inflammatory cytokines such as IL-4 
and IL-10 by inhibiting nuclear translocation of NF-κB and 
preventing overactivation of the P38 MAPK pathway, thereby 
reducing excessive inflammatory responses (118). Meanwhile, 
SCP2-1 reduced the expression level of NLRP3, M-caspases-1, and 
reduced the excessive deposition of β-amyloid (Aβ) associated with 
neuronal degeneration, thereby exerting a neuroprotective effect 
(118). In 2023, Fu et al. used a metabolomics method for serum and 
urine based on UPLC-Q-TOF-MS to isolate and purify a 
homogeneous polysaccharide SCP2 from S. chinensis 
polysaccharide, then investigated the therapeutic effects and 
potential mechanisms for Alzheimer’s disease in rats (119). The 
results showed that SCP2 significantly reversed the metabolic 
profile disorder in Alzheimer’s disease rats and played an important 
role in ameliorating Aβ25-35-induced cognitive dysfunction, 
attenuating oxidative damage, and reducing Aβ deposition in the 
hippocampus, which may provide new insight into the potential 
mechanisms of SCP2 treatment of AD (119). Zhao et al. isolated a 
new polysaccharide SCPP22, with a molecular weight of 
143 ± 0.13 kDa from S. chinensis fruit by HPLC, GC–MS, and 
NMR. SCPP22 is mainly composed of glucose and galactose (120). 
Researchers further investigated the function of this polysaccharide 
and found that SCPP22 may reverse polychlorinated biphenyl 
(PCB126)-induced immunosuppression by regulating the 
expression of apoptosis-related proteins, and increase the level of 
SOD activity and reduce malondialdehyde (MDA) in the spleen and 
thymus, thus ameliorating oxidative damage in immune organs 
(120). Polychlorinated biphenyls (PCBs) are ubiquitous 
environmental contaminants, which can attack the immune and 
nervous systems after ingesting by people (121). Therefore, SCPP22 

may be used as a nutritional intervention component in functional 
foods to reduce the adverse effects of PCB contamination.

Recently, ultra-high performance supercritical fluid 
chromatography coupled with DAD was used for the first time to 
analyze the whole monosaccharide components of S. chinensis 
fruit polysaccharides. This study provided a new alternative 
method for determining the monosaccharide components of 
natural polysaccharides (122). Liu et al. (123) proposed a sample 
preparation method based on microwave assisted free radical 
degradation (MFRD) of plant polysaccharides to efficient 
degradation of S. chinensis and S. sphenanthera polysaccharides. 
HILIC-ESI-Q-TOF-MS and quadrupole-orbitrap-ion trap-tandem 
MS were used to characterize a series of oligosaccharides and 
small molecular weight polysaccharides after degradation. By 
using a high-performance anionexchange chromatography with 
pulsed amperometric detection (HPAEC-PAD) combined with 
MFRD, a low-polymerization compositional fingerprinting was 
successfully constructed for S. chinensis and S. sphenanthera in 
order to improve the quality assessment of S. chinensis (123). A 
novel, recyclable and green temperature-responsive deep eutectic 
solvent was applied to the simultaneous extraction and separation 
of different polar active phytochemicals from S. chinensis. Under 
the optimal parameters, the extraction yields of lignans (water, 
methanol and 70% ethanol) and polysaccharides (water 
extraction) are 1.62–1.17 times and 1.39 times higher than those 
of traditional solvents, respectively. Consequently, the application 
of temperature-responsive deep eutectic solvent could improve 
the extraction efficiency and enable cost savings (124). In 
addition, Du et al. have synthesized S.chinensis polysaccharide-
conjugated selenium nanoparticles (SCP-Se NPs) for the first 
time, thereby enhancing the activity of polysaccharides, and 
compared with S. chinensis, SCP-Se NPs were more effective in 
alleviating diarrheal symptoms and intestinal tissue damage and 
reducing the level of pro-inflammatory cytokines (125). These 
results would further strengthen researchers to understand the 
functions of S. chinensis fruit polysaccharides and promote their 
potential applications in functional foods and pharmacological 
fields. The application of new mass spectrometry detection 
technologies combined with advanced extraction and analysis 
methods has greatly improved the discovery of novel 
polysaccharide components in S. chinensis. However, there is still 
a need for systematic and comprehensive investigations to fully 
understand the nutritional functions of these components.

3. Conclusions and perspectives

S. chinensis contains a variety of bioactive ingredients including 
rich amount of natural plant nutrients, that provide a variety of 
nutritional and therapeutic benefits. S. chinensis primarily exerts its 
effects on antioxidation. Antioxidative process involves the removal 
of excess ROS in the body in order to prevent oxidative stress from 
damaging cells and secondary apoptosis induced by oxidative stress 
(126, 127). ROS are closely associated with aging and the 
progression of various diseases, including cancer (8, 26, 81, 126). 
The antioxidant is therefore one of the most important research and 
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development directions in the health category, as well as one of the 
most important functional demands on the market. Polyphenols, 
also known as “the seventh category of nutrients,” are composed 
primarily of flavonoids, phenolic acids, and anthocyanins, which 
are responsible for the antioxidant function of S. chinensis. 
Polyphenols are often used as a dietary ingredient and nutritional 
supplement in the manufacture of foods that are considered as 
functional foods. Polyphenols are abundant in S. chinensis leaves, 
thus fully extracting polyphenol compounds from S. chinensis 
leaves will increase the beneficial for improving the utilization value 
of the plant. In addition to polyphenols, various components of 
Schisandra lignans, such as schisandrol A, schisandrin A, B and C, 
gomisin D, schisandrol B, schisanterin A, schisanterin C, 
kadsuranin, and kadlongilactone F, and gomisin L1, as well as 
organic acids and polysaccharides, all exhibit strong antioxidant 
effects and are closely associated with anti-inflammatory effects. 
Due to the above-mentioned efficacy, S. chinensis represents an 
excellent antioxidant with broad application potential. The bioactive 
nutrients in S. chinensis can help prevent, manage, and treat 
neurological conditions. A major role of S. chinensis is to function 
as antidepressant, an anti-anxiety, sedative and hypnotic agent, to 
improve learning and memory, and to improve cognitive 
dysfunction by regulating the relevant signal pathways in the 
hippocampus. A variety of active ingredients, including schisandrin 
A, B and C, schisanterin A, gomisin A, triterpenoids, and water-
soluble polysaccharide (SSPW1), are also capable of improving a 
variety of metabolic diseases, including NAFLD, alcoholic liver 

disease, obesity, diabetes and related complications, through their 
antioxidant, anti-inflammatory, and maintaining mitochondrial 
homeostasis. In addition, organic acids, one of the S. chinensis 
extracts, are the natural food preservative that maintain the 
nutrients and appearance of fruits and vegetables. As natural 
antibacterial agents, organic acids, quercetin, schisandrin A, B and 
C, mannose, galactose, arabinose and glucose are also beneficial to 
boost immunity. While cyanidin 3-Rutinoside has the potential as 
a therapeutic agent for allergic diseases. Figure 1 was created to 
provide a clear and direct understanding of the topic discussed in 
this review.

Applying new extraction methods and techniques may improve 
the detection rate and purity of S. chinensis components; on the other 
hand, combination with new MS technologies may facilitate the 
identification of active ingredients and further functional analysis. 
The components and effects of S. chinensis detected by MS in recent 
years are summarized in Table 2. In current research, more attention 
is focused on the lignans and polysaccharides of S. chinensis extracts 
than on new components and new effects of S. chinensis triterpenoids, 
polyphenols, and organic acids. At present, dietary supplements 
primarily containing S. chinensis on the market focus on enhancing 
immunity, improving sleep, protecting the liver, and preventing 
fatigue. Developing new formulations and functionalities for 
S. chinensis dietary supplements will be a priority in future research. 
It is necessary to fully utilize mass spectrometry technology to 
explore the resources of S. chinensis components, thus benefiting 
human health.

FIGURE 1

The mass spectrometry technologies and nutritional effects of Schisandra chinensis components. ESI-MS, electrospray ionization mass spectrometry; 
FT-ICR-MS, fourier transform ion cyclotron resonance MS;GC–MS, gas chromatography MS; Q-Orbitrap-MS, quadrupole Orbitrap MS; Q-TOF-MS, 
ultra-high performance liquid chromatography quadrupole time of flight MS; UPLC-MS, ultra-high performance liquid chromatography MS; UPLC-Q-
TOF-MS, ultra-high performance liquid chromatography Q-TOF-MS; UPLC-QTRAP-MS/MS, UPLC coupled with triple quadrupole-linear ion trap MS.
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TABLE 2 The components and effects of Schisandra chinensis detected by MS.

Types MS methods Components Effects References

Polyphenols
HPLC-ESI-MS Cya-3-O-xylrut Antioxidant (37)

GC–MS; ESI-TQMS Cyanidin 3-Rutinoside Inhibiting allergic inflammation (39)

Lignans

HPLC-ESI-TOF-MS Gomisin D scavenging ABTS+ radicals (46)

SFC-DAD schisandrin
Regulating the gut microbiota; 

Antidepressant
(48)

UPLC-Q-TOF-MS schisandrol A

Inhibiting pulmonary fibrosis; 

Improving symptoms of acute 

myocardial ischemia

(49, 50)

UHPLC Schisandrin B

Inhibiting hepatic steatosis and 

promoted fatty acid oxidation and 

improving NAFLD

(58)

HPLC Schisandrol A; gomisin N
promoting testosterone 

biosynthesis
(68)

HPLC–MS/MS Schisandrin C
Inhibiting the production and 

trypsin levels
(69)

HPLC-ESI-MS Schisantherin A

Improving the learning and 

memory abilities of chronic fatigue 

mice

(74)

LC-MS/MS schisandrol B(gomisin A)

Improving APAP-induced acute 

hepatotoxicity and promoting liver 

regeneration

(77)

HR-EI-MS gomisin L1 Anti-HIV (80)

HPLC α-Iso-cubebene

Inhibiting vascular inflammation 

with subsequent intimal 

hyperplasia related to vascular 

injury

(82)

Triterpenoids HR-ESI-MS
schinchinenlactone D, Propinic 

lactone A, Schisanbilactone A
Inhibiting inflammation (92)

Organic acids HPLC; GC-MS Levulinic acid

Inhibiting the excessive 

hyperfunction of small intestinal 

propulsion

(102)

Polysaccharide

HPLC WSP
Improving the gut microbiota and 

antibiotic-associated diarrhea
(113)

GC–MS SCPP11
Improving immune response and 

anti-tumor effects
(115)

GPC; GC-MS polysaccharide-1

Alleviating airway inflammation in 

chronic cough guinea pigs to exert 

antitussive effects

(116)

HPLC-GC-MS; FTIR SCP2-1

Improving LPS-induced cognitive 

dysfunction in mice and 

ameliorating excessive 

inflammatory response

(117)

UPLC-Q-TOF-MS SCP2

Improving cognitive dysfunction 

and reversing the metabolic profile 

disorder in Alzheimer’s disease rats

(118)

HPLC; GC-MS SCPP22
Reversing PCB126-induced 

immunosuppression
(119)

DAD, diode array detection; EI, electron ionization; ESI, electrospray ionization; FTIR, fourier transform infrared spectroscopy; GC, gas chromatography; GPC, gel permeation 
chromatography; HPLC, high performance liquid chromatography; HR, high-resolution; LC, liquid chromatography; MS, mass spectrometry; NAFLD, non alcoholic fatty liver disease; 
Q-TOF, quadrupole time of flight; SFC, supercritical fluid chromatography; TQ, triple quadrupole; UHPLC,ultra high performance liquid chromatography; UPLC, ultra performance liquid 
chromatography; WSP, water-soluble polysaccharides.
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