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Application of GC-IMS coupled 
with chemometric analysis for the 
classification and authentication 
of geographical indication 
agricultural products and food
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Geographical indications (GI) are used to protect the brand value of agricultural 
products, foodstuffs, and wine and promote the sustainable development of the 
agricultural and food industries. Despite the necessity for the traceability and 
recognition of GI product characteristics, no rapid, non-destructive approaches 
currently exist to identify, classify, and predict these properties. The application 
of gas chromatography-ion mobility spectrometry (GC-IMS) has increased 
exponentially due to instrument robustness and simplicity. This paper provided 
a detailed overview of recent GC-IMS applications in China for the quality 
evaluation of GI products and food, including agricultural products, as well as 
traditional Chinese food and liquor. The general workflow of GC-IMS coupled 
with chemometric analysis is presented, including sample collection, model 
construction and interpretation, and data acquisition, processing, and fusion. 
Several conclusions are drawn to increase partial least squares-discriminant 
analysis (PLS-DA) model precision, a chemometric technique frequently 
combined with GC-IMS.

KEYWORDS

geographical indication, GC-IMS, chemometric analysis, PLS-DA, aroma

1. Introduction

Geographical indication (GI) protection is crucial for safeguarding the brand value of 
agricultural goods, food, and wine and furthering the sustainable growth of these industries. 
Although the multiple Chinese GI protection schemes have been governed by different agencies 
before 2022, these strategies are now managed by the China National Intellectual Property 
Administration. Moreover, the China-European Union (EU) GI agreement came into effect on 
March 1st, 2021, promoting bilateral trade in agricultural products and food between China and 
the EU. One hundred GIs from both the EU and China, including liquor, tea, foodstuff, and 
agricultural products, received protection, providing consumers with peace of mind regarding 
the authenticity of products. Furthermore, each side is expected to add an additional 175 
products to the GI list. Although GI protection presents significant economic benefits to 
enterprises and governments, it is often accompanied by fraud incidents that target higher-priced 
products. For example, in the rice industry, Wuchang rice represents high-quality GI rice due to 
the excellent natural conditions in the northeast region of China. However, recent years have 
seen severe food fraud cases related to Wuchang rice, with adulterated rice accounting for 90% 
of the market.
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In addition to the area of origin, many other GI product 
characteristics require accurate identification, which can 
be  derived from the GI product history, including traditional 
processing procedures, indigenous seeds, and animal breeds. 
Furthermore, the market demand for high-quality agricultural 
products and food validates the abundant supply of GI goods that 
meet consumer requirements. For example, feeding regimens are 
crucial for GI beef and lamb. Lamb from Xilinguole and 
Hulunbeier (pastoral areas in Inner Mongolia), favored by 
Chinese consumers, is famous for its grazing and grass-feeding 
regimen. Moreover, since most GIs in China are labeled according 
to the geographical area, it is difficult for both Chinese 
and overseas consumers to identify them as indicators of qualities 
or unique characteristics. This can create confusion, and 
consumers are inclined to only consider GIs indicative of the 
place of origin, disregarding the qualities, characteristics, 
or reputation.

Because of the necessity for the traceability and recognition of 
GI product characteristics, several rapid, non-destructive 
approaches currently exist to identify, classify, and predict these 
properties, such as near-infrared spectroscopy and Raman 
spectroscopy. Other than spectroscopic techniques, GC-IMS may 
be a viable alternative to traditional flavor analysis methods like 
chromatography olfactometry (GC-O), electronic nose (E-nose), 
and gas chromatography-mass spectrometry (GC-MS). Instrument 
robustness and simplicity has exponentially increased the 
application of gas chromatography-ion mobility spectrometry 
(GC-IMS) for food authentication, processing, storage monitoring, 
illegal additive identification, and harmful compound detection (1). 
One benefit of GC-IMS over traditional assessment methods, like 
GC-MS, for recognizing volatile organic compounds (VOCs) is that 
it operates at atmospheric pressure without the use of vacuum 
pumps (2), while the portable ionization source allows on-site real-
time detection. Furthermore, GC-IMS presents a substantial 
advantage in identifying isomeric molecules, specifically ring-
isomeric compounds (3).

Combining GC-IMS GI product fingerprinting with 
chemometric methods is widely used for the identification of 
quality, adulteration, and fraud in products such as Jingyuan 
lamb (4), Wuchang rice (5), Fu brick tea (6), Shaoxing yellow 
wine (7), and Iberian dry-cured ham (8). Chemometrics models, 
such as partial least squares discriminant analysis (PLS-DA), are 
commonly used for sample classification. The outstanding 
advantage of this technique is the ability to recognize subtle gaps 
in similar samples.

As far as is known, minimal studies are available regarding the 
utilization of GC-IMS in GI products, while a systematic summary 
involving the workflow of GC-IMS combined with a chemometrics 
model is lacking. This paper reviews the GC-IMS application to 
various GI agricultural and food products in China, including rice, 
red meat, fruit, oil seed, honey, fish, spice, tea, dry-cured ham, 
Chinese yellow wine, and Baijiu to authenticate various factors, 
including place of origin, harvest season, animal age, and feeding 
regimens. The aim of this research is to conclude a standard 
operating procedure for GC-IMS couple with chemometric 
methods on GI products classification and authentication, and to 
dig deeper into the factors affecting the accuracy of 
PLS-DA models.

2. GC-IMS strategies for GI protection

2.1. The general workflow for the 
traceability and identification of GI product 
characteristics

Figure 1 presents the general workflow for the traceability and 
identification of GI product characteristics using the combined 
GC-IMS and chemometrics method. Several classical researches are 
listed in Table 1. Sample collection represented the first step in this 
process, during which traceability, precision, and variety were more 
important than the number of samples used. For example, the 
importance of information related to sample origin and harvest season 
equaled that of category. Therefore, samples with limited information 
could not increase classification accuracy, while experimental errors 
or labeling mistakes led to outliers.

The second step involved data acquisition, including VOC 
extraction and separation via GC-IMS. The GC-IMS plot was 
two-dimensional, with the GC retention and IMS drift times 
representing separate parts. GI agricultural and food product 
variability was demonstrated as VOC profiles or fingerprints (20). The 
data acquisition was evaluated according to the suitability for factorial 
analysis, as determined via the Kaiser-Meyer-Olkin (KMO) test, 
which measured the differences between the variables.

The third step involved data processing. There is a need to use a 
reference substance for alignment, especially when long separation 
columns were equipped by GC-IMS. The average of several 
measurements was determined, while the background noise was 
removed. The data sets were normalized using scaling methods like 
unit variance, mean centering, and Pareto scaling. Smoothing 
algorithms, including Gaussian and Savitzky-Golay smoothing, were 
employed for further noise reduction (21). Finally, the data set was 
divided into test and training sets for supervised analyses.

The fourth step involved creating a model utilizing regression 
techniques for categorization, exploratory analysis, and quantitative 
assessment. Exploratory, unsupervised methods, like hierarchical 
cluster analysis (HCA) or principal component analysis (PCA), are 
commonly utilized for pattern identification, while classification 
techniques like linear discriminant analysis (LDA), k-nearest neighbor 
(kNN), or PLS-DA, represent supervised procedures. PLS proved to 
be more effective in a supervised workflow in terms of accuracy, while 
PCA is highly effective for revealing misalignments (22).

The fifth step represented model interpretation. The capability of 
a model is commonly determined by its accuracy, representing the 
ratio of accurately predicted specimens for a particular sample set. 
Since it is vulnerable to overfitting, the classification accuracy should 
only be employed as a reference. Furthermore, dividing the data set 
into training and validation information prevented overfitting. The 
classification success rate was impacted by sample collection (origin 
and number), PC selection, and model selection. For example, 
different success rates were acquired from LDA, kNN and PLS-DA 
with the same dataset (21).

2.2. Chemometric methods

Exploratory and classification methods are two kinds mostly used 
chemometric methods with GC-IMS data. Exploratory methods, such 
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as PCA or HCA, are unsupervised and typically used for pattern 
recognition. Exploratory methods, or unsupervised statistical 
methods, are used to investigate data structures and visualize sample 
similarities. As can be seen in Table 1, almost all reviewed studies have 
employed PCA as the first step for data analysis. PLS-DA, LDA, and 
kNN are all supervised classification methods. For classification 
missions, the scores obtained by PCA are coupled with follow-up 
supervised methods to classify samples according to defined categories. 
Combined with PLS-DA, GC-IMS has classified agricultural products 
or foods according to their feature successfully, such as olive oil (23) 
and rice (24). Other supervised methods used in non-target screening 
with GC-IMS are orthogonal partial least-squares discriminant 
analysis (OPLS-DA), quadratic discriminant analysis (QDA), logistic 
regression, gradient boosting, decision tree classification, and soft 
independent modeling of class analogy (SIMCA) (25).

2.3. Insight into the combined GC-IMS and 
PLS-DA methodology

The reviewed literature on GC-IMS shows that PLS-DA is a 
commonly used, efficient chemometric tool for sample classification. 

Several factors were considered to increase the PLS-DA 
model accuracy.

The first factor involved the validation set. PCA was conducted 
before PLS-DA to capture natural sample variation in each class. The 
homogeneous sample set consisted of similar samples with low 
Hotelling’s T2 values. Previous research showed that optimal results 
were achieved via model training with samples distributed over the 
maximum area in the PCA score plot (26).

The second factor involved the training and validation set ratio. 
Like other multivariate approaches, PLS-DA was easily influenced by 
the training and validation set ratio. Previous studies tested the 
different ratios to determine the optimal value using different blind 
samples numbers (26). The results indicated that an accuracy of ≥85% 
was achieved when the number of training samples was least 1.8-fold 
higher than the blind samples. In summary, the number of training 
and blind samples should be equal.

The third factor involved the minimum number of training sets. 
Approaches have been conducted to find out minimum number of 
samples are necessary to train a PLS-DA model, which could predict 
the class of blind samples of different origin. A study involving Iberian 
ham revealed that a training set with about 450 samples was sufficient 
to develop a PLS-DA model, which could predict 300 blind samples 

FIGURE 1

General workflow for the traceability and identification of GI product characteristics.
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TABLE 1 Recent studies involving the combination of GC-IMS with chemometric methods for GI production in China.

Reference GI 
characteristics

Number of 
samples

IMS types 
(ionization 
source)

Separation Chemometrics 
method on GC-
IMS data

Complementary 
analysis

Method and 
number of 
compounds 
identification

Data-split; 
(cross-) 
validation

Chen et al. (5) Geographical origin Rice (53) FlavourSpec® by GAS 

Tritium (6.5 KeV)

MXT-5 

(15 m × 0.53 mm × 1 μm)
PCA; QDA No 46, GC-IMS library 28/25

Wang et al. (4) Animal age
Female lambs 

(18) FlavourSpec® by GAS SE-54 (15 m × 0.53 mm × 1 μm) PCA No 66, GC-IMS library No

Wu et al. (9) Animal breed Pigs (18) FlavourSpec® by GAS
RTX-5 

(15 m × 0.53 mm × 0.1 μm)
PCA GC-O-MS 59, GC-IMS library No

Feng et al. (10) Geographical origin Grapes (6) FlavourSpec® by GAS
FS-SE-54-CB-1 

(15 m × 0.53 mm × 1.0 μm)
PCA Sensory analysis 36, GC-IMS library No

Mi et al. (11) Geographical origin Sesame seeds (15) FlavourSpec® by GAS
MXT-5 

(15 m × 0.53 mm × 1 μm)
PCA; PLS-DA No 44, GC-IMS library Cross-validation

Wang et al. (12) Harvest season Honey (120) FlavourSpec® by GAS
FS-SE-54-CB-0.5 

(15 m × 0.53 mm)
PCA; PLS-DA No 25, GC-IMS library Cross-validation

Duan et al. (13) Geographical origins Salmonid (12) FlavourSpec® by GAS
FS-SE-54-CB-1 

(15 m × 0.53 mm × 1.0 μm)
PCA; HCA E-nose 35, GC-IMS library No

Feng et al. (14) Geographical origins Huajiao (8) FlavourSpec® by GAS FS-SE-54 (15 m × 0.53 mm) PCA; PLS-DA GC-MS, E-nose 49, GC-IMS library Cross-validation

Xiao et al. (6) Geographical origins Fu brick tea (15) FlavourSpec® by GAS MXT-5 (15 m × 0.53 mm) PCA, PLS-DA, HCA GC-MS 63, GC-IMS library No

Yang et al. (15) Aroma type
Tea (more than 

80) FlavourSpec® by GAS
MXT-5 

(15 m × 0.53 mm × 1 μm)
PLS-DA E-nose

38, GC-IMS library, 

user-built database
Cross-validation

Liu et al. (16) Harvest season
Yingde black teas 

(9) FlavourSpec® by GAS FS-SE-54-CB (15 m × 0.53 mm) No GC-O-MS 68, GC-IMS library No

Li et al. (17) Geographical origins
Chinese dry-

cured hams (6) FlavourSpec® by GAS
FS-SE-54-CB-1 

(15 m × 0.53 mm)
PCA; MFA GC × GC-ToF-MS 45, GC-IMS library No

Liu et al. (18) Aging time Jinhua ham (6) FlavourSpec® by GAS SE-54 (15 m × 0.53 mm × 1 μm) PCA E-nose 37, GC-IMS library No

Chen et al. (7) Geographical origins
Chinese yellow 

wine (122) FlavourSpec® by GAS Non-polar column PCA; QDA No 16; GC-IMS library 79/43

Chen et al. (19) Aging time Baijiu (39) FlavourSpec® by GAS
DB-FFAP 

(60 m × 0.25 mm × 0.25 μm)
PLSR No 93; pure standards

35/4; 7-fold cross-

validation
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(26). However, the number of training samples used in several other 
studies was considerably lower than 450.

The fourth factor involved the components of the training and 
validation sets. The accuracy of the PLS-DA model based on 
balanced training sets was higher than that involving biased training 
sets (26). Besides balance, the training set samples should include 
broad diversity regarding both classes. Therefore, the trained 
PLS-DA model needed to be reconstructed when including samples 
of a new origin.

The fifth factor involved marker or characteristic indicator 
selection. The crucial aroma substances were determined as markers 
according to the common criteria of a VIP score > 1 and p < 0.05.

The sixth factor involved the selection of whole spectral or 
pre-selected variables. Using the whole fingerprints during the data 
acquisition stage might be  more time-efficient than employing 
pre-selected variables. However, using whole spectral fingerprints 
during the data processing stage was more time-consuming since large 
amounts of data demand massive computation power. Using 
pre-selected variables only requires GC-IMS spectral visual screening. 
Once the visual selection was completed, the parameters were saved 
and applied to all samples. In addition, a smaller amount of data 
requires less computing power for data processing. Moreover, the 
characteristic variables could be selected via VIP scores using the 
strength of the pre-selected features as data. Some studies involving 
dry-cured ham indicated that using markers enhanced the prediction 
results compared to fingerprints (26, 27).

3. Traceability and characteristic 
identification of GI products using 
GC-IMS

3.1. Agricultural products

3.1.1. Rice
Hundreds of rice varieties are registered as GI products in China, 

the most prestigious of which is Wuchang rice (28), which is protected 
by a national standard (GB/T 19266-2008) by the Chinese government. 
The cultivar and production area are key rice price determinants (29), 
with that of GI Wuchang rice 20 times higher than non-GI products 
due to its high quality and unique flavor. The fingerprints of 53 rice 
samples from two main production areas (Wuchang and Guangxi) 
were extracted via GC-IMS, while their efficacy for the rapid 
identification of fragrant rice was verified (5). A three-dimensional 
GC-IMS map was employed to select the characteristic flavor 
substances from the rice specimens using an automatic threshold 
segmentation algorithm and image pretreatment, after which PCA 
and quadratic discriminant analysis (QDA) models were established 
to discriminate between fragrant rice from two areas. The PCA and 
QDA based on the GC-IMS data displayed a satisfactory identification 
rate and was applied to verify the authenticity of Wuchang rice.

3.1.2. Red meat
Red meat (i.e., beef, pork, and lamb) is also a significant source of 

Chinese GI products. The quality of GI red meat is not only related to 
its origin but also to the animal breed, age, and feeding regimen (i.e., 
grass- or grain-fed). GC-IMS can also be  used for GI red meat 
quality assessment.

The Jingyuan lamb is highly nutritious and approved as a GI 
product by the Chinese government. Since animal age plays a crucial 
role in lamb quality and is typically negatively correlated to eating 
quality (30), it is a decisive factor in market price. GI Jingyuan lambs 
usually include animals under 12 months to ensure a high eating 
quality. GC-IMS was applied to distinguish between and predict the 
ages of Jingyuan lambs at 2, 6, and 12 months (4). PCA was performed 
after GC-IMS data extraction, with the first principal component 
(PC1) contributing 67% to the cumulative variance, while the second 
principal component (PC2) accounted for 27%. The different ages of 
the lambs were clearly separated in the PCA plot. Therefore, 
combining GC-IMS with PCA could successfully classify the Jingyuan 
lambs at different months.

Indigenous Chinese pork, such as Beijing Heiliu and Laiwu black 
pork, is favored by consumers because of its unique, pleasant flavor 
related to complex reactions, such as lipid oxidation (31). Wu et al. (9) 
determined the flavor and fatty acid fingerprints in typical indigenous 
Chinese pork by combining GC-O-MS and GC-IMS with multivariate 
analysis. Here, 59 characteristic aroma compounds were selected 
according to a two-dimensional GC-IMS plot and used for PCA. PC1 
contributed 41.6% to the variance contribution rate, while PC2 
represented 25.9%, indicating that PC1 retains most of the fingerprint 
information of the samples. Furthermore, 79 VOCs were identified via 
GC-O-MS, of which 15 were selected as key odorants in Chinese 
indigenous pork. These results indicated that the pork aroma profiles 
were breed-dependent, which corresponded with a study by Zhang 
et al. (32).

3.1.3. Fruit
Fruit is another major source of Chinese GI products. Grapes are 

consumed on a large scale worldwide due to their flavor and 
nutritional qualities. The sensory quality and consumer acceptability 
of grapes are significantly related to the place of origin (33). Molixiang 
grapes, also known as jasmine grapes, are widely consumed in China, 
and cultivated in most grape production areas (i.e., the Zhejiang, 
Liaoning, and Fujian provinces). One study combined GC-IMS with 
PCA for the regional determination of Molixiang grapes (10). 
Considerable variation was evident between the VOC fingerprints of 
grape samples from three regions extracted via GC-IMS, indicating 
that their aroma profiles largely depended on geographical location. 
PCA indicated that the geographical origins of the different samples 
were effectively differentiated. PC1 accounted for 53% of the variance, 
while PC2 represented 31%. Furthermore, the sensory assessment 
indicated that the grape aroma features were associated with the 
geographical origin (p ≤ 0.05). Moreover, the geographical marker 
compounds, including (E)-2-octenal, styrene, and benzaldehyde, were 
screened for quality assurance.

3.1.4. Oil seed
Sesame is an oilseed extensively cultivated in Africa and Asia (34). 

China imports a significant amount of sesame seeds annually, 
primarily from Sudan, Ethiopia, Mozambique, and Togo, reaching 
888.8 kilotons in 2020. Similar to other GI products, the sesame seed 
price is also related to their place of origin. Fingerprinting analysis 
(i.e., GC-IMS and ICP-MS) was coupled with chemometrics tools 
(PCA and PLS-DA) to differentiate between Chinese, Togolese, 
Sudanese, Mozambican, and Ethiopian sesame seeds (11). The sesame 
seed samples yielded a total of 44 VOCs, while the aroma profiles 
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varied substantially according to the different areas of origin. The 
GC-IMS volatile data were used for PCA, with the first two principal 
components accounting for 71.95% of the total variance. The volatile 
data were also processed using the PLS-DA model, with a 0.92 R2 
value showing excellent fitting capacity and a Q2 value of 0.72, 
indicating a reliable prediction capacity towards the new dataset. In 
addition, the variable importance in projection (VIP) yielded 12 
VOCs as markers to classify and differentiate the Chinese, Togolese, 
Sudanese, Mozambican, and Ethiopian sesame seeds. The results 
indicated that combining GC-IMS with PLS-DA shows promise for 
identifying geographical sesame seed origins.

3.1.5. Honey
Botanical and geographical honey origins are considered crucial 

for the sustainable, ethical development of the bee industry. Winter 
honey is harvested by Apis cerena during the winter from wild Eurya 
spp. of the Theaceae family and Schefflera actinophylla (Endl.) Harms 
(35). High-quality winter honey is favored by Chinese consumers due 
to its unique flavor. During summer, Sapium honey is derived from 
Sapium sebiferum (L.) Roxb of the Asclepiadaceae family. Unlike 
winter honey, consumer acceptance of Sapium honey is lower due to 
its slightly coarse crystallization, sour taste, and low concentration. 
Wang et al. (12) established a reliable, rapid model to differentiate 
between Sapium, winter, and contaminated honey using the GC-IMS 
data. Consequently, combining GC-IMS with PCA and PLS-DA 
clearly distinguished between winter and Sapium honey. During PCA, 
PC1 accounted for 57.9% of the total variability, while PC2 represented 
14.5%. In addition, the honey samples mentioned above were clustered 
into different groups using PCA. PLS-DA yielded an R2X value of 0.72, 
an R2Y value of 0.88, and a Q2 value of 0.84, highlighting the excellent 
model fitting capability and predictability. The winter and Sapium 
honey markers were screened and confirmed by combining the 
GC-IMS database with PLS-DA.

3.1.6. Fish
Salmonid flavor is impacted by the species, place of origin, and 

living conditions (36). Despite similar quality and nutritional 
properties, the Atlantic salmon price is double that of Rainbow trout 
in the Chinese market (13). Due to the complexity of salmonid fish 
fillet sources, Atlantic salmon label fraud is difficult for consumers to 
identify and the government to regulate. GC-IMS and intelligent 
sensory technology (E-nose, electronic tongue) were combined to 
screen flavor markers in the two salmonid species mentioned above 
from China and Chile (13). Flavor fingerprints were extracted via 
GC-IMS and then subjected to PCA. PC1 accounted for 58% of the 
cumulative variance, while PC2 contributed 19%. Samples belonged to 
different class scattered, respectively, in PCA plot, demonstrating that 
PCA could be  used to classify the salmonid origins and species 
according to their aroma profiles. HCA was employed to identify the 
two main clusters in the heat map. Furthermore, the GC-IMS and 
E-nose results were consistent. Therefore, combining GC-IMS with 
PCA can distinguish between the different places of origin of salmonids 
to protect GI products during the international trading process.

3.1.7. Spice
Zanthoxylum armatum DC and Zanthoxylum bungeanum 

Maxim., also known as huajiao or Sichuan pepper, is highly 

regarded in China due to its unique taste and distinctive aroma 
(37). Huajiao, with a unique perception known as “ma” in Chinese, 
is typically used in Sichuan cuisine as a ground powder or whole 
(38). Huajiao is cultivated in various Chinese regions with diverse 
climates, leading to distinct differences between huajiao crops. 
Eight red and green huajiao species verified as GI Chinese 
products were analyzed using an E-nose, GC-IMS, and SPME-
GC-MS (14). Sixty-two peaks denoting characteristic aromas were 
determined via GC-IMS. The ability of the GC-IMS and traditional 
GC-MS, whose data sets both coupled with PCA and PLS-DA, 
were compared on classification of huajiao from different origins 
in this research. Here, 61.45% of the cumulative variance was 
represented by PC1 and PC2 in the PCA bi-plot of the GC-MS 
data set, while the GC-IMS value was slightly lower at 66.91%. The 
PLS-DA model constructed using the GC-IMS and GC-MS data 
effectively classified the different huajiao places of origin. However, 
according to the VIP scores, these two methods produced four and 
eight VOC biomarkers, respectively. These results indicated that 
combining GC-IMS and PLS-DA could be  useful for GI 
huajiao traceability.

3.2. Traditional Chinese food products

3.2.1. Tea
Tea is a valuable GI product, the quality of which is related to its 

place of origin, harvesting season, and aroma type (39). The sale of 
fake GI tea products to increase profits severely impacts brand 
protection and violates consumer rights (40).

Fu brick tea is a well-known Chinese GI product popular with 
consumers worldwide because of its unique aroma and health 
advantages, and it is cultivated in various Chinese regions, including 
Guizhou, Hunan, Guangxi, Zhejiang, and Shaanxi Provinces. 
GC-IMS and GC-MS were employed to determine the aroma 
profiles of five Fu brick tea samples from these areas (6), producing 
93 and 63 VOCs, respectively. The GC-IMS fingerprints were used 
to construct PCA and HCA models. The PCA map indicated a clear 
separation between the places of origin of the five samples. 
Furthermore, the crucial aroma compounds identified via PLS-DA 
were used to distinguish between the geographical areas of the five 
Fu brick tea samples. The VIP scores indicated 29 marker VOCs, 
while the odor activity value (OAV) showed that 27 were critical for 
overall flavor profiles of the samples. Fifteen of these VOCs were 
effectively applied to differentiate between the aroma profiles of the 
different Fu brick tea samples.

Aroma type represents a key factor during tea quality 
evaluation (41). The black tea aromas were divided into floral, 
sweet, faint scent, and fruity, while the aroma compounds were 
systematically analyzed via GC-IMS, an E-Nose, and the OAV (15). 
GC-IMS identified 38 aroma compounds, 15 of which were key 
compounds with OAVs exceeding 1  in three black tea samples, 
including ethyl 2-methylpentanoate, 3-methylbutanal, (E)-2-
nonenal, and linalool. PLS-DS effectively distinguished between 
these aroma types, using the GC-IMS and E-nose datasets and 
robust model parameters, showing consistent results. Furthermore, 
18 aroma compounds with VIP values >1.0 were selected as 
potential biomarkers.
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3.2.2. Traditional Chinese meat products
Since traditional Chinese dry-cured ham has a unique flavor, its 

sensory characteristics vary significantly between regions due to 
variations during the manufacturing process, which involves salting, 
pressing, drying, and ripening (42). Well-known Chinese dry-cured 
ham includes Jinhua (from Zhejiang), Rugao (from Jiangsu), Xuanwei, 
Nuodeng, Sanchuan, Saba (from Yunan), Mianning (from Sichuan), 
Xuanen (from Hubei), and Wanhua (from Anhui), most of which have 
GI status.

The VOCs of Chinese dry-cured ham from the Xuanen, Wanhua, 
Sanchuan, Saba, Nuodeng, and Mianning regions were analyzed via 
two-dimensional gas chromatography-mass spectrometry-time-of-
flight-mass spectrometry (GC × GC-ToF-MS) and GC-IMS (17). 
GC × GC-ToF-MS identified 265 VOCs, which was over five times 
more than the 45 detected via GC-IMS. Multiple factor analysis 
(MFA) and PCA were employed for sample flavor profile visualization 
and differentiation, producing similar results regardless of whether 
GC × GC-ToF-MS or GC-IMS data were used. Therefore, GC-IMS was 
a reliable method for classifying dry-cured ham from different regions.

Jinhua ham, produced from the famous local Liangtouwu pig 
breed, was approved as a GI product in 2001 by the Chinese 
government. The unique flavor of Jinhua ham is popular among 
Chinese consumers and is related to the production process during 
which the pork is salted, washed, dried, shaped, ripened, and post-
ripened (42). GC-IMS was utilized for the reliable, rapid recognition 
of Jinhua ham samples during different stages of ripening (18), 
identifying 37 VOCs, which included dimers and monomers. The 
PCA plot indicated clear separation between the ham samples at 
various aging times. PC1 represented 37.38% of the sample variance, 
while PC2 denoted 22.32%. These results indicated that combining 
GC-IMS with multivariance analysis (i.e., PCA) facilitated the rapid 
identification of Jinhua ham flavor profiles, providing information 
related to aging time.

3.3. Traditional Chinese liquor

3.3.1. Chinese yellow wine
Traditional Chinese yellow wine, derived from glutinous rice and 

wheat, was originally developed in Shaoxing, China. It has been 
popular with Chinese customers for centuries (43), providing 
significant commercial value as a GI product. The fraudulent use of 
the Shaoxing brand for producing many yellow wines in non-Shaoxing 
areas necessitates the development of a rapid identification technique 
to verify authenticity (44). GC-IMS differentiated between 122 
Chinese yellow wines from Shandong, Hubei, and Shaoxing (7). The 
characteristic peaks were visualized using a simple color-mixing 
method. The VOCs were determined via a library search, while the 
peak height values were used as data sets for further chemometric 
analysis. PCA revealed significant differences between the samples, 
while QDA was used for wine sample classification, displaying a 
95.35% accuracy rate for the prediction set. Consequently, combining 
the flavor data set of GC-IMS with PCA and QDA could effectively 
determine Chinese yellow wine authenticity.

3.3.2. Chinese Baijiu
Baijiu, famous for its unique flavor, is a distilled spirit in 

production for more than 2,000 years (45). Most prominent Baijiu 

brands have GI status with substantial annual output value, resulting 
in significant fraud regarding factors such as the aging duration of the 
product. The price of Baijiu is highly associated with the duration of 
aging, an extremely time-consuming stage, and essential for high-
quality Baijiu production. Therefore, developing an effective method 
for determining Baijiu aging time is necessary to protect consumers 
against fake products (46). GC-IMS was employed to analyze 39 Baijiu 
specimens from various production years (1998–2019), obtained from 
pottery jars in workshops (19). Partial least squares regression (PLSR) 
analysis was performed utilizing the signal peaks (212) and identified 
compounds (93) as data sets to establish two valid models. The 
accuracy of the models in determining the aging time of the Baijiu 
samples depended on the root mean square error of prediction 
(RMSEP) and the fit value (R2). Nineteen of the 93 identified 
compounds displayed VIP scores >1 and were selected as markers.

4. Data fusion

Data fusion, denoting multiple data source integration, may 
enhance model reliability and accuracy and reduce interference and 
error rates, and can be  characterized as low- (data-level), mid- 
(feature-level), and high-level (decision-level) (47). The GC-IMs 
included a data fusion strategy to assess olive oil quality. A recent 
study used liquid chromatography-high resolution mass spectrometry 
(LC-MS), GC-IMS, and an E-nose to identify extra virgin olive oil 
(EVOO) and soft, refined oil (SROO) mixtures (23). Here, 43 EVOO 
samples were collected from a market, while 18 adulterated oils were 
created by mixing SROO and EVOO. Data fusion was performed at 
low- and mid-levels, while PLS-DA occurred using the merged data 
sets, and a support vector machine (SVM) model was developed 
utilizing the potential characteristic variables. Combining PLS-DA 
with SVM using the merged datasets demonstrated that data fusion at 
a low-level significantly improved the classification precision 
compared to the individual techniques.

5. Summary and prospects

Combining GC-IMS with a chemometric method can efficiently 
and rapidly determine the traceability and characteristics of GI 
products due to low maintenance and time efficiency. This method can 
be used for classification and authentication, such as determining 
places of origin, harvest seasons, animal age, and feeding regimens, 
and can be applied to most GI and food products in China like rice, 
red meat, fruit, oil seed, honey, fish, spice, tea, dry-cured ham, Chinese 
yellow wine, and Baijiu. Furthermore, the general workflow of these 
methods is summarized, including sample collection, data acquisition 
and processing, and model construction and interpretation. 
Considering that PLS-DA is a commonly employed chemometric 
technique, several factors related to model construction have been 
concluded to increase the accuracy. Furthermore, data fusion is also 
reviewed, proving an effective way to increase accuracy.

However, there are still challenges in GC-IMS approach. Due to the 
inadequate database, some VOC could not be identified by GC-IMS. To 
improve the application of GC-IMS technology on classification and 
authentication of GI products, following aspects need to be researched in 
the future. First, a comprehensive and extensive database of VOC for 
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GC-IMS need to be established, which should be as efficient as database 
of GC-MS. Second, databases of fingerprint of aroma profile for each 
specific GI agricultural product or food need to be developed. Without 
this fingerprint database, the widespread use of GC-IMS approach is not 
possible. Third, data fusion strategy needs to be studied intensively, as 
GC-IMS only provides aroma characteristics. Combined with other 
techniques, panoramic view of nutrition and sensory features of GI 
agricultural products and food can be presented.
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