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Food safety is a widespread global concern with the emergence of foodborne 
diseases. Thus, establishing accurate and sensitive detection methods of harmful 
contaminants in different food matrices is essential to address and prevent 
the associated health risks. Among various analytical tools, mass spectrometry 
(MS) can quantify multiple impurities simultaneously due to high resolution and 
accuracy and can achieve non-target profiling of unknown pollutants in food. 
Therefore, MS has been widely used for determination of hazardous contaminants 
[e.g., mycotoxin, pesticide and veterinary drug residues, polychlorinated 
biphenyls (PCBs), dioxins, acrylamide, perfluorinated compounds (PFCs) and 
p-Phenylenediamine compounds (PPDs) in food samples]. This work summarizes 
MS applications in detecting harmful contaminants in food matrices, discusses 
advantages of MS for food safety study, and provides a perspective on future 
directions of MS development in food research. With the persistent occurrence 
of novel contaminants, MS will play a more and more critical role in food analysis.

KEYWORDS

mass spectrometry, food analysis, mycotoxin, pesticide and veterinary drug residues, 
acrylamide, food additives, polychlorinated biphenyls and dioxins

Introduction

Over the past few years, food safety has become a growing global concern. The food safety 
analysis included the daily presence of various contaminants and residues, such as plant 
protection products, veterinary medicines, mycotoxins, chemical impurities, additives, 
packaging materials, and impurities added during processing packaging materials (1). PFCs, 
polybrominated diphenyl ethers (PBDEs), dioxins, mycotoxins, and PCBs, are common food 
contaminants that pose risks to human health. Therefore, identifying these contaminants is 
critical. Maximum residue limits (MRLs) have been stipulated in many countries to limit the 
use of contaminants in food to minimize public health concerns (2). Generally, the quantification 
of unknown pollutants in food has been determined by conventional methods, such as gas 
chromatography (GC) and high-performance liquid chromatography (HPLC). However, these 
approaches have several limitations in determining multiple residues simultaneously. More 
effective and powerful tools are needed due to the complexity of food samples.

MS has been widely applied in protein identification, biological analysis, and food analysis. 
It can be used in different scanning modes, including Full Scan, Daughter Ion, Parent Ion, 
Neutral Loss, and multiple reaction monitoring (MRM). Moreover, volatile and non-volatile 
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components, high and low ionic components, high and low melting 
point substances, and their combinations without ionizable groups are 
analyzed by MS-based techniques (2). MS-based detectors offer 
excellent recovery, selection, sensitivity, reproducibility, and minimum 
interference. MS is widely used to analyze diverse food residues, such 
as vegetables (3), fruits (4), meat (5). MS combines powerful 
chromatographic separation to identify and confirm the presence of 
target compounds. It is a futuristic approach with a wide range of 
applications like, identifying separated compounds, elucidating the 
structure of compounds, and investigating degradation pathways.

Especially high resolution mass spectrometry (HRMS), it offers the 
advantage of higher sensitivity and full scanning. It provides a better 
understanding of sample composition than LC–MS/MS. HRMS has been 
described as a modern tool to test drug residues. Large-scale analytical 
screening methods have been published for veterinary medicines analysis 
in different food and animal matrices (6). HRMS is the most promising 
tool for the development of non-targeted methods. Besides, due to its 
excellent sensitivity and specificity, GC–MS has evolved as an important 
technique in recent years for food contaminants and is widely used for 
low molecular weight compound identification (7). According to the 
survey, LC–MS/MS is known for its ability to develop a wide range of 
residues and a large number of methods. It is considered the most popular 
and well-established analytical technique, but has shortcomings in some 
aspects such as limited number of analytes, inability to screen for 
unknowns and time-consuming assay setup.

The purpose of this paper is to [1] highlight the advantages of MS 
in detecting hazardous contaminants in food, [2] summarize recent 
advances in MS methods for mycotoxins, pesticide and veterinary 
drug residues, acrylamide, food additives, PCBs, dioxins, PFCs, and 
PPDs analysis over the past 10 years, and [3] overview the future 
applications of MS methods in food research.

Mycotoxins

Mycotoxins, a common food contaminant, are poisonous 
secondary metabolites produced by fungi, such as Aspergillus, 
Penicillium, and Fusarium. Their presence in hot processed foods is a 
worldwide concern. These naturally occurring compounds are very 
toxic to humans and enter the human body via the food web, causing 
hepatotoxicity, genotoxicity, immunosuppression, nephrotoxicity, 
teratogenicity, and carcinogenicity (8). Mycotoxins are found in many 
agricultural products, such as grains and nuts. Therefore, considerable 
attention has been paid to mycotoxins analysis. Table 1 summarizes 
the use of MS in analyzing natural mycotoxin in foods.

For more accurate quantification of mycotoxins, LC–MS is now 
the most widely used technique for the detection of mycotoxins in 
food (17), especially for analyzing grain and grain products (10). 
Similarly, GC–MS also plays a role in mycotoxin screening and 
quantitative analysis (18). Singh et al. (19) summarized the mycotoxin 
analysis using traditional (HPLC) and advanced methods (LC–MS 
and GC–MS) and analyzed mycotoxins characteristics. The result 
showed that LC–MS and GC–MS have better sensitivity than 
conventional methods. Another work discussed mycotoxins in cereal 
products and summarized the most commonly used detection 
techniques, including LC-electron spray ionization (ESI)-MS. Sample 
pre-treatment was carried out using the minimal clean-up method, 
QuEChERS, which is fast, simple, inexpensive, effective, durable and 

safe. In this work, the ranking of cereal products according to the 
number of trials was cereals > cornflakes > bread > breakfast > flour 
> baby products > pasta > other products, suggesting that research on 
mycotoxins in cereal products had attracted much attention (20).

Studies have reported that 120 food matrices have been analyzed 
for mycotoxins using LC–MS/MS technique (11). Alsharif et al. (11) 
used LC–MS/MS to determine mycotoxins in raisins, pistachios, 
peanuts, wheat flour, spices, and pepper samples simultaneously. 
Sample pretreatment was performed by the QuEChERS technique, 
with recoveries ranging from 81.94 to 101.67%. Similarly, Lee et al. 
(13) used LC–MS/MS and stable isotope dilution to analyze multiple 
mycotoxins in ready-to-eat foods, yielding good results. Mycotoxins 
are also present in bee products，which can boost immunity and are 
important diets for adults and children. However, the health effects of 
mycotoxins-contaminated bee products in healthy individuals are 
unknown. Keskin et  al. (12) performed HPLC-UV analysis of 
mycotoxins, followed by LC–MS/MS, to detect the positive samples 
and improve sensitivity. It was found that mycotoxins consumed from 
certain amounts of bee products do not pose a health risk. Beans are 
highly nutritious foods, and their consumption is becoming 
increasingly popular. However, mycotoxins are found in beans. A 
work by Acuña-Gutiérrez et  al. (21) summarized the mycotoxins 
detection techniques in beans, including GC–MS/MS and HPLC–MS/
MS. Compared to GC–MS/MS and HPLC–MS/MS, HRMS is also 
used for the detection of mycotoxins with higher sensitivity and 
efficiency. Rodríguez-Carrasco et al. (15) first used acetonitrile-based 
extraction and ultra-high-performance liquid chromatography 
coupled with quadrupole exactive orbitrap high resolution mass 
spectrometry (UHPLC-Q-Exactive-Orbitrap HRMS) to analyze 
mycotoxins in soy burgers with recoveries in the range of 78 to 108% 
and precision less than 12%. The limits of quantitation (LOQs) of all 
investigated compounds were in the low ng/g range, and the 
co-existence of mycotoxins was observed in approximately all samples. 
Similarly, a technique to detect 19 mycotoxins in grain flour matrices 
using real-time orbitrap mass spectrometry (DART-Orbitrap MS) was 
developed and validated by Tsagkaris et al. (16), based on a LC method 
combined with both a hybrid HRMS (q-Orbitrap MS) and a low-level 
resolution mass spectrometry (triple quadrupole, QqQ) detectors. 
Compared to the liquid–liquid method, the DART-Orbitrap MS 
exhibited high throughput, speed and excellent detection capability, 
monitoring up to 96 samples in a single runtime of approximately 40 s, 
which is crucial for the regulation of mycotoxins. The emerging 
DART-Orbitrap MS can improve and accelerate the detection of 
selected mycotoxins in cereal samples compared to LC–MS, and the 
superiority of this technique makes it more promising for future 
applications in the detection of mycotoxins in a wide range of foods. 
For mycotoxin analysis in fatty matrices such as nuts, Castilla-
Fernández et al. (9) isolated mycotoxins from walnuts by solid–liquid 
extraction (SLE) and then analyzed them using UHPLC–MS/MS. Due 
to the strong matrix effect in fatty matrices, the dilution-injection 
method was the newest trend and solved the problem of the matrix 
effect. This method has the advantages of simplicity, minimal loss of 
analytes, high sample flow rate, and many analytical classes covered. 
Six purification columns were used to purify fatty matrices, none of 
which effectively reduced the strong matrix effects encountered by 
SLE. Finally, weak or negligible matrix effects were obtained by 
applying 1:100 dilutions of SLE extracts. LOQs met The European 
Union (EU) requirements, and satisfactory recovery and precision 
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were obtained. To reduce the effects of matrix effects, Lago et al. (14) 
first evaluated a liquid chromatography coupled with quadrupole 
time-of-flight mass spectrometry (LC-QTOF-MS) for concurrently 
analyzing legal and newly discovered mycotoxins in malt and beer. 
The method overcame matrix effects and is rapid, requiring only 
1.2 min for simultaneous analysis of emerging mycotoxins. The MS 
was applied to detect mycotoxins using MRM and total mode, with 
satisfactory linearity and recoveries. In summary, the detection of 
contaminants in food samples with complex matrices and difficult 
sample processing has been a challenging task. The development of 
LC-QTOF-MS with low matrix effects and high speed has to 
accelerated the study of food contaminants.

Pesticides residues

Pesticides can enter the food chain during their application. Food 
is common exposure to pesticide at low doses. Surprisingly, some 

substances become more potent when they accumulate in the food 
chain. When the concentration reaches a critical level, damage to 
human health becomes more serious (22). Pesticides mainly have 
higher risks to the nervous system (23). Also, multiple sclerosis, 
cancer, and several chronic diseases have been linked to long-term 
pesticide exposure. Table 2 summarizes how MS analyzes residues in 
pesticides residues.

Pesticides can protect crops and avoid pests and diseases. 
However, there are many abuse instances of pesticides due to 
their widespread use, leading to serious pesticide residues in 
vegetables, fruits, water (24), and soil (25). Due to their wide 
variety, analyzing pesticides in food is daunting since the matrix 
concentration in foodstuffs is higher than that of pesticides. 
Pesticide contamination also occurs and is increasing in food of 
livestock origin, bringing comprehensive multi-residual analysis 
of plant protection products to the global attention forefront. EU 
has now set MRLs for various pesticides in different foods to 
monitor risks to people’s health and the natural environment 

TABLE 1 Applications of MS for analysis of mycotoxin in foodstuffs.

Foodstuffs MS Analytes Sample 
preparation

LODs Reference

Nuts UHPLC–MS/MS
AFB1, AFB2, AFG1, 

AFG2 and OTA
Grinding and sieving – (9)

Cereals and cereal-based 

food
LC–MS Mycotoxins – – (10)

Raisin, pistachio, peanut, 

wheat flour, spice, and 

chili samples

LC–MS/MS
AFB1, AFB2, AFG1, 

AFG2, and OTA

Grinding and 

homogenization
– (11)

Bee products HPLC, LC–MS/MS DON, HT2, T2, OTA Drying 0.0004–0.012 ng/mL (12)

Table-ready foods LC–MS/MS

Aflatoxins B1, B2, G1, 

and G2, fumonisins

B1 and B2, ochratoxin 

A, and zearalenone

Homogenisation 0.01–2.4 μg /kg (13)

Malted barley and beer
QuEChERS-LC-

QTOF-MS

AFB1, AFB2, AFG1, 

AFG2, BEA, ENA, 

ENA1, ENB, ENB1, 

FB1, HT-2

toxin, T-2 toxin, OTA, 

MON, DON, ZEA 

and STG

– 0.01–15 μg/kg (14)

Soy-based burgers
UHPLC-Q-Orbitrap 

HRMS

DON, 3-ADON, 

15-ADON,

DAS, HT-2, T-2, ZON, 

OTA, AFM1, AFB1, 

AFB2, AFG1, AFB2, 

FB1, FB2, ENNA, 

ENNA1, ENNB, 

ENNB1, AOH, AME, 

and 12 isoflavones

–

21 mycotoxins: 0.05–

0.50 μg/kg

12 isoflavones: 0.01–

0.10 μg/kg

(15)

Wheat, rye, and maize 

flour
DART-Orbitrap MS

Fusarium spp., 

Claviceps

Spp, Aspergillus spp., 

Alternaria spp

– 25–250 μg/kg (16)

–, not mentioned.
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(26). MS is highly sensitive and can unambiguously detect trace 
amounts of samples, and it is now becoming increasingly 
common for detecting pesticide residues, particularly in food 
(27). Different MS-based techniques have been frequently used 
to detect food contaminants, such as HPLC-MS, GC–MS, ultra 
performance liquid chromatography–tandem mass spectrometry 
(UPLC-MS/MS) and GC–MS/MS (28), UHPLC–MS/MS, 

UHPLC-QTOF-MS, DART-MS (29), Desorption electrospray 
ionization mass spectrometry (DESI-MS).

QuEChERS is frequently used for sample pretreatment with the 
advantage of quick, easy, affordable, efficient, reliable, and secure. Liu 
et al. (30) reported the improved QuEChERS extraction technology 
for sample preparation. Acetylene was used as the extraction agent, 
and SAX, XFM42, and C18 as the stationary phase. The proposed 

TABLE 2 Applications of MS for analysis of pesticides residues in foodstuffs.

Foodstuffs MS Analytes Sample 
preparation

LODs Reference

Vegetable and fruit
GC–MS/MS and 

UHPLC-QTOF-MS
52 Pesticides

Homogenisation, Freezing 

at −20°C
– (32)

Beef, pork, and chicken GC–MS/MS Pesticides
Homogenisation, Freezing 

at −20°C
– (5)

Sweet pepper

LC–MS/MS and GC–

MS/MS cross-checking 

analysis

Pesticide
Grinding and 

homogenization

LC–MS/MS: 0.03–

0.5 μg/kg, GC–MS/

MS: 0.9–2.0 μg/kg

(40)

Pigeonpea grains
GC–MS/MS and LC–

MS/MS
79 Pesticides Homogenisation 0.53–3.97 μg/kg (41)

Passion fruit
LC–MS/MS and GC–

MS/MS
Pesticide Homogenisation – (42)

Pepper, chili peppers and 

its sauce product

LC–MS/MS and GC–

MS/MS
47 Pesticides Homogenisation – (38)

Chinese cabbage
Modified QuEChERS-

UPLC–MS/MS
8 Neonicotinoid insecticides

Homogenisation, Freezing 

at −20°C
– (3)

Apple, cottonseed, pepper, 

tomato, grape and pea

Modified QuEChERS-

UPLC–MS/MS
Xinjunan pesticide residue Homogenisation – (31)

Fish and shrimp
QuEChERS-(LC-MS/

MS)
Multi-pesticide residues

Homogenisation, Freezing 

at −20°C
0.1–3 μg/kg (35)

Twelve common 

vegetables and fruits 

(cherry, pumpkin, 

eggplant, potato, pear, 

grape, peanut, cucumber, 

spinach, wolfberry, wheat, 

and sugarcane)

QuEChERS-HPLC-MS/

MS
Cyflufenamid

Homogenisation, Freezing 

at −20°C
0.2–0.4 μg/kg (30)

Foods of plant 

originpeaches (grapes, 

brown rice and soybeans)

Derivatization-

QueChERS-HPLC-MS/

MS

Zinc-thiazole
Grinding and

homogenization
0.001 mg/L (34)

Chilli and Sichuan pepper LC-Q-TOF-MS Pesticide – 0.6–1.7 μg/kg (39)

Baby foods
QuEChERS-UHPLC-Q-

Orbitrap MS
21 Pesticides and 4 aflatoxins – 0.02–4 μg/kg (36)

Spices black pepper, 

cardamom, chili, 

coriander, cumin, and 

turmeric

UHPLC-Q-Orbitrap MS Pesticides Homogenisation - (33)

Baby foods UVALLME-GC-ITMS
19 Organophosphorus 

pesticides (OPs)
– 0.2–1.3 ng/g (23)

Tomato and bell pepper TD-ESI-MS/MS Pesticides Homogenisation - (43)

Tea samples
UA-MSPE-UHPLC–MS/

MS

Metalaxyl, napropamide and 

epoxiconazol

Grinding

storing at 25°C
0.02–0.05 ng/ g (37)

–, not mentioned.
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HPLC-MS/MS was used to identify and quantify fipronilide in food 
samples and the LOQs range was 0.5 to 50 μg/kg. Han et  al. (31) 
pretreated food samples using a modified QuEChERS method, 
followed by UPLC-MS/MS with simultaneous MRM concerning 
quantification via a standard outer method. The mean recoveries of 
the developed were 75.6–106.2%, with an RSD of ≤8.8%. Kottadiyil 
et al. (32) adapted the QuEChERS method to detect and quantify 
pesticide residues in vegetables and fruits by GC–MS/MS and 
UHPLC-QTOF-MS and used MRM mode to quantify samples. This 
model exhibited high specificity, selectivity, and sensitivity in SCAN 
and SIM (single ion monitoring) modes. Goon et al. (33) employed a 
new method to screen non-targeted pesticides multi-residues in spice 
matrices by UHPLC-Q-Orbitrap MS. Samples were extracted using 
the standard QuEChERS method. Compared with LC–MS/MS, 
recoveries obtained by the UHPLC-Q-Orbitrap MS method were in 
the 78–100% range with successive full instrument scans and stable 
quantitative performance. In addition, HLB purified samples, and the 
recoveries ranged from 70 to 120% with an accuracy RSD of <20%. 
Chen et al. (34) used a developed derivatization-based QuEChERS 
approach for online HPLC–MS/MS detection of fungicide pesticide 
residues in vegetable-based food products (Figure  1). Good 
performance can be obtained in the range of 0.001–1 mg/L under the 
negative ionization scan mode. Dispersive solid-phase extraction 
(DSPE) is a new sample pre-treatment technique that is easy, fast, 
efficient, accurate and sensitive. Shin et al. (35) used d-SPE for sample 
pre-processing and cleaning by octadecylsilane (C18) and primary 
secondary amine (PSA) as d-SPE absorbents. Multiple agrochemicals 
in fish and shrimps were analyzed simultaneously by LC-MS/MS with 
good recoveries (70–125%). Similarly, Prata et  al. (36) used 
QuEChERS extraction and d-SPE purification method to monitor 
pesticides and aflatoxins in infant food. Quantifying multiple 
contaminants and aflatoxin levels in infant formula sold in Brazil by 
UHPLC-Q-Orbitrap MS technique achieved low LODs and LOQs.

Multi-walled carbon nanotubes are often modified as substrates 
for the extraction and adsorption of contaminants. Synthetic magnetic 
amino-modified multi-walled carbon nanotubes (m-MWCNTs-NH2) 
were used for sample purification and enrichment of pesticides in tea 
samples (37). They used UHPLC–MS/MS and ultra-sound-based 
magnetic solid-phase extraction (UA-MSPE) to simultaneously 
determine medomel, diquat, and oxytetracycline in tea samples. 
UA-MSPE provided a simple, rapid, and efficient analysis for targeted 
samples with promising LODs and LOQs. In addition, three plant 
protection products were detected in different tea samples with a 
recovery higher than 75.1%, suggesting that the method can be used 
in assessing plant protection products in other matrices. Magnetic 
multi-walled carbon nanotubes (Fe3O4MWCNTs) were used as 

sorbents to detect mycotoxins and pesticides in cereals by 
QuEChERS extraction.

Pesticide residues are also present in Chili peppers and Sichuan 
peppercorns, which are consumed globally for their unique flavour 
and high nutritional value. In addition, the converted product is in 
high demand as an essential spice. However, to get high yields, 
unscrupulous traders use illegal pesticides. Studies have shown that 
LC–MS/MS methods can be  applied to analyze spices’ pesticide 
residues; however, only target compounds can be identified. Using 
these methods for non-targeted screening is impossible (38). Liu et al. 
(39) established a combined LC-Q-TOF-MS-based technique that 
analyzed all relevant pesticides in peppers and chilies with 
LOQ ≤ 5 μg kg-1. Song et  al. (38) developed a novel, single-step 
technique with quick and easy, requiring no further vortexing or 
washing steps. A small column was placed in an extraction spinner to 
remove unwanted material. The absorbents were MWCNT and PSA 
blended with salts. 47 typical pesticides in pepper, chili, and chili sauce 
were detected by LC–MS/MS and GC–MS/MS, with satisfactory 
recoveries. GC–MS/MS was used for volatiles and lipophilic 
compounds, while LC–MS/MS analyzed pesticides containing polar 
moieties which are not heat resistant and non-volatile. To improve the 
accuracy of the analysis of various pesticide residues, an analytical 
approach using both LC–MS/MS and GC–MS/MS was reported by 
Lee et al. (40) The data indicated that recoveries were between 70 and 
120%, and cross-checking was more effective and reliable than a single 
method in identifying several pesticides. The LODs for LC–MS/MS 
were 0.03 to 0.5 μg/kg, and LOQs were 0.6 to 1.5 μg/kg. For GC–MS/
MS, the LODs and LOQs were 0.9 to 2.0 μg/kg and 3.0 to 5.7 μg/kg, 
respectively. Harischandra et  al. (41) developed the concurrent 
measurements for 79 different pesticide residues in wood beans using 
LC–MS/MS and GC–MS/MS with recoveries ranging from 70 to 
120%. According to MRLs for wood beans, satisfactory precision 
(RSD < 20%) was achieved for detecting and quantifying pesticide 
residues under 10 μg/kg. Similarly, Mozzaquatro et al. (42) determined 
80 pesticides, including 5 metabolites in passion fruit by LC–MS/MS 
and GC–MS/MS in a cross-synchronous analysis, allowing a more 
comprehensive and detailed sample determination. Therefore, the 
scattered omnidirectional solvent extraction method was adopted, 
and the results showed that the sample recovery was more than 70%; 
RSD ≤ 20%.

Ambient ionisation mass spectrometry (AMS) is a state-of-the-art 
technique that allows rapid chemical analysis without the need for 
sample preparation and chromatographic separation. It is now being 
used to detect food contaminants, particularly in the detection of 
pesticide residues on fruits and vegetables. Cheng et al. (43) developed 
a combination of multi-probe samples, TD-ESI, and composite MS/

FIGURE 1

Improved derivatization-QuEChERS method for HPLC–MS/MS analysis of fungicide residues in foods of plant origin (34).
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MS analysis methods to determine many trace pollutants in fruits and 
vegetables. The method involves desorption and ionization of samples 
collected on the probe in a TD-ESI source, followed by QqQ-MS 
detection in MRM mode. Samples collected by QuEChERS extraction 
combined with GC–MS/MS or LC–MS/MS showed similar results to 
those determined by TD-ESI-MS/MS, which is a simple and time-
saving technique that can simultaneously monitor multiple MRM 
channels. Therefore, QuEChERS coupled with TD-ESI-MS/MS 
exhibits significant potential to quantify pesticide residues in 
agricultural products. Pesticide residues in food can cause human 
health risks, especially for infants and children. An ultrasonic-vortex-
assisted liquid–liquid microextraction method coupled with gas 
chromatography-ion trap mass spectrometry (UVA LLME-GC-IT/
MS) was proposed by Notardonato et al. (23). The method was quick, 
simple, inexpensive, and accurate for 19 organophosphorus pesticides 
(OPs) determination in baby food. The LODs and LOQs were in the 
0.2–1.3 and 0.5–2.9 ng/g range, respectively. Based on the developed 
LLME extraction with subsequent GC-IT/MS analysis, the recovery 
was in the 81 to 109% range.

Veterinary drug residues

Veterinary medicines can prevent, diagnose or treat animal 
diseases. Due to increased human demand for meat products, many 
people add veterinary drugs to livestock and aquaculture processes to 
achieve high yields. However, the overuse of veterinary medicines can 
contaminate the aquatic environment and affect the safety of drinking 
water. More importantly, some people use illegal veterinary medicines 
for their own benefit, which can pose a serious threat to human health 
and cause greater pollution of the environment. Therefore, the 
detection and quantification of these drugs in animal tissues cannot 
be ignored in terms of food safety, human health and the environment. 
Current techniques to detect veterinary drug residues in animal-
origin food are GC–MS/MS, capillary electrophoresis-mass 
spectrometry (CE-MS/MS) (44), LC–MS/MS (45), hydrophilic 
interaction liquid chromatography–tandem mass spectrometry 
(HILIC-MS/MS), reversed-phase liquid chromatography coupled 
with tandem mass spectrometry (RPLC-MS/MS) (46), QTOF-MS 
(47), Quadrupole Mass Spectrometry (QMS), UHPLC–MS/MS (48) 
and HPLC-Q-Orbitrap HRMS. In this review, we summarized the 
application of MS in the analysis of veterinary drug residues, as shown 
in Table 3.

Beef and dairy products are rich in nutrients and widely consumed 
by the public, but the residues of veterinary drugs in these should not 
be ignored. Jung et al. (45) used LC–MS/MS to identify and quantify 
115 veterinary drugs and their metabolites in beef. The QuEChERS 
technique was developed by dispersive solid-phase extraction using 
EMR as a sorbent. Under the positive ion mode, only three veterinary 
drugs could not achieve the required recoveries, while the recoveries 
of the remaining 112 were 70.7 to 117.9%. Melekhin et  al. (49) 
developed an HPLC-MS/MS-based method to determine multiple 
animal drug residues in milk quantitatively. Magnetic supercross-
linked polystyrene (HCP/Fe3O4) was used to develop a MSPE without 
a deproteinization step. As a new form of SPE, MSPE can eliminate 
the limitations of traditional SPE, such as backpressure fouling, 
complex filtration, and solvent waste. In addition, MSPE has simple 
and rapid sample preparation, solvent savings, low cost, and high 

recoveries of analytes. This has been reported as the first and most 
complete MSPE method for multi-residue analysis of animal drugs in 
milk. Zhao et al. (50) used UHPLC–MS/MS to analyze approximately 
150 veterinary drugs in baby formula milk and associated constituents. 
The method achieved a LOD of 1-10 ng/g in baby food, whole milk 
powder, and isolated milk proteins.

HRMS is now widely used in the field of detecting drug residues 
in food. LC-HRMS was used to extend the detection of veterinary 
drug residues in foodstuffs. The LC-HRMS-based technique applies 
to screening raw materials of animal origin (53). TOF/QTOF and 
Orbitrap are often combined with HRMS, TOF analyzers are 
particularly popular in analyzing drug residues. HPLC-QTOF-MS 
exhibits high resolution and mass accuracy, and its full scan 
acquisition offers large amounts of target and non-target identification 
data. Hou et  al. (52) developed an HPLC-QTOF-MS multi-class 
screening approach for measuring veterinary medicines and pesticides 
in eggs. A one-time injection procedure was developed for the 
qualitative analysis. Similarly, veterinary drug and pharmaceuticals 
residue analysis in fish tissues and milk using UHPLC-QTOF-MS was 
reported by Dasenaki et  al. (47) Detecting veterinary medicinal 
residues in beef and chicken samples is complicated due to their 
complexity. Wang et  al. (56). used QuEChERS pretreatment and 
HPLC-Q-Orbitrap HRMS for quantitative screening. The obtained 
recoveries were 52.1 to 138.2%, and the RSDs were 0.4 to 17.7%. In 
addition, the LODs were 0.15–3.03 g/kg, and LOQs were 0.5–10 g/kg. 
The method improved the accuracy and range of screening in full 
mode. With the demand for faster and more accurate detection of 
food contaminants, this will also drive the development of HRMS in 
combination with more chromatographic techniques. However, 
scanning rates need to be improved and user-friendly data-processing 
software needs to be  developed as the most promising 
analytical technique.

A high throughput SPE method was developed based on Oasis 
PRiME HLB. Wang et al. (51) used UHPLC-QTRAP for simple and 
efficient quantitative analysis of 155 veterinary drugs in cattle and 
chicken feeds in MRM-IDA-EPI positive and negative scan modes. 
The obtained LOQs were in the range of 0.5 μg/kg and 5 μg/kg, and 
LODs were between 2 μg/kg and 20 μg/kg. In addition, satisfactory 
recoveries were obtained for more than 17 of 20 analytes. Zhao et al. 
(54) used a UPLC-Q-Exactive-Orbitrap MS system to screen and 
analyze multiple foodstuff veterinary residues. The method was rapid, 
simple, and sensitive and consisted of two steps; extraction with 0.2% 
formic acid-acetonitrile water and purification with PRiME HLB SPE 
columns. The analyses were performed in positive and negative MS1/
MS2 full scan modes, with targeted identification by full scan 
MS. Obtained detection limits were 0.1 to 10 μg/kg, and recovery was 
79.2 and 118.5% in all matrices.

A 15-level multi-source method to screen hydrophilic and 
hydrophobic veterinary drugs in milk, eggs, and meat was developed 
by Chung et al. (46) Using HILIC-MS and HILIC/RPLC. The method 
typically achieved 70 to 120% recoveries with an RSD accuracy of 
<20%. Due to the limited screening capacity of current veterinary 
drugs, trace analysis is always time-consuming and expensive. Mehl 
et al. (55) first developed an automated HTpSPE-UV/vis/FLD-HPLC-
HRMS/MS to screen 81 veterinary drug residues in honey, pig muscle, 
milk, and eggs (Figure 2). The developed method is green, fast, and 
solvent-saving compared to conventional methods. Based on 
automatic elution using an auto TLC-LC–MS interface, online HPLC 
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separation, and detection by Orbitrap HRMS, most veterinary drugs 
were measured in honey at a 25 μg/kg concentration. The other three 
samples were found at a 5 μg/kg concentration.

Antibiotics are commonly used veterinary drugs. Currently, 
residues in meat products are one of the most severe food 
contamination problems, presenting a health risk to the public. 
Chloramphenicol (CAP), as an antibiotic, is used to treat diseases in 
honey bee larvae. However, CAP has high toxicity and less dose 
dependence in sensitive individuals. Therefore, it is banned in edible 
animals and honey bees. Kikuchi et  al. (57) used LC–MS/MS to 
determine CAP and CAPG residues in animal products, fish and 
crustaceans, honey, and royal jelly. They used mixed hydrophilic–
lipophilic copolymer for methanol extraction, beta-glucuronidase 
hydrolysis, and solvent exchange column purification. The method 
was simple and accurate, depicting excellent CAP and CAPG 
recoveries (79–109%). Recently, Zhou et al. (58) used LC–MS/MS to 
determine milk antibiotics (vancomycin and desmethyl vancomycin). 
They developed a surface molecularly imprinted solid phase extraction 
(SMISPE) based on a highly selective method. Sample handling and 
material effects were greatly reduced for targeting analytes, with 
recoveries in the range of 83.3–92.1%. Aminoglycosides (AGs) are 
antibiotics commonly found in milk and eggs, posing health risks to 
humans, including long-term exposure causing multiple allergic 
reactions. CE-ESI-MS/MS method was adopted by Yue et al. (44) to 

identify 4 AGs in milk simultaneously. CE-ESI-MS/MS combined 
with SPE and t-ITP showed recoveries above 76.20% for all AGs. 
Separation conditions were simpler than LC–MS, without ion-pairing 
reagents in the mobile phase.

In summary, LC–MS is a satisfactory technique for detecting 
pesticide and veterinary residues in food. Compared with other MS 
methods, LC–MS has the advantages of high sensitivity and selectivity, 
wide linear range and the ability to simultaneously analyze multiple 
pesticide and veterinary drug residues in food. This makes LC–MS 
become an important analytical tool in food safety monitoring and 
quality control. However, the high cost of LC–MS, insufficient 
resolving power, strong matrix effects and sometimes false-positive 
results pose challenges for the detection of pesticide and veterinary 
drug residues in food. Therefore, development of more superior MS 
detection methods is still needed.

Acrylamide

Acrylamide is a regulated compound. It is used in food contact 
materials, plastics, paper, printing inks, etc. The human body can 
be exposed through a variety of routes, including the digestive tract, 
the respiratory tract and the mucous membranes of the skin. Food is 
the main source of acrylamide in humans. Acrylamide is produced 

TABLE 3 Applications of MS for analysis of veterinary drugs residues in foodstuffs.

Foodstuffs MS Analytes Sample preparation LODs Reference

Milk UHPLC–MS/MS 25 Veterinary drugs – – (48)

Milk MSPE-(HPLC-MS/MS) Veterinary drugs Homogenisation – (49)

Infant formula UHPLC–MS/MS Veterinary drug – – (50)

Livestock foods UHPLC-QTRAP 155 Veterinary drugs Homogenisation 0.5–5 μg/kg (51)

Egg HPLC-QTOF-MS
Veterinary drugs and 

pesticides
Homogenisation – (52)

Milk and fish tissue UHPLC-QTOF-MS
143 Veterinary drugs and 

pharmaceuticals
Homogenisation – (47)

Food (dairy-meat, fish, 

egg, and animal by-

products)

QuEChERS-LC-HRMS Veterinary drug Homogenisation – (53)

Animal source foods
UPLC-Q-Exactive 

Orbitrap MS
Veterinary drug – 0.1–10 μg/kg (54)

Milk, egg and meat
HILIC-MS/MS and 

RPLC–MS/MS
Veterinary drugs Homogenisation – (46)

Beef LC–MS/MS
Multi-class 115 veterinary 

drugs

Homogenisation Freezing at 

−20°C
– (45)

Honey, pig muscle, cow 

milk, and chicken eggs
HPLC-HRMS/MS

81 Multiclass veterinary 

drugs
– – (55)

Beef and chicken
HPLC-Q-Orbitrap 

HRMS
146 Veterinary drugs – 0.15–3.03 μg/kg (56)

Livestock products, 

seafood, honey, and royal 

jelly

LC–MS/MS Chloramphenicol – – (57)

Milk LC-MS/MS VCM and NVCM – – (58)

Milk CE-ESI-MS/MS Aminoglycosides (AGs) – 0.10 μg/L (44)

–, not mentioned.
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during high-temperature processing, especially in high-protein and 
carbohydrate-containing foods, mostly found in processed food such 
as chips, crisps, bread, biscuits, crackers, and breakfast muesli. They 
are ingested with food and dispersed in the human body. Human 
exposure to acrylamide may result in toxicological effects 
(neurotoxicity, genotoxicity, carcinogenicity, reproductive toxicity and 
so on). Therefore, there is an urgent need to detect and quantify 
acrylamide in processed foods. Table 4 summarizes the use of MS for 
the analysis of acrylamide.

LC–MS/MS and GC–MS/MS are the most commonly used 
methods to analyse acrylamide in food. Hasan et al. (63) used GC–
MS/MS to determine acrylamide content in 180 hot-processed 
carbohydrate-rich foods. According to this analysis, the highest 
levels of acrylamide were found in crisps. Acrylamide has the 
characteristics of high polarity, low volatility and low molecular 
weight. Therefore, derivatisation is required for the determination of 
acrylamide by GC–MS/MS. LC–MS/MS is relatively easy to perform 
and is now the gold standard for accurate quantification of 
acrylamide in food (65). Mousavi Khaneghah et al. (66) investigated 
acrylamide concentrations in different kinds of food. They 
summarized the acrylamide concentrations in relevant foods in daily 
life, such as potato-based foods > fried foods > breakfast cereals > 
coffee > chocolate > baby food > bread > cookies > desserts > cakes 
> cereals > nuts. Similarly, Andačić et al. (59) reported that bakery 
products contributed approximately 37.2% to overall acrylamide 
exposure in Croatia. QuEChERS extraction of acrylamide, 
purification with PSA, and quantification with LC-ESI-MS/MS are 
widely used.

UPLC is becoming increasingly popular due to its high sensitivity, 
high selectivity and lack of need for derivatisation. Sun et al. (60) used 
an isotopic displacement method coupled with UPLC–MS/MS in ESI 
positive ion mode and MRM mode to quantitatively analyze common 
contaminants, such as AA, HMF, and PhIP in fried meatballs. The 
method was rapid and sensitive, achieving high recovery and linearity 
(R2 > 0.9998) of all three analytes within 4.5 min. Edible insects are 
becoming increasingly popular in diet as they contain many 
micronutrients and high protein levels. However, acrylamide is 
generally produced in food processing. Therefore, its determination 
in insect food cannot be  ignored. Simultaneous determination of 
furans and acrylamide in insect food by HPLC-QqQ-MS/MS was 
reported by González-Gómez et al. (61). This technique used acidified 
water for SLE followed by SPE using functionalized mesoporous 
structured silica as a solid-phase extraction sorbent. The recoveries of 
furan compounds and acrylamides were 70–101%, respectively, with 
an adequate precision (RSD < 9%) and good linearity (R2 ≥ 0.995). It 
can be seen that LC–MS plays an important role in the detection 
acrylamide in thermally processed foods, which is an important tool 
for food safety monitoring.

HRMS is particularly suited for the detection of low molecular 
weight amides, with simple extraction, no clean-up step and shorter 
chromatographic times than other MS techniques. Fernandes et al. 
(62) used LC-ESI-Orbitrap HRMS to identify and quantify acrylamide 
in specific food substrates of biscuits. The HRMS method is reliable, 
can accurately analyze acrylamide, and has low dependence on matrix 
composition. The method had good reproducibility, with a LOD of 
3.55 μg/kg and a LOQ of 11.8 μg/kg. Troise et  al. (64) used 

FIGURE 2

Workflow of the developed HTpSPE-UV/vis/FLD-autoTLC-LC-HRMS/MS method (55).
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UHPLC-Orbitrap HRMS to determine acrylamide in biscuits, French 
fries, ground coffee and brewed coffee. The results were in perfect 
agreement with those obtained by the LC-MS/MS method. LOD was 
2.65 ppb. LOQ was 5 ppb. UHPLC-Orbitrap HRMS is going to be a 
promising technique for determining acrylamide in food.

Food additives

Food additives are added to preserve food’s flavor or improve its 
taste, appearance, and other qualities (67). Typical food additives 
include coloring, sweetening, preserving, antioxidant, and flavoring 
agents. Artificial foods have slowly taken over natural foods since they 
are cheaper. However, the widespread use of synthetic food additives 
can cause many problems related to misusing food additives, 
overdosing, and even toxicity. In addition, they pose potential risks to 
human health. Studies reveal that these artificial colors can cause 
allergy, asthma, damage DNA, cause hyperactivity, cancer, and human 
mutations. Therefore, screening food additives and quantifying their 
content is important since many unscrupulous companies use illegal 
additives for their benefit. MS is widely used in food analysis due to 
their multiple benefits. Table 5 summarizes the use of MS to analyze 
food additives.

Rhodamine B (RhB) is a prohibited food color additive. Many 
unscrupulous traders add RhB illegally to food products, especially 
spices. Numerous studies showed that RhB is carcinogenic, a 
neurotoxin, and a chronic toxicant for humans and animals. Wang 
et al. (69) used a sensitive UPLC-MS/MS method to monitor RhB 
in 292 different spices and reported that all samples were 
contaminated with RhB, suggesting that its exposure has a potential 
risk to consumers. Therefore, determining these illegal additives in 
food cannot be  neglected. A synthetic color in food, AO is a 

non-approved food additive, but AO is still used for the color 
development of sour sprouts and chicken. Therefore, detecting this 
compound is vital, and a study was carried out to monitor the 
presence of AO in 211 samples of foods and spices using a 
UPLC-MS/MS method (70).

Improving in people’s living standards makes them more health-
conscious, resulting in a growing demand for functional foods. 
Therefore, some people illegally add drugs to functional foods. When 
healthy people unknowingly consume these products, they suffer from 
side effects of decreased immunity, nutritional deficiencies, sickness, 
nausea, diarrhea, emesis, and kidney and liver damage. Wang et al. 
(71) proposed a new method for rapidly screening 42 widely used 
illegal additives in 6 functional food groups, based on an Atmospheric 
Solids Analytical Probe coupled with MS (ASAP-MS), without LC 
separation. The proposed method was used to analyze liquid or 
gaseous samples without pre-treatment. In addition, using a 
homemade library allowed rapid identification of suspect additives. 
The method was highly sensitive for samples in complex matrices, 
such as coffee samples. The ASAP-MS method was accurate, with the 
benefits of mobility, low cost, ease of operation, and automatic 
adjustment; thus, it can be widely used for rapid on-site detection of 
analytes in public security bureaus, especially grassroots police 
stations without corresponding equipment. Kim et  al. (72) used 
LC-ESI-MS/MS to detect 7 food additives in kimchi with LODs of 
0.00004–0.24 lg/mL, LOQs in the range of 0.00012–0.8 lg/mL, and the 
recoveries were 85.65–120.82%. Himmelreich et al. (68) determined 
preservative pseudomycin in cheese using MALDI-MS imaging 
(MALDI-MSI). MALDI-MSI can be used to detect a range of highly 
polar, non-volatile and thermally unstable samples. It is particularly 
promising for the detection of contaminants in food samples due to 
the reduced sample handling requirements and the ability to directly 
analyze untreated samples.

TABLE 4 Applications of MS for analysis of acrylamide in foodstuffs.

Foodstuffs MS Analytes Sample 
preparation

LODs Reference

Bread and bakery 

products
LC-ESI-MS/MS Acrylamide

Homogenisation Freezing at 

−18°C
<10 μg/kg (59)

Pork meatballs, beef 

meatballs, and chicken 

meatballs

UPLC-MS/MS

Acrylamide, 

5-hydroxymethylfurfural, and 

2-amino-1-methyl-6-

phenylimidazo [4, 5-b] pyridine

Freeze-dried for 48 h 1.57 μg/L (60)

Cricket flour, a cricket 

flour with chocolate, 

cricket bars and cricket 

crackers

HPLC-QqQ-MS/

MS

Furanic compounds and 

acrylamide

Grinding, sieving and 

homogenising
– (61)

Biscuit
LC-ESI-Orbitrap 

HRMS
Acrylamide

Grinding, sieving and 

homogenising
3.55 μg/kg (62)

Potato chips, crackers, 

chanachur, biscuits, potato 

crisps, breakfast cereals, 

french fries, cake, bread

GC–MS/MS Acrylamide Homogenisation 6–12 μg/kg (63)

Cookies, French fries, 

ground coffee, and brewed 

coffee

HRMS Acrylamide
Homogenisation

stored at −20°C
2.65 ppb (64)

–, not mentioned.
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PCBs and Dioxins

PCBs and Dioxins are toxic chemicals present in the environment 
and accumulate through the food chain, and both are highly toxic due 
to chlorine atoms (Figure 3). Table 6 summarizes the MS methods 
used to analyze PCBs, dioxins and contaminants in food.

PCBs are a mixture of 209 different compounds. Due to their 
extensive use, six kinds of NDL PCBs are regarded as proxies for PCBs 
in food and are highly dispersed in the surrounding environment (80). 
PCBs affect people through several routes, and food is the main 
source, including eggs, seafood (74), poultry, meat (81), milk, and 
dairy products. PCBs are neurotoxic, carcinogenic, reprotoxic, 
immunotoxic, hepatotoxic, and cardiovascular toxic to humans. 
Therefore, it is essential to determine the PCBs’ occurrence in 
foodstuffs. Liu et al. (82) reviewed the progress of PCB determination 
by GC–MS, GC–HRMS, and HPLC-MS/MS. Arshad et  al. (75) 
monitored mean levels and toxic equivalents (TEQ) of PCBs by GC–
MS in vegetables, pulses, and cereals in Khanewal and Multan, 
Pakistan. Although the mean concentrations and TEQs were safe, 
some vegetables and cereals still posed a moderate risk to human 
health due to their high consumption rates. Shahsavari et al. (73) used 
a modified QuEChERS extraction and GC-QqQ-MS/MS method to 
monitor the levels of the 6 NDL-PCBs in cream and ice cream, and the 
recoveries were 95.54–107.18%. Among these, the cream exhibited 

higher levels of NDL-PCBs than ice cream. Lu et al. (79) used d-SPE 
with GC–MS/MS to determine PCBs in milk and obtained LODs 
were < 0.6 pg./g; the recovery range was 82.8 to 106%. PCBs are present 
in food at extremely low levels and the diversity and complexity of 
food matrices make the determination of PCBs in food difficult. 
Therefore, it is important to develop more efficient, sensitive and 
accurate methods to detect and quantify PCBs. Dioxins are highly 
toxic and difficult to break down. They are usually present in food at 
ultra-trace levels. Consuming vegetables grown in PCDD/Fs 
contaminated soil can cause transient liver damage, peripheral nerve 
damage, and cancer. Therefore, their detection is is crucial to 
preventing health risks (83). Polybrominated dibenzo-p-dioxins and 
dibenzofurans (PBDD/Fs) are produced during combustion and are 
considered environmental contaminants as by-products of industrial 
chemicals. However, their presence in food samples has only been 
reported recently. The primary route of exposure is dietary intake, 
producing toxic reactions. In addition, PBDF was found in higher 
concentrations than PBDD (84). Currently, detection is usually by 
GC–MS, with HRGC–HRMS being the most accurate but time-
consuming method. Li et  al. (76) used GC-(APCI) MS/MS to 
determine PCBs (one to ten) and PCDD/Fs in the food web of Chinese 
hairy crabs. Results showed that GC-(APCI) MS/MS detection was 
related to HRGC–HRMS, and the PCB concentration was correlated. 
Major PCB congeners in the aquatic food web were dichlorobenzene 

TABLE 5 Applications of MS for analysis of food additives in foodstuffs.

Foodstuffs MS Analytes Sample preparation LODs Reference

Cheese MALDI-MS Natamycin Freezing at −80°C – (68)

Spices UPLC-MS/MS Rhodamine B

Grinding and

homogenization

Freezing at 4°C

0.1 μg/kg (69)

211 Food and spice sample UPLC-MS/MS Auramine O Homogenization 0.1 μg/kg (70)

Functional food ASAP-MS Pharmaceutical drugs – 10–20 μg/mL (71)

Kimchi HPLC-MS/MS Synthetic food additives – 0.00004–0.24 μg/mL (72)

–, not mentioned.

FIGURE 3

PCBs and dioxins structural formulae.

https://doi.org/10.3389/fnut.2023.1244459
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Sun et al. 10.3389/fnut.2023.1244459

Frontiers in Nutrition 11 frontiersin.org

and 3, 3-dichlorobiphenyl; however, other congeners, such as MoCB 
and DiCB, were also identified in large quantities. Malavia et al. (78) 
analyzed PCDDs, PCDFs, and dl-PCBs in food using GC-ITMS/MS 
and obtained consistent results between GC-ITMS/MS and 
GC-HRMS. Moreover, the GC-ITMS/MS method was more accurate 
and faster. Therefore, it was recommended to determine PCDDs/
PCDFs and dl-PCBs in foodstuffs and animal feed samples. A 
combination of HRMS was used to accurately quantify PCDD/Fs, 
PCBs, PBBFs, and PBDEs in eggs, milk, fish, shellfish, pork, beef, and 
poultry (77). Analyses were accomplished using HRGC-HRMS with 
a Trace Series 1,310 GC with DFS. The sample contaminants (except 
for PCDD/Fs) were sprayed in undivided mode, and the injector 
operated in undivided surge mode. All four pollutants were present in 
the sample, with PCBs being the most prominent.

PFCs and PPDs

Controlling the risks associated with changing mixtures of 
contaminants is one of the major challenges facing food safety 
today. Among the most prominent emerging food contaminants are 
PFCs and PPDs, which are of particular concern. PFCs are used in 
many applications, such as food packaging, nonstick pans, 
electronics, carpeting, fabrics, paints, adhesives, personal care 
products, and fire-fighting foam. The use and disposal of PFCs has 
resulted in the widespread distribution of these chemicals in the 
environment and their widespread presence in humans and wildlife. 
Bioaccumulation in fish has been shown to be a major source of 
PFCs in the diet. They are carcinogenic and are associated with 
hormonal disorders. In addition, they can accumulate and 
biomagnify through the food chain. PPDs is a synthetic compound 
and the newest pollutant, widely used to manufacture tires, belts, 
hoses, and cables. Due to the extensive use of these products in 
daily life, large quantities of PPDs and its breakdown products are 
released into the environment. Humans are exposed to PPDs and 
PPD-Q by inhalation, drinking water, eating, and skin contact. 
PPDs poses a potential risk to human health and causes 
angioneurotic edema, methemoglobinemia, acute tubular necrosis, 
and hepatotoxicity. Therefore, the determination of PFC and PPDs 

levels in food is essential for food safety. Table 7 summarises the MS 
methods used to analyse contaminated PFCS and PPD in food.

PFCs are a large group of man-made organic chemicals. The 
two most hotly debated PFCs are perfluorooctane sulfonic acid 
(PFOS) and perfluorooctanoic acid (PFOA). The PFOA and 
PFOS structures are shown in Figure 4. They have thermal and 
chemical inertness, high surface activity, and relatively low 
surface energy. Therefore, they are widely used in public and 
industry. Several PFOAs have been identified as persistent, 
bioaccumulating, and toxic. Therefore, it is important to 
determine the PFOA and PFOS levels in food. Their highest 
levels are known to occur in the Arctic. Kantiani et  al. (93) 
reviewed industrial organic contaminants PFCs in food. They 
presented the major techniques used to detect and quantify them 
in food. Marine bioaccumulation is a major dietary source of 
PFCs. A recent review described several new PFAS methods 
published in the past 2 years, using ion mobility spectrometry 
(IMS) and MS (94).

Surma et al. (87) applied d-SPE and micro-UHPLC–MS/MS to 
determine PFOA and PFOS in honey samples, using ENV as sorbent 
and acetonitrile as an extraction solvent. Obtained results showed that 
the best recoveries were 84 and 87% for PFOA and PFOS, respectively. 
Ren et  al. (85) recently used a novel MIP-PR-dispersion filter 
extraction (DFE) coupled with LC–MS/MS to determine PFOA and 
PFOS in milk. Compared with previously established methods, the 
proposed MIP-PR-DFE method combined the strengths of d-SPE and 
SPE with good cleaning performance and recovery regarding speed, 
selectivity, and cost-effectiveness. DFE was applied for the first time 
with LC–MS/MS to analyze PFOA and PFOS in milk, providing a new 
approach for efficient pollutant detection in food chemistry. The 
analysis results showed excellent recoveries (94.7–109%) and precision 
(RSD ≤9.5%). Sungur et al. (88) used LC–MS/MS to monitor PFOA 
and PFOS in 123 foods and beverages, such as fish, meat, offal, eggs, 
biscuits, French fries, cakes, chocolate, vegetables, milk, and fruit 
juices and described that fish was the main source of PFOS intake, 
while meat and offal were main sources of PFOA intake. Later, Tahziz 
et al. (86) determined PFOS and PFOA in egg yolk samples using 
LC–MS/MS. PFOS was quantified with concentrations ranging 
between 0.5 and 1.01 ng/g. The developed technique was economical, 

TABLE 6 Applications of MS for analysis of PCBs and dioxins in foodstuffs.

Foodstuffs MS Analytes Sample preparation LODs Reference

Cream and ice cream GC-QqQ-MS/MS NDL-PCBs Homogenisation 0.04–0.16 ng/g (73)

Catfish tissue GC–MS/MS 19 PCB congeners Homogenisation – (74)

Vegetables, beans, and 

grains
GC–MS PCBs

Drying and grinding

storing at 5°C
– (75)

Chinese mitten crab food GC-(APCI) MS/MS PCBs, PCDD/Fs Freeze-dried

PCBs: 0.021–0.150 pg./

mL, PCDD/Fs: 0.051–

0.237 pg./mL

(76)

Eggs, milk, fish, shellfish, 

pork, beef, and poultry
HRMS

PCDD/Fs, PCBs, PBDD/

Fs, PBDEs
Homogenisation – (77)

Milk, fish oil, chicken, pork, 

fish, eggs, and a chicken 

compound feed

GC-ITMS/MS PCDDs, PCDFs, dl-PCBs
Stored in the dark at 4°C

Freezing at −20°C

PCDD/Fs: 0.1–

0.93 pg./g, dl-PCBs: 

0.1–0.89 pg./g

(78)

Milk GC–MS/MS PCBs – <0.6 pg./g (79)

–, not mentioned.
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labor-saving, and sensitive. In conclusion, LC–MS is a good tool for 
the detection of PFOA and PFOS in food.

In China, the annual production of 6PPD is the highest of the 
PPD antioxidants. The rubber antioxidant (6PPD) and its ozonation 
product (6PPD-Q) are widely found in air (95), dust (96), and water 
(97, 98). Tian et  al. (99) reported that 6PPD-Q causes acute 
pre-spawning mortality of silver salmon in freshwater streams of the 
Pacific Northwest, a phenomenon known as ‘urban runoff mortality 
syndrome’. This groundbreaking study generated great interest and 
concern. 6PPD-Q is a greater toxicant than its parent compound 
6PPD, and contact with tire rubber-derived contaminants 6PPD-Q 
can induce in vitro mitochondrial dysfunction (90). The 6PPD and 
6PPD-Q structures are shown in Figure  5. These compounds are 
widely found in vegetables, animal foods, or seafood.

The effects of 6PPD-Q on 4 commercially, culturally, and 
ecologically important fish species, including rainbow trout, brook 
trout, Arctic charr, and white sturgeon, were investigated by 
Brinkmann et  al. (89) using UHPLC-Q-Exactive HF-Q-Orbitrap 
HRMS. This work demonstrated the acute toxicity of 6PPD-Q at 
environmentally relevant concentrations to other commercially, 

culturally, and ecologically important fish species. Salmonids are taxa 
of great cultural, ecological, and market value worldwide. Hiki et al. 
(100) conducted a 6PPD-Q 96-h acute toxicity test using LC–MS/MS 
on three salmonids, showing lethal toxicity to white-spotted salmon. 
Ji et al. (91) developed a modified QuEChERS method combined with 
HPLC–MS/MS to study the 6PPD and 6PPD-Q levels in fish and 
honey. Both these compounds were detected in blackfish, sea bass, and 
horse mackerel, while none were in honey samples. The linearity, 
recovery, and matrix effects were satisfactory, ranging from 70.4 to 
95.6%, with excellent reproducibility (RSD < 8.4%). This work 
demonstrated the presence of 6PPD and 6PPD-Q in fishery samples 
for the first time, suggesting that they could enter the human body by 
eating polluted fish. To source and quantify the TWPs-derived 
compounds in edible plants. Castan et al. (92) first incubated lettuce 
plants in a TWPs-derived hydroponic solution. Their leaves, roots, 
and nutrients were collected for processing, and QMS determined 
concentrations. In addition, the compounds in plant leaves were 
identified by high-resolution Orbitrap MS. This work indicated that 
TWP could be a persistent source of TWP-derived compounds in 
edible plants, with TWP metabolites accumulating in lettuce leaves. 

TABLE 7 Applications of MS for analysis of PFCs and PPDs in foodstuffs.

Foodstuffs MS Analytes Sample preparation LODs Reference

Milk
MIP-PR-DFE-LC–MS/

MS
PFOA and PFOS – 0.006–0.022 ng/mL (85)

Chicken eggs, quail egg LC–MS/MS PFOA and PFOS Freezing at −20°C – (86)

Honey
Micro-UHPLC–MS/

MS
PFOA and PFOS –

PFOA: 0.016 μg/kg

PFOS: 0.040 μg/kg
(87)

Fish, meat, offal, egg, 

cracker, chips, cake, 

chocolate, vegetable, milk, 

and juice

LC–MS/MS PFOA and PFOS
Rinsed in distilled water and 

blotted dry.

PFOA: 0.038 ng/g

PFOS: 0.002 ng/g
(88)

Rainbow trout, brook trout, 

Arctic char, and white 

sturgeon

UHPLC-Q-Exactive 

HF-Q-Orbitrap HRMS
6PPD-Q – – (89)

Salmonid Species LC–MS/MS 6PPD-Q – – (90)

Fish and honey HPLC-MS/MS 6PPD and 6PPD-Q

Fish homogenization 

Freezing at −20°C

Honey samples were kept at 

25°C

6PPDQ: 0.0003 mg/kg

6PPD in fish 

0.00025 mg/kg, 6PPD 

in honey 0.0003 mg/kg

(91)

Lettuce HRMS 6PPD and 6PPD-Q Freezing at −20°C – (92)

–, not mentioned.

FIGURE 4

Chemical structures of PFOS fand PFOA.
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In addition, 6PPD was readily absorbed by lettuce. 6PPD has been 
detected in environmental matrices, including water, soil, and 
particulates, so lettuce safety should also be a cause of concern. In 
summary, MS is an useful tool for the determination of new 
contaminants and LC–MS is very beneficial for the screening of 
unknown pollutants in food.

Conclusions and future perspectives

This work completely reviewed MS methods in analysis of 
harmful contaminants in food. The combination of MS with modern 
chromatographic and other separation tools offers higher resolution 
and precision than conventional MS, enabling isomeric and 
conformational analogs’ identifications. Compared to conventional 
chromatographic approaches, LC–MS and GC–MS allow more rapid 
and sensitive detection of toxic and hazardous substances in food, 
which can effectively solve food safety emergencies. Moreover, MS can 
identify unknown compounds from complex background matrices 
and consequently has been fully implemented in routine analytical 
and research laboratories. The capabilities of MS-based proteomics are 
expanding with recent advances in MS technologies. HRMS methods 
provide rapid and comprehensive information on food contamination 
via targeted and non-targeted analysis, which is a breakthrough. 
However, the standardization of untargeted analysis still needs much 
work. Furthermore, there are emerging food safety issues, like the 
misuse of antibiotics, the application of toxic nanomaterials (e.g., food 
packaging materials) and the occurrence of unreported contaminants. 
Hence, development of more rapid, sensitive and accurate MS 
approaches in food analysis is still needed.
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