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In this paper, we  study the effect of microbial fermentation on the nutrient 
composition and flavor of sweet potato slurry, different strains of Aspergillus niger, 
Saccharomyces cerevisiae, Lactobacillus plantarum, Bacillus coagulans, Bacillus 
subtilis, Lactobacillus acidophilus, and Bifidobacterium brevis were employed to 
ferment sweet potato slurry. After 48  h of fermentation with different strains (10% 
inoculation amount), we compared the effects of several strains on the nutritional 
and functional constituents (protein, soluble dietary fiber, organic acid, soluble 
sugar, total polyphenol, free amino acid, and sensory characteristics). The results 
demonstrated that the total sugar level of sweet potato slurry fell significantly 
after fermentation by various strains, indicating that these strains can utilize the 
nutritious components of sweet potato slurry for fermentation. The slurry’s total 
protein and phenol concentrations increased significantly, and many strains 
demonstrated excellent fermentation performance. The pH of the slurry dropped 
from 6.78 to 3.28 to 5.95 after fermentation. The fermentation broth contained 17 
free amino acids, and the change in free amino acid content is closely correlated 
with the flavor of the sweet potato fermentation slurry. The gas chromatography-
mass spectrometry results reveal that microbial fermentation can effectively 
increase the kinds and concentration of flavor components in sweet potato slurry, 
enhancing its flavor and flavor profile. The results demonstrated that Aspergillus 
niger fermentation of sweet potato slurry might greatly enhance protein and 
total phenolic content, which is crucial in enhancing nutrition. However, Bacillus 
coagulans fermentation can enhance the concentration of free amino acids in 
sweet potato slurry by 64.83%, with a significant rise in fresh and sweet amino acids. 
After fermentation by Bacillus coagulans, the concentration of lactic acid and 
volatile flavor substances also achieved its highest level, which can considerably 
enhance its flavor. The above results showed that Aspergillus niger and Bacillus 
coagulans could be the ideal strains for sweet potato slurry fermentation.
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Introduction

Sweet potato is an extremely popular food item. This tuber plant 
has a pleasant flavor, and many individuals enjoy it. The production 
of sweet potatoes in China has surpassed 85% of the globe. The 
production of sweet potatoes have reached 51 million tonnes in 2022 
(1). The cultivation area and output of sweet potato are only lower 
than those of rice, wheat, and corn among China’s food crops, 
ranking fourth (2). It is adaptable, resistant to drought, produces a 
large yield, has a wide range of applications, and is both edible and 
feed. Sweet potatoes can also be processed into starch and utilized as 
raw materials in the light industrial sector. It is crucial to boost grain 
output and improve people’s living standards to raise the production 
of sweet potatoes according to local requirements (3).

Furthermore, to a small amount of fresh food, certain sweet 
potatoes are currently utilized for biological fermentation to make 
fuel ethanol. In contrast, others are used for primary processing, such 
as sweet potato vermicelli, sweet potato starch, dried sweet potato, 
sweet potato juice, etc. (4, 5). During primary processing, a significant 
quantity of nutrients cannot be utilized and are wasted. According to 
the reports, sweet potatoes are rich in dietary fiber, protein, amino 
acids, polysaccharides, and phenolic compounds, etc., and their 
nutritional worth is acknowledged worldwide (6, 7). If sweet potatoes 
can be treated aggressively to acquire additional nutrients, their use 
will be  substantially enhanced. Microbial fermentation has 
historically been one of the most prevalent food processing methods 
(8–10). Under the influence of beneficial microorganisms, 
carbohydrates, lipids, and proteins in food materials are decomposed 
and transformed into distinctive flavors and other nutrients. 
Domestic and international researchers use lactic acid bacteria, 
bacillus, and edible fungi, etc. to ferment fruit and vegetable juice to 
increase its nutritional and sensory qualities (11–13). However, the 
utilization of these microbes in the fermentation of sweet potato 
slurry has not been reported.

Therefore, this study employs sweet potato slurry as its basic 
material and ferments it with various microorganisms. To provide 
data support and a theoretical framework for the preparation of 
beverages from industrial fermentation slurry, the microorganisms 
suitable for the fermentation of sweet potato slurry were chosen 
through a thorough comparison of the functional nutritional 
components (protein, total dietary fiber, sugar components, organic 
acid, total phenols, and free amino acids) and sensory characteristics 
(GC-MS) of the fermented slurry.

Materials and methods

Preparation of sweet potato slurry

Fresh, pest- and disease-free sweet potatoes were peeled 
(Longshu No.9, purchased from Yonghui Supermarket). Then, they 
were combined with water in a 1:2 (w/w) ratio in the pulping wall-
breaker (SP301S, Zhejiang Supor Co., Ltd., Hangzhou, China). The 
slurry of sweet potato was kept at 95°C for 2 h after 10 U/g of high-
temperature amylase (20,000 U/mL, provided by Shanghai Yuanye 
Bio-Technology Co., Ltd.) addition and then kept at 40°C for 3 h 
after 20 U/g amyloglucosidase (100,000 U/mL, provided by 
Shanghai Yuanye Bio-Technology Co., Ltd.). The sweet potato 

slurry was then split into 250 mL shake flasks containing 100 mL of 
liquid. The liquid is then pasteurized and stored at 4°C for future 
fermentation studies.

Microorganism

This study employed these strains, Aspergillus niger (A.n), 
Saccharomyces cerevisiae (S.c), Lactobacillus plantarum (L.p), Bacillus 
coagulans (B.c), Bacillus subtilis (B.s), Lactobacillus acidophilus (L.a), 
and Bifidobacterium brevis (B.b). All these strains were preserved in 
our laboratory at −80°C.

Seed culture of different microorganisms

YPD culture medium was purchased from Shanghai Yuanye 
Bio-Technology Co., Ltd. (Shanghai, China) and is majorly used for 
S. cerevisiae seed culture; MRS culture medium, purchased from 
Solarbio Biotechnology Co., Ltd. (Beijing, China) and it is mostly 
employed for the seed culture of other microorganisms. All media 
were autoclaved for 20 min at 115°C.

The seed culture medium was inoculated with different strains 
after sterilization, and then incubated at 37°C and 150 rpm/min for 
24 h in the rotary shaker (HYL-C, Qiangle Experimental Co., Ltd., 
Taicang, China). Typically, 10% of the seeds were then transferred to 
a 250 mL shake flask containing 100 mL of sweet potato slurry and 
incubated for 48 h at 37°C and 150 rpm on a rotating shaker. Also, 10% 
sterile water was utilized as the inoculant in the control experiment. 
All fermentations were repeated three times.

Measurement of total sugars and soluble 
sugars

The 3,5-dinitrosalicylic acid (DNS) colorimetric method was used 
to determine the total sugar concentration (8). High-Performance 
Liquid Chromatography (HPLC 1515, Waters, United States) was used 
to examine soluble carbohydrates (fructose, glucose, and trehalose) 
(14). Briefly, 1 mL of each sample was transferred to an injection vial 
and then loaded onto the autosampler of a chromatograph equipped 
with a sulfonated polystyrene divinylbenzene column (Aminex 
HPX-87C 300 mm × 7.8 mm, 9 μm; Bio-Rad Chemical Division, 
California) and a refractive index detector. The mobile phase consisted 
of acetonitrile: water (70:30) at a 0.6 mL/min flow rate. The injection 
volume was 20 μL. The column and detector were kept at 50°C.

Measurement of pH and organic acids

The pH was measured using a pH electrode (FE28-Micro, Mettler 
Toledo, Zurich, Switzerland). According to Li et al., organic acids 
(acetic acid, citric acid, lactic acid, malic acid, and succinic acid) were 
analyzed using HPLC (15). Briefly, 1 mL of each sample was injected 
into the injection vial and placed on the autosampler of the 
chromatograph with a C18 column (150 × 4.6 mm, 5 μm; Agilent) and 
an ultraviolet detector. The mobile phase was 40 mM Na2SO4 (adjusted 
to pH 2.68 using CH3SO3H) at a 0.8 mL/min flow rate and injection 
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volume of 10 μL. The column temperature was maintained at 25°C, 
and the UV detector’s wavelength was 210 nm.

The fermentation samples were centrifuged, and the supernatant 
was filtered through a 0.22 μm aqueous membrane. Identification and 
quantification were performed based on standard solutions retention 
times and calibration curves.

Measurement of the content of protein and 
soluble dietary fiber

Using a BCA protein assay kit (Tiangen, Beijing, China) with 
bovine serum albumin as a reference, the protein concentration of 
fermentation broth was measured. The absorbance in reaction units 
was determined using the Synergy H4 Hybrid Microplate Reader 
(Biotek, Winooski, VT, United States) at room temperature.

Soluble dietary fiber was performed following the AOAC 991.43 
method (16). The 50 mL of fermentation broth was centrifuged to 
extract the supernatant, then 5 mL of protease was added, and the 
mixture was agitated for 60 min. The reactant was centrifuged at 
12,000 × g for 15 min. The supernatant was filtered using a 0.45 μM 
millipore filter (Jinteng Laboratory Equipment Co., Ltd., Tianjin, 
China) and precipitated by injecting four volumes of ethanol at 4°C 
for 24 h. The precipitate was again filtered, dissolved in distilled water, 
and freeze-dried as SDF.

Measurement of total polyphenols

Total polyphenol content was determined using the technique 
described (10). One mL of each juice and Folin–Ciocalteu were mixed 
and reacted for 1 min, then 3 mL of 20% Na2CO3 was added to the 
mixture. The mixture was then reacted for 30 min at 50°C, and the 
absorbance was measured at 765 nm. The total polyphenol content 
was gallic acid equivalent (mg GAE/L).

Measurement of free amino acid 
concentration

The FAA composition and content of various fermentation 
samples were analyzed using a fully automated amino acid analyzer 
L8900 (Hitachi, Japan) following the method of Liao et al. (17). The 
fermentation broth was centrifuged to extract the supernatant, then 
400 μL supernatant was taken, 100 μL of sulfonic acid was added, and 
the mixture was uniformly mixed and stored at 4°C. After 1 hour, the 
supernatant was centrifuged at 12000 rpm for 5 min and diluted with 
PBS to an acceptable onboard concentration (estimated according to 
the protein content of the sample). The filtrate was collected through 
a 0.22 μm microporous aqueous membrane and evaluated with an 
automated amino acid analyzer.

Determination of volatile compounds

The volatile compounds in fermentation samples were analyzed 
by a Headspace Solid-Phase Microextraction coupled with Gas 
Chromatography-Mass Spectrometer (HS-SPME-GC/MS) method 
described by Yang et al. (18) with certain modifications.

Gas chromatography-mass spectrometry 
analysis

The GC-MS parameters were set as follows: The injector 
temperature was set at 300°C under the splitless mode. The initial 
oven temperature was 100°C and held for 1 min, then increased at a 
rate of 15°C/min to 300°C and held there for 5 min. The total running 
time was 16 min. Helium (99.999%) was the carrier gas with a 1.0 mL/
min flow rate and a 6.0 mL/min blow-down flow rate. The EI source 
and mass transfer line temperatures were set to 230°C and 280°C, 
respectively. Selective ion monitoring (SIM) mode was selected with 
a solvent delay of 4 min. The mass spectrum was scanned by electron 
ionization (EI) mode at 70 eV to obtain a range of 35–500 m/z. The 
peak area ratio calculated the substance content (percentage).

Statistical analysis

All studies were carried out in triplicate, and the data are shown 
as the mean ± standard deviation (mean ± S.D.). T-test used for 
significance analysis with GraphPad Prism 6.0 to confirmed the 
validity of the comparison tests; p < 0.05 was considered significant.

Results and discussion

Nutrient composition of sweet potato 
slurry fermented by different bacterial 
strains

Rich in nutrients, the sweet potato slurry can serve as a nitrogen-
rich source for microbial development. Simultaneously, the 
microorganism-produced extracellular protease can hydrolyze the 
protein into small molecular oligopeptides and amino acids, supplying 
the product with abundant flavoring compounds (19). Compared with 
the unfermented sweet potato slurry, the soluble protein content was 
increased to a certain extent after fermentation (except for 
S. cerevisiae), among which the protein content increased the most 
significantly after fermentation by B. coagulans (Table 1), reached 
52.05%. According to the results, B. coagulans produced a substantial 
amount of extracellular protein during the fermentation process, 
enhancing sweet potato slurry’s protein content. This was consistent 
with prior findings (1).

Dietary fiber is a material that cannot be digested and absorbed 
by the small intestine of humans (20). Fermented sweet potato slurry 
contained considerably less soluble dietary fiber (SDF) (Table  1). 
According to studies, dietary fiber can be fermented and metabolized 
by microorganisms to generate acids (21, 22).

Changes of total phenol in sweet potato 
slurry after fermentation

Phenols are bioactive compounds capable of ameliorating 
hypertension, hyperlipidemia, hyperglycemia, and inflammatory 
response (23). After fermentation, the total phenol content of sweet 
potato slurry increased considerably relative to unfermented sweet 
potato slurry (except for S. cerevisiae and B. coagulans). The total 
phenol concentration of the sweet potato slurry fermented with 
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L. acidophilus and A. niger was 74.74 mg/L and 63.53 mg/L, 
respectively, while the unfermented sweet potato slurry had 
37.02 mg/L (Figure 1). According to numerous studies, the microbial 
fermentation of fruit and vegetable juice can significantly enhance the 
overall phenol content of the fermentation broth (24–26). This may 
be  because microorganisms synthesize carboxylase, tannase, and 
glycosidase during fermentation to facilitate polyphenols’ degradation 
and metabolic transformations (27). The data above indicate that 
S. cerevisiae does not affect the total phenol level of sweet potato 
slurry fermentations.

Changes of total sugars and soluble sugars 
in sweet potato slurry after fermentation

The starch in the sweet potato slurry is degraded into glucose, 
fructose, and maltose through early enzymatic hydrolysis, thereby 
supplying energy for the growth and metabolism of microorganisms 
during the fermentation process. The metabolism and 
biotransformation of carbohydrates by microorganisms during 
fermentation considerably decreased the glucose level of fermented 
sweet potato slurry compared to unfermented sweet potato slurry 

(p < 0.05) (Table 2). This result is consistent with the changes in sugars 
during fermentation of most fruits and vegetables (28).

Changes of pH and organic acids in sweet 
potato slurry after fermentation

After fermentation by several bacterial strains, the pH value of 
sweet potato slurry was reduced to a certain level, with the greatest fall 
occurring in B. coagulans fermentation slurry (6.78 to 3.28) (Table 3). 
This is mostly because the amylase and lipase produced by the 
metabolism of B. coagulans during fermentation can convert sugars, 
lipids, and other compounds into organic acids and fatty acids, 
resulting in a considerable fall in pH (29). Simultaneously, after 
fermentation by several bacterial strains, the concentrations of lactic 
acid, acetic acid, citric acid, and succinic acid in the slurry increased 
significantly (p < 0.05). However, malic acid concentrations exhibited 
a decreasing trend, which was in consistent with Liang et al. (9), it 
means that malic acid can be used by these strains to produce other 
metabolites. The highest content of lactic acid was fermented by 
B. coagulans (2325.47 mg/L). The acetic acid was undetectable in the 
unfermented sweet potato slurry but reached 400.05 mg/L following 
B. brevis fermentation. A. niger produced the greatest concentration 
of citric acid (418.22 mg/L), indicating that A. niger has an abundant 
enzyme system that can convert glucose to make citric acid (30). The 
succinic acid was only detected after the fermentation of A. niger, 
B. coagulans, and S. cerevisiae. These organic acids can impart 
distinctive fermentation flavors to foods that have been fermented. 
The distinct sour flavor of lactic acid can improve food flavor, maintain 
the stability and safety of the product’s microorganisms, and make the 
taste gentle. Acetic acid can be absorbed by the blood, enter the liver 
for metabolism, and produce lipids and cholesterol; Citric acid 
functions as a flavoring agent and possesses antioxidant characteristics 
that increase the shelf life of food (31). Succinic acid, when absorbed 
by the human body, has a protective impact on organs. It can 
strengthen the body and enhance immune function (32, 33).

Types and contents of free amino acids in 
sweet potato slurry after fermentation

Amino acids are one of the active macromolecules used in 
building biological organisms that can supply energy for life processes. 
Some microbes can create proteases and degrade macromolecular 
proteins into peptides and amino acids during fermentation. 
Therefore, the quantities of total amino acids and various amino acids 
in sweet potato slurry have altered significantly after fermentation. 
Compared with the unfermented sweet potato slurry, the total FAAs 
reached to 1819.74 mg/L with the fermentation of B. coagulans, which 
was 64.83% increased (Table 4).

Furthermore, being healthy nutrients, amino acids play a crucial 
function in flavor. Microorganisms can convert amino acids into 
fragrances peculiar to fruits and vegetables, such as fruit scent and fat 
aroma, through fermentation (34). According to different flavor 
approaches, free amino acids are classified as umami amino acids 
(UAA: including Glu, Asp., and Lys), sweet amino acids (SAA: 
including Thr, Ser, Gly, Ala, and Phe), and bitter amino acids (BAA: 
containing Tyr, Ile, Leu, Phe, Arg, His, and Met) (35). After 

TABLE 1 Nutrient composition of sweet potato starch slurry fermented 
by different microorganisms.

Sample Total protein (g/L) SDF (mg/L)

N 8.28 ± 0.16c 42.42 ± 0.32a

L.p 10.42 ± 0.11ab 18.99 ± 0.23c

L.a 10.83 ± 0.21ab 15.41 ± 0.18d

B.b 9.29 ± 0.09bc 4.77 ± 0.65e

A.n 11.00 ± 0.14a 19.74 ± 0.22c

B.l 12.59 ± 0.12a 27.81 ± 0.37b

B.s 8.83 ± 0.11c 6.13 ± 0.15e

S.c 6.53 ± 0.07d 4.77 ± 1.25e

N: means inoculating an equal amount of sterile water as a control experiment; Different 
letters indicate significant differences at p < 0.05.

FIGURE 1

Determination of total phenols in fermented sweet potato slurry 
(Different letters indicate significant differences at p  <  0.05. ND, not 
detected).
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fermentation by B. coagulans, the concentrations of UAA and SAA in 
unfermented sweet potato slurry increased to 678.47 mg/L and 
601.33 mg/L, respectively. BAA level rises during fermentation (except 
in the case of S. cerevisiae), which may be related to the production of 
taste compounds during microbial metabolism (36). The modifications 
of these flavor amino acids can serve as a benchmark for the future 
regulation of flavor compounds in the food processing industry.

Analysis of volatile components in sweet 
potato slurry fermented by different strains

Flavor substances are the primary sensory component of all foods, 
imparting the most intuitive feeling to consumers. Using HS-SPME-
GC-MS, 49 volatile chemicals were identified in various fermentation 
samples. There are 17 alcohols, 12 aldehydes, 5 acids, 6 esters, 6 
ketones, and 3 indoles. As depicted in Figure 2, the components of 
volatile taste compounds in sweet potato slurry have experienced 
substantial modifications during bacterial fermentation. The 
percentage of flavor substances was the highest after fermentation by 
B. coagulans, which reached 86.55%.

The concentration of aldehydes was highest in unfermented 
slurry, reaching 38.72%, although it fell significantly after fermentation 
by various strains. This may be due to aldehyde molecules’ instability, 
which is reduced to alcohol or oxidized to acids when bacteria are 
present (37). Isobutyraldehyde, hydroxyacetaldehyde, and 3-furfural 
are primarily found in unfermented sweet potato slurry and are 
undetectable after fermentation. 5-hydroxymethylfurfural is the 

predominant aldehyde found in sweet potato slurry that has been 
fermented. Esters were not detected in unfermented sweet potato 
slurry, although their concentration increased to variable degrees after 
various microorganism fermentation. Esters are important 
components of flavor compounds, and increasing their content can 
impart a pleasant odor in fermented sweet potato slurry (38). The 
main esters after fermentation are glycidyl acrylate and diethyl 
phthalate. The level of alcohol in unfermented sweet potato slurry was 
rather low, and it was only greatly raised by S. cerevisiae-fermented 
sweet potato slurry, which reached 27.53%. This means that 
S. cerevisiae could convert sugars in sweet potato slurry to alcohols, 
mainly were ethanol and methanol (39). After fermentation, the 
content of ketones was significantly increased after the fermentation. 
Sweet potato slurry. The main ketones are 1,3-dihydroxyacetone and 
methyl-4 (H)-pyran-ketone. Except for B.brevis, the acid components 
in sweet potato slurry increased significantly after fermentation. After 
B. coagulans fermentation, the acid concentration was the highest 
among these strains, reaching 30.61%. This result was consistent with 
the trend of pH change after fermentation, showing that a high 
quantity of acid flavor substances was formed after the fermentation 
of B. coagulans, thereby significantly enhancing the flavor components 
of sweet potato slurry after fermentation (40).

Conclusion

In this investigation, seven strains were applied to the fermentation 
of sweet potato slurry. The effects of several fermentation strains on 

TABLE 2 Determination of total sugars in sweet potato slurry.

Sample Total sugars (g/L) Glucose (g/L) Fructose (mg/L) Sucrose (mg/L) Maltose (mg/L)

N 56.32 ± 2.17a 48.74 ± 2.34a 297.7 ± 5.32b 597.32 ± 4.98a ND

L.p 22.44 ± 2.25cd 20.18 ± 1.19d 380.62 ± 7.23a 287.77 ± 3.54c ND

L.a 32.02 ± 2.77b 25.38 ± 1.52c 285.51 ± 5.18b 398.89 ± 4.93b 110.87 ± 3.23a

B.b 24.99 ± 1.15c 18.76 ± 2.05d 19.03 ± 1.05e ND ND

A.n 19.87 ± 1.31d 16.11 ± 1.17e 403.16 ± 4.24a 293.41 ± 5.34c 88.97 ± 2.77b

B.c 34.54 ± 2.78b 33.68 ± 1.22b 26.27 ± 1.57d ND ND

B.s 25.73 ± 1.29c 23.33 ± 1.34cd 88.25 ± 2.17c ND ND

S.c 3.06 ± 0.57e 1.52 ± 0.23f 85.27 ± 1.98c 132.88 ± 3.42d ND

N: means inoculating an equal amount of sterile water as a control experiment; Different letters indicate significant differences at p < 0.05. ND, not detected.

TABLE 3 Determination of pH and organic acids in sweet potato slurry.

Sample pH Lactic acid 
(mg/L)

Acetic acid 
(mg/L)

Citric acid 
(mg/L)

Malic acid 
(mg/L)

Succinic acid 
(mg/L)

N 6.78 ± 0.06a 67.1 ± 1.14f ND 29.7 ± 0.32f 498.31 ± 2.67a ND

L.p 5.64 ± 0.15b 403.22 ± 3.52d 100.63 ± 1.42c 150.62 ± 1.23c 396.14 ± 1.94b ND

L.a 5.85 ± 0.12b 625.86 ± 2.82c 77.71 ± 1.09d 178.51 ± 2.18b 212.11 ± 1.55d ND

B.b 5.81 ± 0.11b 84.021 ± 1.31f 400.05 ± 2.05a 8.03 ± 0.05g 364.09 ± 1.98bc ND

A.n 5.95 ± 0.09b 886.62 ± 3.15b 23.11 ± 0.17f 418.22 ± 3.22a 101.22 ± 0.34e 205.72 ± 1.89a

B.c 3.28 ± 0.12d 2325.47 ± 5.77a 58.37 ± 1.22e 49.57 ± 0.67e 96.87 ± 0.74e 41.88 ± 0.74b

B.s 5.74 ± 0.13b 896.55 ± 2.09b 238.33 ± 2.34b 81.43 ± 0.65d 335.52 ± 1.52c ND

S.c 4.37 ± 0.07c 220.17 ± 1.89e 60.52 ± 0.96e 90.26 ± 1.05d 325.63 ± 1.78c 189.25 ± 1.99a

N: means inoculating an equal amount of sterile water as a control experiment; Different letters indicate significant differences at p < 0.05. ND, not detected.
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the nutritional, functional components, and volatile taste compounds 
of sweet potato slurry was systematically investigated. The findings 
demonstrated that different fermentation strains could alter the pH, 
total sugar, total protein, total phenols, SDF, free amino acids, organic 
acid, and volatile taste compounds after fermentation compared to 
unfermented sweet potato starch processing slurry. The results 

demonstrated that the fermentation of sweet potato slurry by A. niger 
and B. coagulans could greatly increase protein, total phenolic content 
and volatile flavor, which is crucial for enhancing nutrient absorption 
and flavor considerably. These two strains have the potential to serve 
as ideal strains for enhancing the nutritional value of sweet potato 
fermentation slurry and enhancing its flavor and taste, hence 
enhancing their application value. Therefore, this study can provide 
ideas and theoretical support for developing a sweet potato slurry with 
several uses.
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TABLE 4 Content of FAAs in sweet potato slurry with the fermentation of different microorganisms (mg/L).

Amino acid N L.p L.a B.b A.n B.c B.s S.c

Asp 370.29 ± 2.17 32.82 ± 1.34 9.02 ± 0.33 9.71 ± 0.32 11.71 ± 0.02 469.04 ± 2.78 14.11 ± 0.12 11.09 ± 0.14

Thr 123.33 ± 2.32 18.43 ± 0.28 2.11 ± 0.02 13.33 ± 1.09 4.65 ± 0.03 77.57 ± 1.32 6.56 ± 0.07 8.44 ± 0.23

Ser 84.74 ± 1.52 33.87 ± 0.66 6.02 ± 0.15 9.64 ± 0.22 9.11 ± 0.02 102.23 ± 1.61 11.41 ± 0.08 15.71 ± 0.15

Glu 116.09 ± 1.44 61.43 ± 1.22 31.91 ± 1.11 26.85 ± 1.11 99.14 ± 1.32 168.86 ± 1.44 26.61 ± 0.22 22.76 ± 0.44

Gly 8.54 ± 0.11 8.71 ± 0.52 1.61 ± 0.02 3.32 ± 0.12 3.53 ± 0.04 172.25 ± 1.12 3.81 ± 0.02 5.31 ± 0.09

Ala 23.41 ± 0.31 48.37 ± 1.32 13.92 ± 032 34.21 ± 1.37 13.72 ± 0.12 115.34 ± 0.54 35.09 ± 0.44 4.95 ± 0.11

Cys 39.53 ± 1.08 57.77 ± 1.91 79.34 ± 1.67 22.72 ± 0.68 35.12 ± 0.32 34.04 ± 0.32 40.61 ± 0.92 35.65 ± 0.28

Val 58.13 ± 2.56 260.64 ± 1.42 187.82 ± 3.15 218.03 ± 3.22 173.33 ± 1.06 81.75 ± 0.25 160.34 ± 1.21 39.79 ± 0.33

Met 23.62 ± 0.41 59.04 ± 1.38 42.53 ± 1.08 34.85 ± 1.77 69.63 ± 0.32 23.56 ± 0.12 27.51 ± 0.19 17.11 ± 0.18

Ile 17.10 ± 0.22 19.36 ± 0.32 14.57 ± 0.22 18.23 ± 1.02 52.33 ± 0.88 26.81 ± 0.42 13.72 ± 0.22 2.23 ± 0.02

Leu 28.26 ± 1.02 73.18 ± 2.77 21.21 ± 1.31 41.83 ± 2.55 39.43 ± 0.12 57.75 ± 0.27 48.75 ± 0.44 6.51 ± 0.12

Tyr 58.51 ± 1.89 128.23 ± 2.35 183.11 ± 2.83 109.62 ± 0.88 45.25 ± 0.32 87.53 ± 0.44 103.32 ± 1.17 4.41 ± 0.08

Phe 105.24 ± 1.32 275.51 ± 1.17 295.81 ± 2.12 248.41 ± 1.54 154.14 ± 2.21 134.14 ± 1.81 233.72 ± 2.82 18.77 ± 0.44

Lys 20.04 ± 1.55 63.01 ± 0.32 62.56 ± 1.09 31.71 ± 0.32 23.13 ± 0.61 40.63 ± 0.38 41.81 ± 0.32 4.12 ± 0.22

His 19.97 ± 0.82 29.82 ± 1.02 19.31 ± 0.16 16.03 ± 0.12 2.21 ± 0.05 28.71 ± 0.08 18.05 ± 0.52 2.51 ± 0.08

Arg 6.93 ± 0.12 ND ND ND ND 129.75 ± 1.18 ND ND

Pro ND 98.65 ± 0.51 162.54 ± 1.01 114.51 ± 1.22 8.07 ± 0.04 70.45 ± 0.17 96.67 ± 0.38 ND

T-FAA 1104.02 ± 3.23 1268.31 ± 3.51 1133.02 ± 2.77 952.61 ± 3.83 743.92 ± 3.12 1819.74 ± 4.15 881.64 ± 1.55 198.84 ± 1.84

UAA 506.92 ± 1.44 157.22 ± 1.77 103.44 ± 1.26 68.24 ± 0.54 133.97 ± 1.35 678.47 ± 2.17 82.53 ± 0.28 37.85 ± 0.19

SAA 344.91 ± 1.22 384.74 ± 1.87 319.45 ± 1.67 308.81 ± 1.21 184.92 ± 1.25 601.33 ± 2.58 290.41 ± 1.22 53.04 ± 0.94

BAA 259.64 ± 1.32 584.95 ± 2.56 576.43 ± 1.31 468.87 ± 2.18 362.78 ± 1.81 488.05 ± 2.51 444.95 ± 2.12 51.43 ± 0.88

FIGURE 2

Changes of volatile compounds in sweet potato starch slurry 
fermented by seven different strains.
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