
Frontiers in Nutrition 01 frontiersin.org

Kale improves bowel movements 
in constipated women and affects 
some intestinal microbes and 
metabolites: a pilot study
Yuichiro Nishimoto 1, Felix Salim 1,2, Yohsuke Yamauchi 1, 
Yuka Mori 1, Shinnosuke Murakami 1, Asahi Suzuki 3, 
Shinji Fukuda 1,4,5,6,7 and Takuji Yamada 1,2*
1 Metagen Inc., Tsuruoka, Japan, 2 Department of Life Science and Technology, Tokyo Institute of 
Technology, Meguro, Japan, 3 Q’SAI Co., LTD., Fukuoka, Japan, 4 Institute for Advanced Biosciences, Keio 
University, Tsuruoka, Japan, 5 Gut Environmental Design Group, Kanagawa Institute of Industrial Science 
and Technology, Kawasaki, Japan, 6 Transborder Medical Research Center, University of Tsukuba, 
Tsukuba, Japan, 7 Laboratory for Regenerative Microbiology, Juntendo University Graduate School of 
Medicine, Bunkyo, Japan

Dietary fiber improves intestinal environments, by, among others, increasing 
stool frequency. Kale is a good source of dietary fiber and minerals; however, 
the effects of kale on the intestinal environment have not yet been evaluated. 
This study determined how the intestinal environment, including the intestinal 
microbiota and its metabolome, and stool frequency are affected by the 
consumption of kale, in humans. A randomized controlled crossover trial, with 
a 4-week consumption of kale or control food, was conducted. An integrated 
analysis of the intestinal microbiota and metabolome was performed, and their 
relationship with improvements in stool frequency was analyzed. Kale intake 
for 4  weeks significantly increased stool frequency and altered some intestinal 
microbes, such as an increase in the [Eubacterium] eligens group and a decrease 
in the [Ruminococcus] gnavus group. Analysis of subjects with increased stool 
frequency revealed that this group had smaller amounts of stool before kale 
intake. Our findings indicate that kale modifies certain gut microbes, such 
as [Eubacterium] eligens and [Ruminococcus] gnavus, and improves bowel 
movements, particularly in those with smaller stool amounts.
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1 Introduction

Constipation, a common gastrointestinal disorder affecting people of all ages worldwide, is 
associated with higher mortality risk and incidence of coronary heart disease (1). However, 
those with less severe symptoms do not necessarily receive treatment. Sex, lack of exercise, and 
low fluid and fiber intake are risk factors for constipation (2). Improving bowel movements 
through diet is one of the most common strategies for treating constipation. Cruciferous 
vegetables (genus Brassica) have been studied for the prevention of dietary-associated diseases. 
While broccoli and cabbages are the two most popular cruciferous crops, kale is widely 
consumed as a green juice. Kale not only contains flavonoid glycosides, such as quercetin and 
kaempferol, but also high levels of insoluble dietary fiber (3, 4). The latter promotes bowel 
movements by increasing the bulk of stools; some of the dietary fiber is metabolized by the gut 
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microbiota to form butyric acid, which further promotes bowel 
movements (5).

The effects of kale on the gut microbiota, have only been reported 
in mice (6, 7). Therefore, in the present study, we aimed to understand 
the effects of kale on the intestinal environment, including intestinal 
microbiota, metabolome, and stool frequency, in humans. There were 
few prior studies on kale intake targeting the intestinal microbiota and 
metabolome; therefore, a pilot randomized controlled crossover trial 
was conducted with a 4-week consumption of kale or control food. 
Since women have been reported to suffer from constipation more 
than men (8), this study included only women. We performed an 
integrated analysis of the intestinal microbiota and metabolome and 
analyzed their relationship with improvements in stool frequency.

We found that kale significantly improved bowel movements and 
observed several potentially beneficial effects, such as increasing the 
levels of [Eubacterium] eligens group and a decreasing those of 
[Ruminococcus] gnavus group of gut microbiota and increasing pimelic 
acid content, as a gut metabolite. Further, we  analyzed the 
characteristics of subjects with improved bowel movements and found 
that the improvement was greater in subjects with smaller fecal 
amounts prior to kale intake. Our results provide evidence of the 
mechanism by which kale, increases the bulk of fecal matter in humans.

2 Materials and methods

2.1 Clinical trial

In this study, we  conducted a randomized, double-blind, 
controlled, crossover trial for 3 months. This trial was approved by the 
Clinical Trial Ethics Review Committee of the Chiyoda Paramedical 
Care Clinic (publicly registered at UMIN-CTR, Trial number: 
UMIN000028734). All participants provided written informed 
consent. The trial included a 4-week dietary intervention period 
separated by a 4-week washout period (washout) (Figure 1). The test 
food was collard type kale, and whole kale leaf was powdered, and the 
control food was cornstarch and maltodextrin powder with food 
coloring and flavoring (Table 1). The food coloring and fragrance were 
processed so that the subjects could not identify the differences in 
taste and odor. The test or control food was mixed with 100–150 mL 
water and consumed twice daily. During the trial, fecal samples were 
collected at baseline and at 2 weeks, and 4 weeks after the dietary 
intervention and frozen at −20°C until gut microbiome and 
metabolome analysis. Female participants with constipation 
tendencies were recruited. The selection criteria were as follows: (1) 
Females between the ages of 20 to 59; (2) defecate 3 to 5 times in a 
week. Other detailed selection and exclusion criteria were described 
at Supplementary Table S1. 24 subjects were selected for the main trial 
and randomized according to age. All 24 subjects completed the trial; 
however, four subjects were excluded from further analysis for the 
following reasons: incomplete fecal sampling (subject 21) and intake 
of medication for 7 days before fecal sampling (subjects 4, 9, and 22).

2.2 Gut microbiome and metabolome 
analysis

DNA was extracted from fecal samples as previously described 
(9). After DNA extraction, the V1-V2 variable region of the 16S rRNA 

gene was amplified with the bacterial universal primers 27F-mod 
(5′-AGRGTTTGATYMTGGCTCAG-3′) and 338R (5′-TGCTGCC 
TCCCGTAGGAGT-3′) using Tks Gflex DNA polymerase (Takara Bio 
Inc., Shiga, Japan) (10). Amplicon DNA was sequenced using MiSeq 
(Illumina, United States) according to the manufacturer’s protocol. 
Metabolite extraction from fecal samples was performed as previously 
described (11). The extracted metabolites were analyzed using coupled 
capillary electrophoresis-electrospray ionization-time-of-flight mass 
spectrometry (CE-TOFMS). After peak identification, the relative area 
ratio to internal standards was calculated. For 79 metabolites, the 
amounts in stool were calculated by comparison with the reference 
material (Supplementary Tables S2, S3). We used QIIME2 for 16S 
rRNA gene analysis (version 2019.10). In the analysis pipeline, the 
primer base was discarded with cutadapt (option: -p-discard-
untrimmed) (12). The sequence data were processed using the 
DADA2 pipeline for denoising and quality filtering (option: -p-trunc-
len-f 230 -p-trunc-len-r 130) (13). The filtered output sequences were 
assigned to taxa for Silva SSU Ref NR 99 (version 132) using the 
“qiime feature-classifier classify-sklearn” command with default 
parameters (Supplementary Table S4) (14).

2.3 Statistical analysis

We used in-house Python programs (version 3.7.3) for statistical 
analysis. For beta-diversity analysis, microbiota and quantitative 
metabolome Bray-Curtis distances were calculated (SciPy version 
1.5.1). Principal Coordinate Analysis (PCoA) was performed to 
visualize the resulting distance matrices (Scikit-learn version 0.21.2). 
In addition, the inter-time point distance was compared using 
permutational multivariate analysis of variance (PERMANOVA) 
(scikit-bio version 0.5.5). For the differential abundance analysis, 
each microbe and metabolite were compared using the Wilcoxon 
signed-rank test with Benjamini-Hochberg false discovery rate 
correction (SciPy version 1.5.1, and statsmodels version 0.10.1, 
respectively). In the comparison, differences from the baseline values 
were compared. In addition, microbes with a mean relative 
abundance below 0.001 and metabolites not detected in more than 
75% of the samples were excluded from the comparison. In the 
correlation analysis, the Pearson correlation coefficient, Spearman 
rank correlation coefficient, and the test for no correlation were used 
(SciPy version 1.5.1). In this research, the kale effect size for each 
subject was defined as the response score. The response score was 
calculated using the following equations:

2 2 0

2

− −
−

week response score Kale Kale
Control

weeks week

weeks

  = ( )
−−Control week0( )

4 4 0

4

− = ( )week response score Kale Kale
Control

weeks week

weeks

  −
− −−Control week0( )

3 Results

3.1 Clinical trials and effects of kale on 
defecation events

We conducted a randomized, double-blind, placebo-controlled, 
crossover trial with 24 Japanese participants (Figure  1). The 
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primary outcomes were gut microbiota and gut metabolome. The 
key secondary outcomes were frequency, amount, and consistency 
of stool defecation. The baseline clinical characteristics were 
similar in both groups (Supplementary Table S5). First, 
we  compared the stool defecation data. The frequency of stool 
defecation significantly increased compared to that in the placebo 
intake period (Table 2; p = 0.037; Wilcoxon signed-rank test). In 
addition, stool amount tended to increased with intake of kale 
(p = 0.090; Wilcoxon signed-rank test). There was no adverse event 
in any of the subjects.

FIGURE 1

Flow diagram of the trial.

TABLE 1 Composition of control food and kale.

Control (14  g/day) Kale (14  g/day)

Calories (kcal) 52.780 41.860

Protein (g) 0.028 2.324

Total fat (g) 0.042 0.658

Total carbohydrate (g) 13.076 9.240

Dietary fiber (g) 0.070 5.138

Sodium (mg) 6.090 39.620
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FIGURE 2

Effect of kale consumption on gut microbiota and metabolome profiles. The Bray–Curtis dissimilarity for (A) gut microbiota and (B) gut metabolome 
profiles among all samples was calculated and visualized using PCoA. The p values of PERMANOVA results for each time point are shown at the 
bottom of each figure.

3.2 Effects of kale on gut microbiome and 
metabolome composition

To evaluate the effect of kale supplement intake on the gut 
microbiome and metabolome profiles, we performed 16S rRNA gene-
based microbiota analysis and CE-TOFMS-based metabolome 
analysis. A total of 215 genera of gut microbes and 352 metabolites 
were obtained from 120 samples (Supplementary Tables S2–S4). Beta 
diversity analyses were performed using Bray–Curtis dissimilarity for 
microbiota and metabolome profiles (Figure  2). No remarkable 
difference due to the consumption of the kale was observed. Although 
PERMANOVA was performed, there was no significant difference in 
the gut microbiota or metabolome profiles between the timepoints 
(p = 1.000 and 0.997 for microbiota and metabolome Bray–Curtis 
dissimilarity, respectively).

3.3 Effect of kale supplement intake on gut 
microbes and metabolites

To estimate the effect of kale intake on each gut microbe and 
metabolite, gut microbes and metabolites between after control 

and kale intake were compared. The results indicated that kale 
intake affected gut microbe abundance; [Eubacterium] eligens 
group was consistently higher in the kale-treated group, at both 2 
and 4 weeks, while that of [Ruminococcus] gnavus group was 
consistently lower (Figures  3A,B). Analysis of gut metabolite 
abundance showed that pimelic acid content was consistently 
higher while morpholine content was consistently lower at both 2 
and 4 weeks of kale intake (Figures 3C,D). After false discovery 
rate (FDR) correction, significant differences were detected in the 
absence of microbes and metabolites (Supplementary Tables S6, S7). 
These results indicate that kale affects some gut microbes 
and metabolites.

3.4 Effect of kale supplement intake on gut 
microbes and metabolites

Previous studies have reported that individual responses to meals 
or drugs are partly attributed to differences in gut microbiota. Here, 
we defined response scores from stool frequency improvement upon 
kale supplementation and explored which gut environmental factors 
correlated with the response.

TABLE 2 Statistical test results for defecation data.

Stool amount*a Stool consistency*b Defecation frequency*c

Mean S.D. p-value*d Mean S.D. p-value*d Mean S.D. p-value*d

Control 0week 13.650 4.255 0.090 3.173 0.693 0.936 0.557 0.173 0.037

Control 2weeks 16.100 5.263 3.436 0.745 0.650 0.227

Control 4weeks 16.800 6.740 3.612 0.858 0.639 0.285

Kale 0week 13.292 4.220 3.309 0.900 0.550 0.125

Kale 2weeks 16.225 6.427 3.423 0.819 0.654 0.254

Kale 4weeks 19.300 9.099 3.574 0.687 0.700 0.267

*a Stool amount was determined by counting the number of eggs. *b 1. very hard 2. hard 3. somewhat hard 4. normal 5. somewhat soft 6. soft (muddy), and 7. very soft (watery). *c Bowel 
movement count per day. *d p-value comparing control_4weeks and kale_4weeks using Wilcoxon signed-rank test. S.D., standard deviation.
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First, the effect of baseline features was analyzed. Correlation 
analysis between the stool frequency response score and microbes, 
metabolite abundance, and stool defecation data at baseline showed 
a consistent negative correlation between the response and baseline 
stool amount (Figure 4A; Supplementary Table S8). This indicates 
that kale improves defecation frequency, especially in those with 
low stool amounts. Many other bacteria and metabolites were 
significantly correlated, but there was no consistent correlation 
between weeks 2 and 4. Next, we defined the response scores for all 
microbes, metabolites, and defecation data and calculated the 
correlation between these response scores and stool frequency 
response score. In this analysis, a consistent positive correlation was 
detected between stool frequency and stool amount response score. 
For gut metabolites, an increase in lactic acid correlated with an 

increase in the frequency of defecation, albeit only for 4 weeks 
(Figure 4B).

4 Discussion

In this study, the effects of kale intake on defecation frequency, gut 
microbiota and metabolome were analyzed and potential links 
between the gut microbiota and metabolome and the effect of kale 
juice intake on defecation frequency were identified.

Using PERMANOVA and PCoA of the gut microbiota and 
metabolome, we  observed minimal difference in the overall gut 
microbiota or metabolome composition following kale intake 
(Figure 2). However, Wilcoxon signed-rank tests showed an increase 

FIGURE 3

Effect of kale intake on gut microbes and metabolites. The effects of kale on (A) microbes at 2  weeks, (B) microbes at 4  weeks, (C) metabolites at 
2  weeks, and (D) metabolites at 4  weeks are shown as volcano plots. The x-axis represents the effect size (paired rank-biserial correlation) of kale intake 
compared to that of the control group. The y-axis represents logarithm of the Wilcoxon signed-rank test p-value compared to that of the control 
group. Names of the items for which significant differences were detected at both time points, and the top five significantly different items are labeled.
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FIGURE 4

Heatmap of correlation analysis of stool frequency response score. Correlation analysis between stool frequency response scores and gut 
enviromental features of (A) baseline value correlations and (B) response score correlation, and its correlation coefficient is shown by heatmap. Items 
showing significant correlations were extracted at 4  weeks of intake. Heatmap rows were sorted by data type and 4-week Spearman correlation 
coefficient value. *, p  <  0.05; **, p  <  0.01; ***, p  <  0.001, p-values were calculated by correlation coefficient ‘s no correlation test.

in the [Eubacterium] eligens group and a decrease in the 
[Ruminococcus] gnavus group abundance following kale intake. 
Eubacterium eligens has been reported to utilize dietary fiber, 
especially pectin, as an energy source (15). In addition, it has been 
reported to strongly promote the production of the anti-inflammatory 
cytokine interleukin-10  in in-vitro cell-based assays (15). 
Ruminococcus gnavus is a mucolytic bacteria, with reports of its 
relations with inflammatory bowel disease (16, 17). However, 
R. gnavus has been reported to possibly have beneficial and harmful 
effects on the host, depending on the subspecies (18). Therefore, 
determination of whether its decrease was beneficial to the host was 
difficult. These results also suggest that kale consumption may reduce 
intestinal inflammation through increased [Eubacterium] eligens 
group and decreased [Ruminococcus] gnavus group. The fecal 
metabolite results showed that pimelic acid was consistently higher 
upon kale intake than control food. Pimelic acid is a precursor of 
biotin (vitamin B7), a gut microbiota-derived compound that is 
essential for energy metabolism in humans (19). Only some bacteria 
can produce biotin, whereas those that cannot produce biotin express 
free biotin transporters. Biotin is necessary for the growth and survival 
of bacteria. Given that some bacteria compete for biotin, the control 
of biotin levels in the gut may affect the proportion of some bacteria. 
The association between morpholine and the intestinal environment 
has not been previously reported.

A significant improvement in stool frequency was observed after 
4 weeks of kale intake compared with control food. In a previous 
study, insoluble fiber was shown to have a high water-holding 
capacity that increased the fecal bulk, thereby increasing the 
frequency of defecation (20). Kale contains a large amount of 
insoluble fiber (4), which may be  responsible for this effect. In 

addition, improvement in stool frequency was most profound in 
subjects with low stool amounts at baseline. This possibly indicates 
that the water retention effect of kale is effective in subjects with low 
fecal volume (low fecal water content). The findings suggest that kale 
intake could be  beneficial for alleviating mild constipation by 
increasing stool bulk with dietary fiber and leading to an increase in 
stool frequency.

Correlation analysis showed that several gut microbes and fecal 
metabolites correlate with the subjects’ responses to kale intake. 
However, we did not find any association consistent with the baseline 
value/response score for the fecal amount. Other gut microbiota and 
metabolites may be markers of fecal amounts. However, there was a 
positive correlation between increased lactic acid levels and increased 
defecation frequency after 4 weeks of kale intake (Figure 4B). Lactic 
acid is an intermediate in propionic acid production (21). Propionic 
acid and other short-chain fatty acids are associated with peristalsis 
through the production of serotonin and calcitonin gene-related 
peptides (CGRP) (22). Therefore, increased lactic acid levels could 
lead to increased stool frequency.

The study has some limitations. Gut microbes and their 
metabolites are complex parameters consisting of several different 
bacterial microbes and metabolites. FDR correction is necessary when 
comparing items; however, after FDR correction, no significant 
differences were found in any of the microbes and metabolites. This is 
because many items were analyzed simultaneously. In addition, the 
small sample size also contributed to the difficulty in drawing 
conclusions from this study alone. This study was a pilot study, hence 
further validations in another cohort or mouse model may 
be necessary, especially considering the effects of kale on gut microbes 
and metabolites.
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As the conclusion, this randomized controlled study provided 
novel insights into the effects of kale on the intestinal environment 
and defecation events in a Japanese population. Kale intake 
significantly increased stool frequency, [Eubacterium] eligens group 
abundance, and pimelic acid amount, and decreased [Ruminococcus] 
gnavus group abundance and morpholine amount. In addition, the 
improvement in stool frequency was dependent on the baseline fecal 
amount of the subjects. Our findings revealed the impact of kale on 
the intestinal environment and shed light on stratified healthcare 
considering the intestinal environment.
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