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Background: The Aronia melanocarpa fruit is emerging as a health food owing 
to its high polyphenolic content and associated antioxidant activity. Antioxidant-
rich foods, such as Aronia fruit, may counter inflammatory stimuli and positively 
modulate the gut microbiome. However, a comprehensive study characterizing 
the impact of Aronia fruit supplementation has not been completed. Therefore, 
we completed analyses measuring the metabolic, microbial, and inflammatory 
effects of a diet supplemented with Aronia fruit juice.

Method: Humanized mice were generated by colonizing gnotobiotic mice with 
microbiomes from human donors presenting disparate inflammation levels. 
Blood and fecal samples were collected throughout the course of an 8-week 
dietary intervention with either Aronia juice or a carbohydrate-matched beverage 
alone (2  weeks) or in combination with a high-fat diet to induce inflammation 
(6  weeks). Samples were analyzed using 16S rRNA gene sequencing (stool) and 
liquid chromatography-mass spectrometry (serum).

Results: We demonstrated transfer of microbiome composition and diversity and 
metabolic characteristics from humans with low and high inflammation levels 
to second-generation humanized mice. Aronia supplementation provided robust 
protection against high-fat diet induced metabolic and microbiome changes 
that were dependent in part on microbiome donor. Aronia induced increases in 
bacteria of the Eggerthellaceae genus (7-fold) which aligns with its known ability 
to metabolize (poly)phenols and in phosphatidylcholine metabolites which are 
consistent with improved gut barrier function. The gut microbiome from a low 
inflammation phenotype donor provided protection against high-fat diet induced 
loss of microbiome β-diversity and global metabolomic shifts compared to that 
from the high inflammation donor.

Conclusion: These metabolic changes elucidate pathway-specific drivers of 
reduced inflammation stemming from both Aronia and the gut microbiota.
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1. Introduction

Chronic low-grade inflammation is a pathological characteristic 
of obesity-related conditions such as metabolic syndrome, type 2 
diabetes mellitus, and cardiovascular disease and is noted by increased 
and sustained systemic levels of proinflammatory cytokines with no 
resolution (1–3). The accumulation and pro-inflammatory activation 
of macrophages in expanding adipose tissue, particularly around the 
abdomen, is considered a major contributor to chronic low-grade 
inflammation and promotes a detrimental shift in glucose and lipid 
metabolism (4–6). In addition to central adiposity, altered glucose 
metabolism, lipid metabolism, and hypertension are key components 
of metabolic syndrome, which proceeds and underlies many major 
chronic diseases (7). As an early driver of metabolic syndrome and 
chronic disease progression, intervention strategies are needed to 
counter inflammatory stimuli and chronic low-grade inflammation in 
metabolically at-risk populations.

The composition of, and host interactions, with the gut microbiota 
are of growing research and clinical interest. The gut microbiota 
comprises a diverse group of bacteria (and other microbes) in the 
human gastrointestinal tract that is altered in metabolic states 
associated with obesity and related conditions (8–11). A strong body 
of evidence in human and animal models supports the contribution 
of the gut microbiota to obesity development through increased 
energy harvest (8–10, 12–14). The composition and functionality of 
the gut microbiota, and ability to influence the host, is largely 
dependent on genetic and environmental factors (15, 16). Host diet, 
as a modifiable environmental factor, has been shown to influence gut 
microbial composition (16–19). For example, a high-fat diet (HFD) is 
often utilized in animal models to promote obesity and has been 
shown to concomitantly promote inflammation in the colon, adipose 
tissue, skeletal muscle, and the liver (20–22). Increased gut barrier 
permeability has been proposed as the connection between the gut 
microbiota and host inflammation. Alterations in gut bacteria, mucus 
bilayer composition, intestinal epithelial cells tight junctions, and local 
immune cells can all impact permeability (23–25). Chronic exposure 
to dietary fat is another factor that may negatively impact tight 
junction proteins and mucosal layer integrity, promoting increased 
translocation of bacterial constituents into the lamina propria and a 
subsequent induction of inflammatory responses establishing a 
positive feedback loop (23, 24, 26). Thus, frequent perturbations to 
barrier function can have profound clinical implications in diseases 
with localized inflammation and may partially explain a rise in 
systemic inflammation.

To combat inflammation, incorporation of functional foods 
may serve as a beneficial dietary strategy for metabolically at-risk 
populations to reduce the onset and progression of chronic disease 
(27, 28). Polyphenols can act as antioxidants which reduce cellular 
damage by free radicals and alter cellular signaling affecting 
inflammatory gene expression (29). A majority of polyphenols 
reach the large intestine and are subject to bacterial degradation 
into simpler phenolic metabolites (30). Polyphenols and phenolic 
derivatives can positively impact gut barrier integrity which may 
impact downstream proinflammatory processes (31) but may exert 
anti-inflammatory properties systemically (32). Importantly, 
polyphenols and their derivatives can modulate microbial diversity 
(33) and in turn, microbial metabolism can influence their 
bioavailability (34–36).

The black chokeberry, or Aronia melanocarpa, is of particular 
interest as an antioxidant-rich food. This hardy shrub produces fruit 
with the highest known antioxidant capacity for fresh fruit as 
measured by oxygen radical absorbance capacity (37). Commercial 
varieties are derived from a cross between Aronia melanocarpa, which 
is native to the United States, and European Mountain Ash (Sorbus 
aucuparia) sometimes classified as Aronia mitschurinii (38). Aronia 
melanocarpa fruit has a high polyphenolic content (39) with almost 
four times the anthocyanin content of blueberries, a lauded natural 
antioxidant-rich food (40). The antioxidant capacity of Aronia fruit 
(technically a pome fruit, like apples) stems from anthocyanins, 
procyanidins, and hydroxycinnamic acids. Aronia polyphenols have 
been previously shown to reduce inflammatory stimuli (41–45), the 
expression and concentration of pro-inflammatory cytokines (43, 44, 
46, 47), and influence the colonic environment (45).

Dietary strategies, such as increased antioxidant availability 
through consuming polyphenolic-rich foods, present possible targeted 
therapeutic avenues for early chronic disease prevention. Dietary 
patterns can modulate gut microbiota composition and function, 
which are important in mediating host responses through production 
of bioactive compounds. Therefore, we hypothesized that compounds 
in host systemic circulation may provide key insights into the dynamic 
interplay between the gut microbiome and the host. In this study, 
we recruited healthy but metabolically at-risk human subjects and 
assessed their metabolic and systemic inflammatory profile. 
We  created a humanized mouse model of chronic low-grade 
inflammation by transplanting stool from a human donor with high 
or low systemic inflammation into germ-free mice to account for 
variability in host genetics and host gut microbiota. We  then 
introduced Aronia or control juice to their offspring and added a HFD 
as an inflammatory stimulus. Using advanced analytical measurement 
techniques including 16S rRNA gene sequencing and ultra-high 
performance liquid chromatography mass spectrometry, 
we investigated whether ingestion of polyphenolic rich Aronia juice 
could offer protective effects against HFD, and if that protection is 
dependent on gut microbial alterations including the inflammation 
phenotype of the human donors.

2. Methods

2.1. Experimental models and study 
participant details

2.1.1. Human participants
Human participants for this paper were two adult women selected 

from a larger cohort of human participants (n = 40) that were 
metabolically profiled and assessed for resting and postprandial 
inflammation in response to a high-fat meal challenge. Potential 
subjects were recruited via advertisement between March 2016 to June 
2018 and screened over the phone for eligibility. Inclusion criteria 
included being between 18 and 55 years old and having a body mass 
index between 27 and 36 kg/m2. Criteria for exclusion included 
antibiotics within 90 days of study enrollment, regular use of anti-
inflammatory medications, use of estrogen-only contraceptives, wheat 
and/or dairy allergies or intolerances, were pregnant, or had any 
musculoskeletal, cardiovascular, gastrointestinal, or immunological 
condition that could interfere with the study. All potentially eligible 
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subjects were screened over the phone for inclusion and exclusion 
criteria. The human subjects’ protocol was approved by the 
Institutional Review Board at Montana State University. Written 
informed consent was obtained prior to participation. The study was 
retrospectively registered October 2019 at ClinicalTrials.gov 
(NCT04128839). Forty overweight and obese men and women 
participated in testing of anthropometric and changes in serum 
metabolic and inflammatory markers during a high-fat meal challenge 
with a 50 g oral fat load and stool.

Subjects were categorized as having high fasting inflammation 
(HI) if they were above the group median at baseline in at least 4 of 
the 6 cytokines. Subjects were considered to have low fasting 
inflammation (LO) in they were above the group median in two or less 
cytokines. Individuals above the group median in 3 cytokines were 
considered neither HI nor LO. Fasting phenotype separation was 
confirmed by a two-sample t-test of each cytokine measure. Using a 
k-means analysis, the 40 participants were also grouped based on 
postprandial cytokine concentrations in response to an oral fat 
tolerance test (48). This analysis determined that the cohort contained 
three distinct inflammation groups based on cytokine levels. Groups 
were labeled as low-responders (LO), mid-responders (MID) and 
high-responders (HI). To isolate the impact of the gut microbiome on 
inflammation, each of the two participants selected as stool donors for 
the gnotobiotic mouse experiments was either LO or HI for both 
fasting and postprandial inflammation and both were as similar as 
possible for other factors that may influence inflammation (sex (both 
female), body fatness, waist circumference). Additionally, stool donors 
were 52 and 34 years of age, non-Hispanic Caucasian, and did not 
meet the criteria for Metabolic syndrome (additional information 
about donors found in Table 1).

2.1.2. Germ-free mice
Female germ-free (GF) C57BL/6 J mice, originally purchased 

from the Jackson Laboratory (Bar Harbor, ME) were housed and bred 
at the American Association for the Accreditation of Laboratory 
Animal Care-accredited Animal Resource Center at Montana State 
University. The research protocol was approved by the IACUC at 
Montana State University. Mice were held in individually ventilated 
cages with sterile bedding before and after fecal transplantation from 
selected human stool donors. Two female mice received an inoculation 
with fecal material from a human donor categorized as having low or 
high systemic inflammation based on serum levels of six 
proinflammatory cytokines. Human donor stool slurry aliquots were 
administered to GF mice through oral gavage. Sexually mature male 
GF C57BL/6 J mice were added to each cage approximately 1 week 
after transplantation. Male mice removed prior to birth of pups. Pups 
from the inoculated dams were co-housed by sex (3–5 mice/cage) with 
different microbial inoculations placed in separate isolators. Mice 
from each microbial inoculation were assigned to one of two juice 
groups: Aronia (AROLO, = 3, AROHI, n = 5), or a sugar-matched juice 
(CONLO, n = 3, CONHI, n = 3).

2.2. Method details

2.2.1. Human subjects protocol
Testing for the human subject cohort in this study took place in 

the Nutrition Research Laboratory at Montana State University. 

Anthropometric measurements were made, blood was collected after 
an overnight fast and following consumption of a high-fat meal for 
inflammation and metabolic status assessment, and stool samples 
were collected for analysis of gut microbiome composition. Two 
participants were selected from this pool as stool donors to humanize 
mice for the germ-free mouse experiments.

2.2.1.1. Anthropometrics
Measurements were collected from subjects using the validated 

segmental multifrequency bioelectrical impedance analysis (SECA 
mBCA 515, Germany) (49). Subjects were instructed to refrain from 
eating, drinking, or exercising in the 3 h prior to testing. Fat mass (%) 
and estimated visceral adipose (liters) were used for 
descriptive analysis.

2.2.1.2. Blood sampling
Subjects were instructed to avoid alcohol consumption and 

strenuous physical activity in the 24 h before their visit and to complete 
an overnight fast (10–12 h) before blood collection. Participant fasting 
blood samples were collected from the antecubital vein by a certified 
nurse or physician in the morning (6:30–8:30 a.m.). Blood was 
collected into 8.5 mL endotoxin-free serum separating tubes and 
allowed to clot for 15 min at room temperature before centrifugation 
(3,000 rpm, 15 min). Serum aliquots were frozen at −80°C 
until analysis.

2.2.1.3. Metabolic syndrome markers
According to the National Cholesterol Education Program Adult 

Treatment Panel III definition, metabolic syndrome is the 
co-occurrence of insulin resistance, excess central adiposity, 
dyslipidemia, and hypertension (7). Blood markers of metabolic 
syndrome were determined from whole blood run on Picollo Xpress 
Chemistry Analyzer lipid panels (Abaxis, CA, United  States) and 
included high density lipoprotein, triglyceride, and glucose. Blood 
pressure was taken in the morning after subjects had been seated for 
at least 15  min. Waist circumference, as an indicator of central 
adiposity, was taken in conjunction with anthropometric testing.

2.2.1.4. Insulin resistance
Elevated glycated hemoglobin HOMA-IR are early indicators of 

insulin resistance. Glycated hemoglobin was determined using the 
Affinion2 analyzer (Abbott,) performed according to manufacturer 
instructions. Insulin was determined through ELISA (MP 
Biomedicals, United States) performed according to manufacturer 
instructions, with the average used for analysis. Fasting blood glucose 
and insulin were used to determine HOMA-IR according to the 
original HOMA-IR formula (50).

2.2.1.5. Inflammation
A multi-cytokine approach was used for determination of fasting 

systemic inflammatory profile. Cytokine measurement was performed 
on serum samples using high-sensitivity multiplexing technology 
(Bio-Rad Bio-Plex® 200 HTS) following procedures by Millipore 
(EMD Millipore Corporation, MA, United States). Classic systemic 
pro-inflammatory cytokines included granulocyte macrophage colony 
stimulating factor (GM-CSF), interleukin (IL)-1β, IL-6, tumor 
necrosis factor (TNF)-α. Interleukin-17 and IL-23, both of which 
serve a pro-inflammatory and regulatory role in the gut mucosa, were 
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also measured. Human serum samples at each time point during the 
high-fat meal challenge were run in duplicate with the mean used 
for analysis.

2.2.1.6. Stool sample collection
Collection kits were provided, and subjects were asked to follow 

printed instructions to self-collect a stool sample in the 24 h before 
their blood collection visit. After initial collection into a sterile 
disposable commode, a small portion of the sample was transferred 
into a sterile 50-mL conical vial and refrigerated until transportation 
to researchers. Samples were processed in an anaerobic chamber 
(Coy) with pre-reduced phosphate buffer saline and aliquoted into 
cryogenic vials at −80°C until analysis.

2.2.2. Germ-free mouse experimental protocol

2.2.2.1. Gut microbiota transplant and colonization
Two stool donors were selected based on their inflammation 

profile which occurred prior to gut microbial community profiling.

2.2.2.2. Aronia juice targeted metabolomics LCMS and 
NMR analysis

Aronia juice was a blend of Mackenzie, Viking, and Autumn 
Magic cultivars grown at the Western Agricultural Research Center in 
Corvallis, Montana. Processed Aronia juice was examined to 
determine both the phenolic and carbohydrate composition. For 
quantifying the phenolic content, a targeted LCMS method was 
developed. The selected method was developed for use on an Agilent 
6,538 quadrupole-time of flight (Q-TOF) mass spectrometer (Agilent, 
CA, United States) and an Agilent 1290 ultrahigh performance liquid 
chromatography system (Agilent, CA, United States) located at the 
Montana State University Proteomics, Metabolomics and Mass 
Spectrometry Facility. Separation was achieved using an Acquity 
HSST-3 UPLC reverse phase column, 1.8 μM, 100 mm/2.1 mm 
(Waters, MA, United States). The novel method was 18 min in length 
and consisted of HPLC grade water and acetonitrile (Fisher, MA, 
United States), both with 0.1% formic acid (Fisher, MA, United States), 
as mobile phases A and B, respectively. Analysis began with a flow rate 
of 0.3 mL/min and 95% A. At 2 min, the mobile phase composition 

TABLE 1 Anthropometric and metabolic characteristics of inflammation groupings and of selected human stool donors.

Baseline inflammation Inflammation response Donors (n  =  2)

Low 
(n  =  19)

High 
(n  =  16)

p-value Low 
(n  =  17)

Middle 
(n  =  14)

High 
(n  =  9)

p-value Low High

Women/Men 12/7 9/7 0.63 8/9 5/9 3/6 0.53 1/0 1/0

Age (years) 36.4 ± 10.5 35.3 ± 10.3 0.72 39.2 ± 9.6 34.8 ± 10.7 33.4 ± 9.8 0.3 52 34

Body mass index 

(kg/m2)

30.3 ± 1.9 30.6 ± 2.0 0.91 30.8 ± 2.6 30.1 ± 1.3 30.2 ± 1.6 0.67 27.7 35.9

Fat mass (%) 35.0 ± 5.9 36.7 ± 7.8 0.73 35.7 ± 7.6 35.8 ± 6.7 36.8 ± 6.6 0.92 35.1 48.1

Insulin resistance

HbA1c (%) 5.28 ± 0.25 5.22 ± 0.32 0.74 5.4 ± 0.2 5.2 ± 0.2 5.2 ± 0.4 0.06 5.1 5.4

Homeostatic model 

of insulin resistance

1.7 ± 1.3 3.3 ± 2.5 0.04 2.2 ± 1.2 3.3 ± 2.6 1.6 ± 1.4 0.21 1.3 2.4

Metabolic syndrome

Presence/absence 4/15 5/11 0.03 4/13 3/11 3/6 0.02 0/1 0/1

Fasting glucose 

(mmol/L)

5.3 ± 0.3 5.5 ± 0.4 0.53 5.4 ± 0.3 5.4 ± 0.5 5.5 ± 0.3 0.88 5.4 5.2

Fasting triglyceride 

(mmol/L)

1.5 ± 1.0 1.7 ± 0.9 0.33 1.9 ± 1.2 1.3 ± 0.7 1.7 ± 1.2 0.34 2.4 2.6

Fasting cholesterol 

(mmol/L)

4.7 ± 0.8 4.6 ± 0.8 0.65 5.1 ± 1.0 4.4 ± 0.6 4.4 ± 0.7 0.02 5.9 5.5

Fasting high-density 

lipoprotein 

(mmol/L)

1.4 ± 0.4 1.3 ± 0 0.27 1.4 ± 0.3 1.4 ± 0.5 1.3 ± 0.5 0.89 1.6 2.0

Waist circumference 

(cm)

94.4 ± 7.6 96.2 ± 9.8 0.8 95.6 ± 11.2 95.2 ± 9.4 95.4 ± 5.3 0.99 92.3 90.3

Systolic blood 

pressure (mmHg)

117 ± 14 111 ± 11 0.27 116 ± 9 112.4 ± 16 110 ± 15 0.55 128 114

Diastolic blood 

pressure (mmHg)

78 ± 10 74 ± 7 0.33 78 ± 9 75 ± 11 72 ± 8 0.41 78 83

Metabolic syndrome criteria are based on the National Cholesterol Education Program Adult Treatment Panel III definition. Data represents mean and standard deviation. Difference in sex 
and metabolic syndrome presence proportion were determined by a 2-sample test (baseline inflammation) or 3-sample test (Inflammation Response) for given proportions. All other p-values 
were determined by analysis of variance. Bold values indicate p-values less than 0.05.
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changed linearly to 5% A at 15 min. A was held at 5% for 1 min and 
then a wash with 95% A was completed for the final 2 min of the run. 
The column compartment was kept at a constant 30°C throughout 
the analysis.

Standards were initially used to determine the retention time and 
peak area of nine phenolic standards at five different concentrations. 
Standards included anthocyanins and procyanidins previously found 
in Aronia (43). The collected data was then used to generate standard 
curves. Juice samples were diluted with HPLC grade water, 1:50 
juice:water, and placed in mass spectrometry vials. Juice blends were 
analyzed via the same LCMS method as the phenolic standards and 
the concentration of specific phenolics were determined in each 
juice sample.

Carbohydrate composition was also explored using nuclear 
magnetic resonance (NMR) analysis. Juice was diluted with sodium 
trimethylsilylpropanesulfonate (DSS) and placed in an NMR tube. 
Analysis was performed using a Bruker 600 MHz Avance III NMR 
spectrometer (Bruker, MA, United  States) with a 600 MHz TCI 
(H-C/N-D05Z) LT Probe located at the Montana State University 
Nuclear Magnetic Resonance Core Facility. From generated data, a 
control juice matching carbohydrate concentration was formulated. 
Carbohydrate standards were purchased and added to the placebo 
juice for the control mice. Placebo juice was analyzed using NMR and 
confirmed to have identical carbohydrate concentrations as the Aronia 
juice. Concentrations of phenolic and carbohydrate concentrations in 
the final Aronia blend juice are provided in Table 2.

2.2.2.3. Juice and diet administration
At baseline (T0), regular drinking water was replaced with ARO 

or CON juice to begin a two-week familiarization period with the 
juice. ARO mice received an unpasteurized blend of Aronia juice, and 
CON mice received the sugar-matched beverage containing water, 
sorbitol, glucose, and fructose. The mice were housed in cages with 
free access to their respective juice. During the familiarization period, 
all mice received standard chow (LabDiet 5013).

After the 2-week familiarization period (T2), mice began a 6-week 
high-fat diet, delivered ad libitum concomitant with juice 
consumption. The HFD (Teklad TD.96132) was chosen to induce 
obesity and present an inflammatory stimulus (51). The HFD mimics 
a Western style diet and consisted of 40.6% fat, 40.7% carbohydrate, 
and 18.7% protein and was particularly rich in sugars and trans-fatty 
acids. All chow provided was sterilized via autoclaving or irradiation. 
A total of 150 mL of juice was provided per cage each week. Juice was 
refilled three times each week.

2.2.2.4. Murine sample collection
Fecal pellets were collected at baseline (T0), at HFD start (T2), 

after 2-weeks of HFD (T4), and at the end of the 6-week HFD (T8, 
Supplementary Figure S1). Stool samples were frozen at −80°C until 
bulk DNA extraction. Blood samples were collected at the same 
interval into serum separating tubes. Pellets and blood were collected 
between the hours of 10:00 and 14:00 during designated experimental 
time points. Whole blood was allowed to clot for 15 min before 
centrifugation at 1200 RPM for 15 min with resulting serum aliquoted 
and stored at −80°C until analysis. After T8 sample collection, mice 
were euthanized via rapid CO2 asphyxiation.

One mouse in the second-generation had substantial weight loss 
(≥20% starting body weight) in the first week of the experiment and 
was euthanized according to IACUC protocol, leaving AROHI with 
four mice in total. All other groups were steady throughout 
the experiment.

2.2.2.5. Genomic DNA extraction 16S rRNA gene 
sequencing

Extraction of bulk bacterial DNA from fecal samples was 
performed using Powersoil® DNA Isolation Kit (Mo Bio Laboratories, 
Inc.) and bead beating. Extracted DNA was stored at −80°C until 
analysis. DNA was shipped overnight to the University of Michigan, 
Michigan Microbiome Project for Illumina MiSeq amplicon 
sequencing of the 16S rRNA V4 region. After DNA quantification, V4 
amplicon libraries were generated with dual-index barcoded primers, 
then by library purification, pooling, and MiSeq paired-end 
sequencing. Raw sequencing reads were processed and curated using 
MOTHUR software (Version 1.35.1) (mothur.org) following the 
MOTHUR standard operating procedure for the MiSeq platform (52). 
In short, paired-end reads were assembled into contiguous sequences 
and screened for length and quality. The remaining contigs were 
aligned to the SILVA ribosomal RNA database (Release 132), a 
comprehensive collection of aligned rRNA sequences. Potentially 
chimeric sequences were identified and removed using the UCHIME 
algorithm in MOTHUR. Taxonomic classifications were assigned 
using the Bayesian classifier of the Ribosomal Database Project. 
Non-target reads were removed, and operational taxonomic units 
(OTU) were assigned using VSEARCH distance-based clustering at 
the 97% similarity threshold.

2.2.3. Metabolomic analysis

2.2.3.1. Targeted and untargeted LCMS metabolomics 
analysis

Serum samples were removed from −80°C storage and allowed 
to thaw. 20 μL of thawed serum was removed and placed in a clean 
vial after which 80 μL of ice-cold acetone was added to precipitate 

TABLE 2 Carbohydrate and polyphenol content within Aronia 
melanocarpa fruit juice.

Compound Concentration

Carbohydrate (mM)

Sorbitol 672.74

Fructose 433.40

D-glucose 435.89

Polyphenol (μM)

Neochlorogenic acid 8987.59

Chlorogenic acid 8598.77

Cyanidin 3-arabinoside 1224.29

Cyanidin 3-galactoside 589.40

Quercitin 3-glucoside 127.45

Cyanidin 3-glucoside 66.92

Cyanidin 3-xyloside 42.57

Quercitin 3-rutinoside 33.47

Quercitin 3-galactoside 19.36
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protein. Samples were then stored at −80°C overnight to aid 
precipitation. The next day, samples were spun in a centrifuge for 
10 min at 20,000×g. The resulting supernatant was removed and 
placed in a clean vial while the remaining protein pellet was 
discarded. The metabolite-rich supernatant was concentrated under 
negative pressure in a Concentrator Plus (Eppendrof, Hamburg, 
Germany) to dryness. Dried samples were stored at −80°C until 
ready for LCMS analysis, at which time the samples were 
reconstituted with 40 μL of MeOH:H20 (51) and placed in a clean 
mass spectrometry vial.

Untargeted LCMS analysis was completed on the same system 
as the phenolic analysis, an Agilent 6538 MS coupled to an Agilent 
1290 UHPLC. Initial sample separation was accomplished on an 
Acquity BEH-HILIC column, 1.7 μm, 2.1 mm/100 mm (Waters, 
MA, United States). A 15-min method was employed using water 
and acetonitrile, both with 0.1% formic acid, as mobile phases A 
and B, respectively. 45% A was held for the first 2 min, after which 
a linear gradient increased A until 11 min to 70%. 70% was held for 
two additional minutes until switching to 0% A at 13 min. The 
column compartment was kept at 40°C and the flow rate was 
0.2 mL/min. MSMS, or tandem MS, was completed on the same 
system with the same LCMS settings to identify metabolites. 
Collision energies of 10, 20 30, and 40 V were used to fragment 
analytes. This method yielded over 1,000 metabolites from 
each sample.

A second targeted LCMS analysis was also undertaken, 
specifically to determine mouse serum concentrations of 
trimethylamine-N-oxide (TMAO), a compound associated with 
phosphatidylcholine (PC) levels, which were found to be variable 
in our untargeted results (53). Analysis was completed on the same 
instrument as previously described but with a different method. A 
6-min targeted method was used with acetonitrile and 10 mmol/L 
ammonium formate as mobile phases A and B, respectively. A 
10–40% A gradient was used over 6 min with a compartment 
temperature of 30°C (54). TMAO retention time and a standard 
curve was generated by analyzing authentic standards. After serum 
sample analysis, TMAO relative concentrations were integrated, 
and the concentrations were determined using MassHunter v11.0 
(agilent.com).

2.3. Quantification and statistical analysis

2.3.1. Human cohort characteristics
Descriptive statistics of the participant physical characteristics and 

metabolic profile by inflammation phenotype were performed by 
ANOVA in RStudio (V. 1.4.1106) running base R 4.2.2.

2.3.2. Power analysis
A post hoc power analysis was utilized as an expected effect size 

for treatment differences was unknown. A power analysis was 
performed from alpha diversity data collected during the high fat diet 
using the G*Power3 program (55). As described in the figure four 
legend, significance was tested for the difference observed between 
high- and low-inflammation groups in Aronia-treated mice following 
high-fat diet (at week 8). Program inputs were as followed: effect size 
d of 7.99, alpha error probability of 0.05, group 1 size of 4, and group 2 
size of 2. Based on these parameters, the power achieved was 1 with a 

noncentrality parameter delta of 9.17, critical t of 2.12, and observed 
t of 7.68.

2.3.3. Gut microbiome data analysis
A total of 2,732,246 raw reads were obtained across all samples. 

To aid unbiased diversity matrices due to sequencing depth, data was 
randomly subsampled at the minimum number of sequences across 
samples. Subsampling resulted in a total of 2,082,652 high quality 
reads. Alpha diversity was calculated using phyloseq 1.38.0 (R) and 
visualized using effects plots from the R effects package. Beta-diversity 
analyses were performed on subsampled data with filtering of OTUs 
less than 3 counts in at least 20% of the samples. Permutational 
analysis of distance matrices with stratification by cage and 999 
permutations was performed using the adonis function in the vegan 
package 2.5–6 (R). Canonical correspondence analysis (CCA) was 
used to assess the impact of time, donor, and juice treatment on the 
microbial community at the species level using phyloseq 1.38.0 (R). 
The contribution of variables in CCA was assessed through a 
permutation test with 999 permutations with cage stratification.

A linear regression framework for differential abundance analysis 
(LinDA) was applied from the MicrobiomeStat R package. LinDA 
considers the correlated nature of the microbiome in longitudinal 
study designs which can be extended to the mixed effects model and 
is similar to ANCOM-BC but is different in that it does apply a bias 
correction and does not utilize the E-M algorithm (56). The response 
is abundance data transformed using the center log-ratio and applies 
a bias term from the compositional effect of the microbiome. The bias 
is corrected using the mode of regression coefficients, and p-values are 
generated from the bias-corrected regression coefficients and applies 
a multiple comparison correction. LinDA was used to assess baseline 
differences in microbial genera. LinDA was also used to assess changes 
over time from juice and from juice during HFD, with an interaction 
between treatment and donor and a random effect for the mouse 
number for mixed effects modeling. Default parameters for LinDA 
were applied to counts, aggregated at the genus level, except for the 
mean percentage of non-zeros cutoff which was set to 0.0001 and 
n.cores adjusted for the mixed effects models.

Microbial ecological analyses and visualizations performed in 
RStudio (V. 2023.3.0.386) running base R 4.2.2.

2.3.4. LCMS and NMR data analysis
After MS analysis, data was converted to either a .mzML format 

for MS data and .mgf or .abf format for MSMS data using MSConvert 
v3.0 (proteowizard.sourceforge.io) and Reifycs Analysis Base File 
Converter (reifycs.com) (57). MS data was then interpreted using 
mzMine v3 (mzmine.github.io) and statistical analysis was completed 
using MetaboAnalyst v5.0 (metaboanalyst.ca) (58, 59). An in-house 
library was used based on authentic standards for level 1 identifications 
(60). Level 2A annotation was completed with spectral fragmentation 
matching using MSDial software v4.9 (61) and the MassBank spectral 
library (62). A 0.005 MS and 0.01 MSMS cutoff were used along with 
an 80% score match for positive annotations. Level 3 in silico 
annotation was also performed with SIRIUS software v5.0 (bio.
informatik.uni-jena.de/software/sirius) by searching all biological 
databases using a 15 ppm error window (63). Results with a similarity 
score of only 60% and with the highest score were selected. NMR 
results were examined using Chenomix NMR Suite software v7.6 
(chenomx.com).
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3. Results

3.1. Gnotobiotic mice humanization

We sought to transfer an inflammation phenotype from human 
stool donors to gnotobiotic mice so that we  could investigate the 
impact of antioxidant rich Aronia berries on both the gut microbiome 
and on serum metabolomic profiles. We recruited a human cohort 
between the ages of 18 and 55 with similar physical characteristics 
(Supplementary Figure S2). Analysis of this cohort revealed variation 
in inflammation, insulin resistance, and metabolic syndrome status 
(Table 1). Our inflammation phenotyping binned individuals in low- 
or high-inflammation (LO or HI) groups (Figure 1). From this cohort, 
one LO and one HI participant were selected as stool donors based on 
their fasting and postprandial inflammatory profiles. To isolate the 
impact of the gut microbiota, subjects with similar percent body fat, 
waist circumference, and sex were selected. Importantly, neither 
donor met the criteria for metabolic syndrome. The LO donor was LO 
in fasting inflammation and postprandial response to an oral fat load. 
Conversely, the HI donor was HI in fasting inflammation and 
postprandial inflammatory response. Further, 16S rRNA analyses 
indicated that the LO stool donor had a higher OTU richness (377 vs. 
338) and Shannon Index (4.1 vs. 3.7) than HI. LO and HI donors also 
differed in β-diversity (Figure 2A).

With donors selected, stool samples were transplanted into 
gnotobiotic mice. We compared the gut microbial composition of 
pups from dams inoculated with different fecal microbiota 
transplant (FMT) human donors. Beta-diversity analysis using 
Bray-Curtis PCoA plots demonstrated that second-generation mice 
with direct exposure from their inoculated GF mice parent 
resembled their respective human stool donor (Figure  2B). 
Moreover, the microbial community was distinct by donor and 
remained distinct throughout the duration of the mouse experiment 
(R = 0.343, p < 0.001, ANOSIMdonor). LO mice also differed in the 
abundance of multiple bacterial genera compared to HI mice at 

baseline as detected by the LinDA differential abundance analysis 
(Supplementary Figure S3).

After confirming the transfer of LO and HI microbiomes to the 
mice, our next task was to determine how the respective microbiota 
influenced host metabolism. To do this, we examined the metabolomic 
profiles of serum from mice receiving the LO and HI stool transplants 
using liquid chromatography-mass spectrometry (LCMS). A global 
view of the collected LCMS data revealed different metabolic profiles 
in mice with LO and HI stool donors as seen in a 2-D principal 
component analysis (2D-PCA) (Figure 3A). This striking contrast 
between profiles is highlighted by the level of separation seen between 
samples with the same matrix, serum, and the high percentage of 
variation in component one and two with 27.5 and 18%, respectively. 
A focused examination of the metabolites that best differentiated the 
groups was also performed. LO mice showed upregulation of 
diacylglycerides and downregulation of metabolites such as cysteine 
3-hydroxyproline relative to HI mice (Figure  3B). LO mice also 
demonstrated an increase in indolepyruvate, a secondary metabolite 
produced by specific microbes in the gut microbiome. Metabolomic 
profiling of LO and HI mice, taken with the microbial analysis, 
indicated that not only were the microbial communities of stool 
donors effectively transferred to second-generation pups by fecal 
microbiota transplant to germ-free dams, but this led to altered 
metabolic states that were also present in the human donors.

3.2. Aronia juice impact on the gut 
microbiome

Successfully transferring the gut microbiota and corresponding 
metabolic phenotypes positioned us to explore the impact of 
anthocyanins from Aronia juice (ARO) vs. a sugar matched control 
(CON) on the gut microbiome over time and to identify how LO and 
HI microbiota influenced alpha and beta diversity metrics and 
taxonomic responses to Aronia. As with the human donors, 

FIGURE 1

Fasting proinflammatory profile grouped by LO and HI inflammation phenotype. Test statistics and p-values were determined by two sample t-test 
with phenotype (excluding NA n  =  5) as the grouping variable. *Indicates the cytokine values were log transformed to meet normality assumption. LO, 
low inflammation; HI, high inflammation; GM-CSF, granulocyte macrophage colony-stimulating factor; IL, interleukin; TNF, tumor necrosis factor.
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second-generation HI INF mice had a lower Shannon index, a 
measure of α-diversity, at baseline, on average compared to mice 
exposed to LO INF microbiome (β = −0.37, p = 0.001). Second-
generation mice began a two-week acclimatization period with CON 
and ARO juice. We did not detect a three-way interaction between 
juice treatment, time, and donor (p = 0.30); however, a statistical main 
effect for ARO on α-diversity was observed with an average increase 
in the Shannon index of 0.28 (p = 0.045) after 2 weeks (Figure 4A).

Having established that ARO differentially impacted community 
diversity metrics based on the donor microbiota, our next step was to 
determine how mice with the LO and HI gut microbiota and 
metabolic phenotypes responded to an inflammation challenge. 
We presented a 6-week high-fat diet (HFD) to induce obesity and 
inflammation in combination with ARO and CON treatments in both 
LO and HI mice. With the introduction of a HFD, α-diversity declined 

with CON irrespective of FMT donor microbiome exposure 
(Figure 4B). ARO juice provided protection from HFD-induced loss 
of α-diversity in second-generation mice with a LO INF microbiota 
(p = 0.02). HI mice which received ARO juice displayed the same 
decline in α-diversity as CON groups.

To extend our analysis of microbiome diversity, we performed a 
canonical correspondence analysis (CCA) to better understand the 
community from introduction of ARO and the eventual joint impact 
of juice and HFD. In Figure 5A, a distinct separation in the second-
generation microbial community based on the original human FMT 
donor is observed (F = 34.0, p = 0.001). Additionally, the introduction 
of juice promoted a similar shift in β-diversity that was donor-
independent (F = 4.5, p = 0.001). However, mice which received ARO 
had a smaller shift in β-diversity over 2 weeks relative to mice receiving 
CON (F = 4.2, p = 0.001). A large shift in β-diversity was seen after only 

FIGURE 2

Bray-Curtis Principal Coordinate Analysis (PCoA) of the gut microbial community for the (A) human cohort (n  =  40), (B) human donor compared to 2nd 
generation mice (n  =  13). Our LO and HI INF donors are highlighted in (A,B). PCoA results were plotted according to the first two components. Axes 
explain the percentage of variance in the gut microbial composition at the genus level between samples. LO, low inflammation; HI, high inflammation; 
INF, inflammation.

FIGURE 3

Profiling of serum metabolites in second generation mice prior to experimental treatment (T0). (A) A principal component analysis (PCA) by juice 
treatment with 95% confidence intervals shown. (B) Heatmap for T0 indicating top 20 metabolites. Distinct blocks of metabolites upregulated with 
both HI and LO inflammation donors are seen. Red, upregulation; blue, downregulation. LO, low inflammation; HI, high inflammation.
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2 weeks on a HFD (F = 9.0, p = 0.001) and was less pronounced in LO 
vs. HI mice (F = 6.7, p = 0.001) (Figure 5B). A modest Aronia effect on 
β-diversity was observed across LO and HI and was counter in action 
with the HFD (F = 2.7, p = 0.004).

Shifting from measures of microbiome diversity to individual 
components, a HFD introduced microbial taxonomic changes in 
second-generation mice that were donor-independent and donor-
dependent. We  applied LinDA, a differential abundance analysis 
method which corrects for the correlated nature of the microbiome in 
repeated measures designs, to assess genus level changes in the gut 
microbiota from the addition of juice and the influence of juice 
concomitant with HFD. We observed a 1.2 and 1.5-fold respective 
increase in the abundance of Eisenbergiella and Faecalibacillus in mice 
receiving Aronia juice relative to the mice receiving control juice 
(Figure 6A). We did not observe donor-dependent changes from the 
juice supplementation period as indicated by a lack of differentially 
abundant bacterial genera in Figures  6B,C. With detected several 
differential taxa with Aronia juice after 6 weeks of a HFD, including 
increased abundance of Faecaelbacillus, Howardella, and an 
unclassified genus within the Eggerthellaceae family within mice on 
Aronia juice compared to mice on control juice (Figure 6D). The 
greatest taxonomic change with Aronia during the experiment was 
seen in the unclassified Eggerthellaceae genus with an increase of 
6.3-fold compared to control juice. However, when the donor and 

juice interaction is considered, it was found that the Faecalibacillus 
and Howardella decreased in abundance with Aronia juice in LO mice 
(Figure 6E). A substantial increase in n unclassified Eggerthellaceae 
genus was detected in HI compared to LO inflammation mice 
(Figure 6F). Additionally, unique to HI inflammation mice was an 
increase in the abundance of Clostridium Cluster XIVa and an 
unclassified member of Bacillales decreased. Overall, our microbial 
analysis indicated that Aronia juice offered a protective effect against 
community shifts from HFD and that a small number of select genera 
were differentially abundant in response to juice.

3.3. Aronia juice impact on metabolomic 
profiles

To determine how LO and HI INF microbiota influence the 
impacts of Aronia juice, our final aim was to analyze samples via 
LCMS and determine the effect of ARO vs. CON on metabolomic 
profiles. Although the metabolic profiles of initial serum samples 
grouped by LO and HI donor (Figures  3A,B); the effect of ARO 
supplementation was evident by week two (Figure 7A). Week two 
samples showed definitive grouping based on ARO vs. CON juice first, 
followed by donor (Figure 7B). A closer inspection of discriminative 
metabolites between juices at week two indicates altered lipid 

FIGURE 4

Shannon Index, an alpha diversity measure, of the gut microbial community in second-generation mice in response to (A) 2-Week juice treatment and 
(B) juice treatment and HFD. *Indicates a difference in means at the end of the HFD (Time 8) by donor and juice treatment. Points indicate group 
averages and bars represent 95% confidence intervals derived from the all effects function in the R effects package. ARO, Aronia juice; CON, control 
juice; LO, low inflammation; HI, high inflammation; INF, inflammation; HFD, high-fat diet.
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metabolism in ARO mice relative to CON mice. Specifically, 
phosphatidylcholines (PCs) and sphingomyelins (SMs) were shown 
to be upregulated in ARO mice.

Finally, having demonstrated that LO and HI INF gut microbiota 
and ARO treatment interact and affect metabolism, we  sought to 
determine whether the LO microbiota and or ARO confer protection 
against HFD-induced inflammation alone or in combination with 
each other. The HFD led to dramatic changes in metabolic profiles that 
superseded the effects of both the microbiome and the juice treatment. 
A heatmap of discriminating metabolites in week 2 and week 4 
demonstrates the impact of the high-fat diet (Supplementary Figure S4). 
Metabolites were found to group first by time, then by treatment and 
finally by donor. Upregulation of SMs and PCs discriminated pre- and 
post-HFD metabolomic profiles. Week 8 was the final time point in 
our study. Analysis of these final samples revealed that both juice and 
donor had a significant influence on metabolomic profiles. Although 
the impact of juice and donor were intertwined, disparate metabolomic 
profiles were found for both LO and HI INF microbiota and ARO vs. 
CON treatment. A PCA revealed the effects of the donor were still 
prevalent after 8 weeks of experimental juice and the introduction of 
a HFD (Figure  8A). However, a closer examination of the 
discriminating metabolites between groups indicated the impact of 
juice supplementation. In this analysis, ARO correlated with an 
upregulation of specific PCs and SMs (Figure 8B). The donor effect 
was also still seen as HI and LO clusters of upregulated metabolites 
were found.

Due to the continued variability seen in PC concentrations 
between treatment groups, TMAO concentrations were investigated. 
TMAO is a product of choline metabolism and a proposed marker of 
cardiovascular risk (64). TMAO is produced in the liver from 
trimethylamine, a secondary metabolite derived from microbial 
catabolism of choline. As breakdown of the choline found in PCs 
increases, TMA availability and, therefore, TMAO concentration 

increase. TMAO concentrations were found to be lower (p < 0.001) in 
the Aronia supplemented mice at the conclusion of the study 
(Figure 9).

4. Discussion

Using gnotobiotic mice, we were able to elucidate the impact of 
Aronia juice supplementation on the gut microbiome and the serum 
metabolome before and during a high-fat diet. Success in this study 
relied heavily on our ability to humanize mice by transferring 
microbiomes from human stool donors who were metabolically 
similar but had a different inflammatory profile as well as the ability 
to transfer the donor microbiome to second-generation pups. 
Additionally, we were able to generate unique metabolomic profiles 
from each donor specific mouse population. By exploring the beta 
diversity of the microbiomes along with the grouping of the global 
metabolomes and specific microbial populations and metabolites, our 
analysis indicated that two distinct humanized mouse populations 
were created. This is a significant observation that has broad impacts 
on the use of animal models to study inflammation.

Each mouse population had a unique microbial profile that closely 
resembled that of the original human stool donor (Figure 2). Human 
stool donors were metabolically similar (Table 1), with the specific 
donors selected based on their distinct low and high systemic 
inflammatory profile. A higher microbial diversity was observed in the 
selected human LO microbiome profile vs. HI microbiome profile, a 
trait that was recapitulated in the mice and helped separate the 
microbial communities into two distinct groups at baseline (Figure 4). 
The transfer of microbiomes from inoculated germ-free mice to the 
second-generation without declines in diversity has been previously 
observed (19). Additionally, our findings echo previous research 
which found that low gut bacterial diversity in humans correlated with 

FIGURE 5

Canonical Correspondence Analysis in 2nd generation mice with treatment, time, and inflammation as constraining variables for the (A) first 2 weeks 
with juice and (B) 6-weeks with juice and HFD. CCA results were plotted according to the first two components. Axes explain the percentage of 
variance in the gut microbial composition at the genus level between samples. ARO, Aronia juice; LO, low inflammation; HI, high inflammation; INF, 
inflammation; T, time in weeks.
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a pronounced inflammatory phenotype (65). High bacterial diversity 
is a generally accepted indicator of a healthy gut and is thought to 
contribute to the resistance of microbial communities to ecological 
perturbations and the ability to return to equilibrium (10). Along with 
distinct microbial communities, metabolomic analysis indicated 
discrete global profiles in each donor population. Metabolomic 
profiles of the mice grouped based on donor and revealed the presence 
of discriminating metabolites (Figure 3; Supplementary Table S2). 
One of discriminating metabolites, indolepyruvate, was upregulated 
in the LO mice and is only known to be  produced by specific 
Clostridium species associated with the LO microbiome. Conversely, 
3-hydroxyproline was upregulated in HI mice. 3-hydroxyproline is an 
imino acid shown to stimulate inflammation and modify macrophage 
signaling (66). 3-hydroxyproline has also been shown to be  diet 

dependent in mammals, yet mice in this study received the same food, 
indicating a microbial influence promoting 3-hydroxyproline 
production (67).

After 2 weeks of juice supplementation and normal diet, a shift 
was detected in the gut microbiota of second-generation mice 
(Figure  5). The control and Aronia juice both contained glucose, 
fructose, and sorbitol, and the introduction of these carbohydrates was 
also marked by a pronounced shift in β-diversity after 2 weeks across 
both LO and HI mice. The impact of Aronia on β-diversity was 
minimal, though we detected a statistical main effect with Aronia juice 
for an increase in α-diversity (Figure 4). We observed that bacterial 
changes during the Aronia supplementation period were not donor-
specific and that Aronia promoted an increase in the abundance of 
Eisenbergiella and Faecalibacillus. Eisenbergiella is negatively correlated 

FIGURE 6

Differential bacterial genera with Aronia juice and donor-dependent changes. Volcano plots show differential genera detected by two separate LinDA 
analyses, one for weeks 0–2 and a second for weeks 2–8. In weeks 0–2, mice received standard chow and either Aronia or control juice. In weeks 
2–8, mice switched to a high fat diet and continued their existing juice treatment. All juice comparisons highlight Aronia juice in comparison to control 
juice. (A) Juice main effect from weeks 0–2, (B) juice and donor interaction effect from weeks 0–2 where donor comparison is LO vs. HI inflammation 
mice, (C) juice and donor interaction effect from weeks 0–2 where donor comparison is HI vs. LO inflammation, (D) juice main effect from weeks 2–8, 
(E) juice and donor interaction effect from weeks 2–8 where donor comparison is LO vs. HI inflammation, and (F) juice and donor interaction effect 
from weeks 2–8 where donor comparison is HI vs. LO inflammation. padj, Benjamini-Hochbeg adjusted p-value; lfc, log fold change; unc, unclassified.
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with inflammatory gene expression (68) and one study has found 
Faecalibacillus to positively associate with hypertension (69). The 
metabolic capacity of either genus is still largely unknown; thus, 
additional research is required to better understand the metabolic 
capacity of these two bacterial taxa and particularly, their capacity to 
metabolize (poly)phenolic compounds and relationship to 
health outcomes.

Not only were changes in the gut microbiome makeup observed 
after 2 weeks of supplementation, but mouse metabolism was also 

altered as well. Prior to juice introduction mouse metabolic profiles 
had grouped by donor (Figure 3; Supplementary Table S2). However, 
by 2 weeks profiles indicated a significant shift and began to cluster by 
juice group (Figure 7; Supplementary Table S2). Indoleacrylic acid was 
upregulated with Aronia only in mice with the low inflammation gut 
microbiome donor. Indoleacrylic acid is a tryptophan catabolism 
metabolite with potent antioxidant, anti-inflammatory, and enhanced 
gut barrier function effects. This metabolite is only produced by three 
bacterial species of the Peptostreptococcus genus and one species of the 

FIGURE 7

Profiling of serum metabolites in second generation mice after 2 weeks of ARO and CON treatment (T2). (A) A principal component analysis (PCA) by 
donor and juice treatment. (B) Heatmap for T2 indicating top 20 metabolites. Dendrogram indicating separation by juice treatment followed by donor 
type. Red, upregulation; blue, downregulation. LO, low inflammation; HI, high inflammation, PC, phosphatidylcholine; PE, phosphatidylethanolamine; 
SM, sphingomyelin; LysoPC, lysophosphatidylcholine; PA, phosphatidic acid.

FIGURE 8

Profiling of serum metabolites in second generation mice after 8 weeks of experimental treatment (T8). (A) A principal component analysis (PCA) by 
donor and juice treatment. (B) Heatmap for T8 showing top 20 discriminating metabolites. The dendrogram at the top shows grouping first by juice 
treatment followed by donor group. Red, upregulation; blue, downregulation. LO, low inflammation; HI, high inflammation, SM sphingomyelin; PC, 
phosphatidylcholine.
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Clostridium genus, which pinpoints the sources of this microbiome 
dependent health benefit of Aronia (70). Further, the metabolic switch 
was characterized by an increase in phosphatidylcholines (PC) in 
Aronia treated mice. Increased PC composition has been indicated in 
a variety of positive health benefits. In addition to their role as 
structural components of cellular membranes, PCs can counter 
LPS-induced inflammation by inhibiting tumor necrosis factor 
expression as well as limiting inflammatory responses by suppressing 
pro-inflammatory pathway signaling (71–73). These positive benefits 
are augmented by the ability of PCs to impact membrane composition 
and fluidity. Barriers in the intestinal mucus are ameliorated with 
higher PC composition and a decrease in PC composition is seen in 
inflammatory conditions such as inflammatory bowel disease and 
ulcerative colitis (74–76). This observation is likely due to PC-specific 
modulation of membrane composition and a PC-induced increase in 
membrane fluidity which contributes to normal cell function. 
Reduction in PCs has been indicated in rigid membranes and 
promoted aging processes (77–79). The increased serum PCs seen in 
Aronia treated mice may be  due to complexation of 
phosphatidylcholines with polyphenolic compounds and polyphenolic 
derivatives. Anthocyanins are larger polyphenols which do not pass 
easily through the intestinal barrier by diffusion, thereby limiting 
bioaccessibility to the host. Formation of phyto-phospholipid 
complexes, which improves membrane permeability, miscibility, and 
absorption of polyphenols from the gut for host bioavailability (80–
82). Given we  did not observe phosphatidylcholine increases in 
control mice receiving the same diet, we propose that the increase in 
phosphatidylcholine with Aronia supplementation was facilitated 
through the complexation process of polyphenolic compounds 
present in Aronia juice.

To elicit an inflammatory response reflective of a Western diet, the 
normal diet (13.3% fat) was switched to a high-fat diet (41.7% fat). 
This allowed for a comparison of Aronia supplementation with and 
without an inflammatory stimulus and provided a model to determine 
the possible Aronia driven effects during an HFD. High fat diets 
induce reproducible shifts in the gut microbiome independently of 

fluctuations in body weight (83, 84). As expected, we  observed a 
substantial global shift in the microbial community with the 
introduction of HFD across both donor groups (Figure 5B). This effect 
was donor-dependent as HFD facilitated a prominent shift in the 
β-diversity of the microbiota to which the LO INF mice were more 
resistant. Further, a key finding in this study was the donor-dependent 
protective effect of Aronia supplementation against a loss of 
α-diversity during the HFD, with LO INF mice less susceptible to 
losses in α-diversity (Figure 4B). A greater α-diversity and increased 
presence of beneficial taxa such as Parasutterella, Faecalibacterium, 
and Clostridium Cluster XIVa (Supplementary Figure S3) may have 
partially contributed to this protective effect in LO INF mice.

The mice continued the experimental juice for 6 weeks 
concomitant with HFD. After 6 weeks, additional juice-dependent 
changes in the gut microbiota were observed. The impact of Aronia 
supplementation on the global microbial composition during HFD 
was modest as indicated by our constrained ordination (Figure 5B). 
However, specific taxonomic groups were unique to Aronia 
supplementation, with a greater abundance of Faecalibacillus, 
Howardella, and an unclassified member of Eggerthellaceae during the 
last 6 weeks (juice and HFD). The unclassified Eggerthellaceae genus 
increased 7-fold which aligns with the known ability of the 
Eggerthellaceae family to metabolize (poly)phenols. The genus has also 
been positively related to lipid metabolism (85). The functions of 
Howardella and Faecalibacillus are poorly known and present new 
genera to explore in the realm of (poly)phenol metabolism. The only 
genus to decrease with Aronia was Bifidobacterium, with losses 
approximately 4.7-fold compared to control juice. Bifidobacterium 
species have been previously found to metabolize anthocyanins, 
which suggests that a HFD may compromise the metabolism of 
anthocyanins by reducing Bifidobacterium (86).

The influence of HFD was also seen in an analysis of the 
metabolomic profiles. Profiles from week two and week four show 
major shifts in metabolic activity regardless of the donor 
microbiome or juice (Supplementary Figure S4). A comparison of 
the top discriminating features using hierarchical clustering 
between weeks two and four showed strong grouping pre- and 
post-HFD introduction. Significant changes were observed 
indicating a large-scale shift in metabolic activity due to the HFD 
and the associated inflammatory stimulus. A closer look at specific 
discriminating metabolites revealed that sphingomyelin was 
upregulated after the HFD introduction. Sphingolipids are 
important components of cellular membranes and are signaling 
molecules important in the regulation of inflammatory pathways 
(87, 88). Although definitive clarity on the effects of sphingolipids 
on inflammation requires additional study, initial results have 
demonstrated tumor necrosis factor-dependent increases in 
sphingomyelin (89). Upregulation of sphingomyelin induces 
production of sphingomyelin-1-phosphate through the action of 
the kinases Sphk1 and Sphk2 in the sphingolipid-to-glycerolipid 
pathway (90). Increases in sphingomyelin-1-phosphate have also 
been associated with immune recruitment, lymphocyte activity, 
inflammation and progression of inflammatory diseases and 
cancers (91). Reduced sphingolipids were previously shown to 
increase intestinal inflammation in irritable bowel disease subjects 
though interestingly, host-derived sphingolipids were increased 
systemically (88). Therefore, it is possible that the upregulation of 
sphingomyelin we detected was an early stress response to increased 

FIGURE 9

Serum trimethylamine-N-oxide (TMAO) concentrations after 8 
weeks (T8). Concentrations of TMAO in mouse serum after 8 weeks 
of juice treatment indicating significantly lower levels in mice which 
received Aronia fruit juice compared to those that received control 
juice. A t-test comparison indicated a p-value less than 0.05 (*).
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dietary fat load, mediated by elevated LPS-stimulation of TLR4 and 
proinflammatory activation.

After the HFD introduction, metabolomic profiling indicated 
the continued influence of Aronia supplementation. However, the 
donor impact was stronger with high-fat diet than with normal diet 
and more donor-specific effects were discovered. Due to multiple 
strong effectors, examination of the metabolomic profiles show little 
separation by donor or by juice. Yet, an analysis of metabolomic 
profiles for each donor indicated different characteristics based on 
juice treatment. This provides evidence that microbiota from 
different donors interact uniquely with the polyphenol-rich Aronia 
fruit juice leading to disparate metabolomic profiles. A focused 
analysis at 8-weeks was completed and indicated donor and juice 
specific metabolites upregulated in the mouse models with Aronia 
supplementation again resulting in an increase in PCs (Figure 8B). 
To determine observed PC increases were influenced by alterations 
in microbial makeup or metabolic interactions with the 
polyphenolic compounds found in Aronia, TMAO was isolated and 
quantified. TMAO has been shown to be a biomarker for increased 
risk of cardiovascular disease and other chronic inflammatory 
diseases and is formed in the liver through the oxidation of TMA 
by FMO3 (92). TMA can only be  generated by a subset of gut 
microbiota that possess cutC, a glycyl radical enzyme. The cleavage 
of choline by cutC forms TMA which can then be  transported 
across the lumen. Our data indicates that at week 8, Aronia treated 
mice had a significantly lower TMAO concentration than control 
mice (Figure  9). Further analysis of the Aronia treated mice 
revealed that TMAO concentrations decreased more dramatically 
in the HI mice than in the LO mice showing a shift in microbial 
makeup presumably resulting in a decrease in microbes possessing 
cutC. This analysis indicated that both microbial makeup and 
phenolic compound availability had an impact on TMAO, and 
likely PC, concentrations.

While demonstrating several important gut microbiome and 
metabolic impacts of Aronia juice in humanized mice, we  also 
acknowledge that our study has limitations. Our experiment was set 
up as a pilot study to demonstrate proof of concept demonstrating 
gut microbiota dependent impacts linked to inflammation 
phenotype. As a result, the limited number of mice in our study was 
dependent on litter sizes. While we  demonstrated several key 
findings, we acknowledge that a greater sample size will be needed 
to further explore additional impacts. Similarly, both human gut 
microbiome donors were female, and our study may reflect 
sex-specific metabolic differences. Sexual dimorphism is present in 
diet, nutrient metabolism, and gut microbiome composition (93). 
Thus, our findings need to be confirmed in males and future research 
incorporating male and female gut microbiota donors is needed to 
evaluate whether there are differential responses to Aronia fruit 
juice supplementation.

In this study, we were able to successfully humanize a second-
generation of germ-free mice inoculated with stool from human 
donors with different systemic inflammatory profiles, the results of 
which were reflected in disparate microbiota and metabolomic 
profiles. This allowed for a comparison of polyphenol-rich juice 
treatment, consisting of Aronia melanocarpa fruit juice between two 
distinct mouse populations. Using 16S rRNA sequencing and mass 
spectrometry analysis, donor specific microbial communities and 
metabolites demonstrated distinct responses to juice treatment and 

the subsequent introduction of an inflammatory stimulus through a 
HFD introduction. Importantly, Aronia juice offered protective effects 
against HFD that were microbiome dependent. Metabolomic 
responses were centered around an increase in the phosphatidylcholine 
with juice supplementation and sphingomyelin with the introduction 
of HFD. Further research in should consider replication with 
additional stool donors for better generalizability.
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