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Background: Although activation of inflammatory processes is essential to fight 
infections, its prolonged impact on brain function is well known to contribute 
to the pathophysiology of many medical conditions, including neuropsychiatric 
disorders. Therefore, identifying novel strategies to selectively counter the harmful 
effects of neuroinflammation appears as a major health concern. In that context, 
this study aimed to test the relevance of a nutritional intervention with saffron, a 
spice known for centuries for its beneficial effect on health.

Methods: For this purpose, the impact of an acute oral administration 
of a standardized saffron extract, which was previously shown to display 
neuromodulatory properties and reduce depressive-like behavior, was measured 
in mice challenged with lipopolysaccharide (LPS, 830  μg/kg, ip).

Results: Pretreatment with saffron extract (6.5  mg/kg, per os) did not reduce 
LPS-induced sickness behavior, preserving therefore this adaptive behavioral 
response essential for host defense. However, it interfered with delayed changes 
of expression of cytokines, chemokines and markers of microglial activation 
measured 24  h post-LPS treatment in key brain areas for behavior and mood 
control (frontal cortex, hippocampus, striatum). Importantly, this pretreatment also 
counteracted by that time the impact of LPS on several neurobiological processes 
contributing to inflammation-induced emotional alterations, in particular the 
activation of the kynurenine pathway, assessed through the expression of its main 
enzymes, as well as concomitant impairment of serotonergic and dopaminergic 
neurotransmission.

Conclusion: Altogether, this study provides important clues on how saffron 
extract interferes with brain function in conditions of immune stimulation and 
supports the relevance of saffron-based nutritional interventions to improve the 
management of inflammation-related comorbidities.
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1. Introduction

Over the past decades, a growing body of research has 
documented the dual nature of the impact of inflammation on brain 
function (1–4). When the innate immune system is challenged, 
inflammatory cytokines that are produced within the brain by 
activated microglia help the host fight infections, in particular by 
coordinating a large set of adaptive behavioral changes collectively 
referred to as sickness behavior (2, 4). However, sustained 
inflammation can also become deleterious and participate instead to 
the pathophysiology of many medical conditions, including the 
development of neuropsychiatric symptoms (1, 3, 5, 6). Therefore, 
identifying relevant approaches to selectively counter the harmful 
effects of inflammation is a major public health challenge.

Inflammation-driven neuropsychiatric alterations have been 
shown to occur when the activity of specific brain metabolic pathways, 
namely the kynurenine (KYN) and tetrahydrobiopterin (BH4) 
pathways, is changed and monoamine neurotransmission, which is 
crucial for the control of behavior and mood (7, 8), is impaired (1, 3, 
5). Activation of indoleamine 2,3-dioxygenase (IDO), the first and 
limiting enzyme of the KYN pathway, leads to the synthesis of KYN 
from tryptophan at the expense of serotonin (5-HT) of which it is the 
precursor. In addition, downstream enzymes of the pathway that are 
also activated by cytokines further metabolize KYN into different 
toxic derivatives, which promote in turn oxidative stress and 
glutamate-related neurotoxicity (3, 5). Recent clinical reports have 
linked the generation of those neurotoxic metabolites to the severity 
of inflammation-related depressive symptoms (9, 10). Supporting 
these findings, preclinical studies have shown that activation of the 
KYN pathway by an inflammatory inducer, such as the 
lipopolysaccharide (LPS), plays a causal role in the induction of 
depressive-like behavior (11–13). Concurrently, cytokines also 
dysregulate the BH4 pathway (14–16), BH4 being an essential cofactor 
for several enzymes responsible for monoamine synthesis, particularly 
dopamine (DA) whose reduced levels are associated with depressive 
symptoms related to fatigue, anhedonia or decreased motivation (7). 
By increasing the activity of the first and limiting enzyme of this 
pathway, the GTP-cyclohydroxylase-1 (GTPCH1), cytokines favor the 
production of toxic derivatives, at the cost of BH4, hence decreasing 
its bioavailability for monoamine production (5, 15). Supporting the 
link between dysregulated BH4 pathway, impaired DA 
neurotransmission and behavioral alterations in inflammatory 
conditions, BH4 supplementation was recently shown to reduce 
alterations of DA-related behaviors in mice challenged with LPS (16). 
Altogether, these findings suggest that any strategy likely to interfere, 
beyond inflammation, with the activation of the KYN and BH4 
pathways could hold great promise in helping to reduce 
neuropsychiatric symptoms related to inflammation.

In that context, nutritional interventions using natural dietary 
supplements with potential immunomodulatory and/or 

neuromodulatory properties could be useful (17–19) and mounting 
evidence particularly points to saffron as a promising 
candidate (20–26). This spice derived from stigmas of the flower 
Crocus Sativus L. is composed of different biologically active 
compounds contributing to its taste, but more importantly to its wide 
therapeutic effects, which interestingly include beneficial impact on 
mood. Experimentally, saffron or its active compounds have been 
shown to reduce depressive-like behavior in rodents (27–35). 
Similarly, administration of saffron extracts, either alone or in 
combination with standard antidepressants, improves depressive 
symptomatology in patients suffering from mild to moderate or severe 
symptoms of depression (36–42). A wide literature also sheds light on 
the immunomodulatory and anti-inflammatory properties of saffron 
in cell cultures or models of immune diseases (21, 23–26, 43, 44), as 
well as its ability to positively target neurobiological processes whose 
impairment may contribute to inflammation-related neuropsychiatric 
alterations, including monoamine neurotransmission, oxidative stress 
or neurogenesis (21, 30, 31, 33, 45–52). Noteworthy, we  recently 
demonstrated that saffron supplementation modulates the expression 
of key enzymes of the KYN and BH4 pathways, whether under basal 
or stressful conditions (31). Based on these findings, we hypothesized 
that saffron extract administration may interfere with inflammation-
induced neurobiological alterations and therefore be useful to reduce 
associated neuropsychiatric alterations.

The present study aims to test this hypothesis by investigating 
whether an oral administration of a standardized saffron extract 
previously shown to reduce depressive-like behavior (30, 31) was able 
to reverse the neurobiological alterations elicited by a systemic 
immune stimulation with LPS. This inflammatory inducer was chosen 
because it has been used for decades to study brain actions of cytokines 
and subsequently to unravel the mechanisms linking inflammation to 
depression (11–13, 53). We therefore measured first the impact of 
saffron extract pretreatment on LPS-induced sickness behavior, taken 
as a reflect of the induction of cytokines occurring over the first hours 
following the immune challenge. Second, we assessed its effect on the 
neurobiological processes known to underlie inflammation-related 
depressive-like behavior. We  confirmed that saffron extract 
pretreatment interfered with these processes, which suggests that it 
may be useful to reduce the deleterious consequences of inflammation, 
while preserving the sickness behavior necessary to the host defense.

2. Materials and methods

2.1. Animals and treatments

On arrival, 8-week-old male C57BL/6 J mice (Janvier laboratories; 
Le Genest-Saint-Isle, France) were randomly divided into four groups 
(n = 14/group) matched for body weight. They were housed 
individually in an enriched (cardboard rodent homes and cotton 
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nestlets) and controlled environment (22°C +/− 2°C, 40% humidity), 
and maintained under a normal 12/12 light/dark cycle (light on at 
7 am) with free access to water and standard rodent chow (A04, SAFE, 
Augy, France). All procedures were conducted in accordance with the 
European legislation (260/63/EU) and were approved by the local and 
national Ethical Committees (APAFIS# 16873/16492).

As previously described (30), a saffron extract (SE) standardized 
in crocins, picrocrocins, safranal and kaempferol according to patent 
number #EP3490575 (Activ’Inside; Beychac-et-Caillau, France) and 
its vehicle (tap water) were administered orally using a flexible tube 
that was gently inserted into the digestive tract (mouse-adapted 
feeding probes 1.33x30mm, ECIMED; Boissy-Saint-Léger, France). 
The dose (6.25 mg/kg per os) and volume (10 mL/kg) of saffron extract 
used were selected based on previously published data (30, 54). Mice 
were handled and habituated to the administration procedure for 
several day before treatment in order to minimize stress reaction.

The solution of phenol-extracted lipopolysaccharide (LPS) from 
Escherichia Coli (serotype 0127:B8, Sigma; St. Louis, MO, US) was 
freshly prepared the day of test with endotoxin-free isotonic saline and 
intraperitoneally (ip) injected to half of the mice, the others receiving 
saline. The dose used (830 μg/kg) was selected based on its ability to 
induce a reliable activation of inflammatory processes and related 
neurobiological and behavioral changes (12, 53).

2.2. Experimental design

The procedure included 4 different experimental groups 
(Figure 1). On the test day, mice received first an oral administration 
of SE or water, followed 30 min later by an ip injection of LPS or saline. 
This experimental design was chosen based on our previous results 
reporting a beneficial effect of similar SE pretreatment against stress-
induced neurobiological and behavioral alterations (31). Body weight, 
food intake, and sickness behavior were assessed 5 h30 and 23 h after 
the LPS injection. Twenty-four hours post-LPS administration, mice 
were anesthetized with an ip injection of pentobarbital/lidocaine 
solution (300 and 30 mg/kg respectively). Once asleep, they were 
perfused with chilled PBS 1X for 2 min to remove all traces of blood 
from the tissues. Brains were then extracted from the skulls and 
frontal cortex (FCx), striatum (STR) and hippocampus (HPC) were 

carefully dissected from each half brain, immediately frozen with dry 
ice and stored at −80°C.

2.3. Sickness behavior assessment

Inflammation-induced sickness behavior includes several 
non-specific symptoms aiming to help the organism fighting back the 
infection. In LPS-treated mice, these symptoms usually developed within 
a few hours following the treatment and then progressively disappear. 
Sickness behavior was evaluated by calculating a sickness score that 
depends on the intensity (from 1 to 4) of three main symptoms: 
piloerection (normal/irregular/erected coat), ptosis (normal/half-closed/
tearful/closed eyes) and general locomotion (normal/slow/huddled-up/
lethargy) (55). Mice were scored during the peak of inflammation (5 h30) 
and 23 h post-treatment (Figure 1) in order to evaluate how sick they 
were and how well they recovered, respectively. A delta sickness score, 
whose amplitude reflects the degree of recovery, was also calculated as 
the difference between the scores at 23 h and 5 h30 post-treatment.

One of the symptoms classically found during sickness behavior 
being loss of self-care, we evaluated this parameter in more details 
using the splash-test. This test was performed in a soundproof room, 
essentially as previously described (56). A viscous 10% sucrose 
solution known to trigger grooming behavior was squirted on the 
dorsal coat of each mouse in their home cages. Latency to initiate 
grooming and its duration over the 5-min test were manually scored 
as an index of self-care. All behavioral assessments were performed by 
a trained observer blind to treatments.

2.4. Gene expression analysis

RT-qPCR was performed as previously described (30). Briefly, total 
RNAs were extracted from the collected structures using Trizol reagent 
(Invitrogen, Life Technologies, Villebon-sur-Yvette, France) and reverse 
transcribed into cDNAs by using the Superscript III reverse transcriptase 
(Invitrogen, Waltham, MA, US). The Taqman LightCycler® 480 Probes 
Master mix (Roche Diagnostics, Meylan, France) and its associated 
FAM-labeled Taqman Primers (ThermoFisher Scientific, Waltham, MA, 
US) were used to amplify the genes of interest from 2 μL of cDNAs at 

FIGURE 1

Experimental timeline and design. The impact of acute oral administration of saffron extract (6.25  mg/kg) was measured on behavioral (sickness 
behavior, splash-test), neuroinflammatory (brain expression of inflammatory factors) and neurobiological (KYN and BH4 pathways, monoamine 
systems) alterations induced by a lipopolysaccharide challenge (LPS, 830  μg/kg, ip). n  =  14 mice/group.
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20 μg/μL. All experiments were performed in duplicates. Fluorescence 
was measured using a LightCycler® 480 II system (Roche Diagnostics, 
Meylan, France). Data were analyzed with the comparative threshold 
cycle method and results were normalized with GAPDH as a house-
keeping gene. Primer references are given in Supplementary Table S1.

2.5. Brain monoamines assessment

Brain 5-HT, DA and their metabolites, the 5-hydroxyindoleacetic 
acid (5-HIAA), dihydroxyphenylacetic acid (DOPAC) and homovanillic 
acid (HVA), were measured by HPLC-EC, essentially as previously 
described (30). Half structures of interest were lysed in 600 μL of fresh 
extraction buffer (4 × 1 min at 30 Hz) using a Tissue Lyser (Qiagen, 
Courtaboeuf, France). After homogenate centrifugation (16,000 g, 4°C, 
20 min), the supernatants were centrifuged again into filtering tubes 
(1,600 g, 4°C, 2 min) and the final supernatants containing the 
monoamines stored at −80°C until use. For HPLC assay, 20 μL of the 
supernatant were injected into a chromatograph equipped with a 5 μm 
C18, 3×100  mm silica column (ACE, AIT France, Cormeilles-en-
Parisis, France) and coupled to an electrochemical detection system 
(Antec Decade 2, CJ Lab, La Frette, France). Monoamines and their 
metabolites were identified through their retention times and quantified 
using the Chromeleon integration 6.8 software (Dionex, Sunnyvale, 
CA, US). Results were expressed in nmoles/g of tissue.

2.6. Statistical analysis

Data were analyzed using the software Statistica 6 (StatSoft, Tulsa, 
OK, US) and the Graphpad Outlier Calculator (Prism, San Diego CA, 
US) to identify statistical outliers, which were excluded from the 
analyses. Two-way ANOVAs, followed by a LSD Fisher post-hoc when 
appropriate, were performed whenever the normality, independence 
and homogeneity of variances conditions were fulfilled. Otherwise, 
data were analyzed using Kruskal-Wallis ANOVA and multiple 
comparison of the mean ranks if significant. Potential changes over 
time were analyzed by a repeated measures ANOVA for body weight 
and non-parametric tests for food intake and sickness score. Student 
t-test or Mann–Whitney U-test were performed to evaluate the 
significance between two groups. Graphs were presented as 
mean ± SEM and p values ≤0.05 denote statistical significance.

A Principal Components Analysis (PCA) was applied using R 
version 3.3.0 (FactoMineR package) in order to separate mice of each 
group according to their respective inflammatory and neurobiological 
profile. The principal components (PC) generated represent linear 
combinations of the initial variables. Factor loadings obtained for each 
variable reflect its correlation with the PC, variables with the highest 
loading values (≥0.25) contributing the most to the PC construct.

3. Results

3.1. Impact of saffron extract on 
LPS-induced sickness behavior

We first checked whether saffron extract (SE) reduced 
LPS-induced sickness behavior and related changes of body weight 
and food intake. As expected, body weight was progressively reduced 

in LPS-treated mice as compared to their non-treated counterparts 
[LPS: F(1,49) = 11.53; p ≤ 0.001; Time x LPS: F(2,98) = 39; p ≤ 0.001; 
Figure 2A], the difference reaching significance at 23 h post-LPS (LPS 
and SE-LPS vs. Control: p ≤ 0.001), consistent with the reduction in 
food intake shown by LPS-treated mice compared to the control 
group  5 h30 (LPS vs. Control: p ≤ 0.05 and SE-LPS vs. Control: 
p ≤ 0.01; Figure 2B) and 23 h after treatment (LPS and SE-LPS vs. 
Control: p ≤ 0.001). Pretreatment with SE had no impact on body 
weight or food intake regardless of LPS challenge.

As anticipated, control mice and mice only treated with SE did not 
develop sickness behavior, as confirmed by their low sickness score 
(Figure 2C). On the contrary, this score was significantly increased in 
LPS and SE-LPS-treated mice 5 h30 after treatment (LPS and SE-LPS 
vs. Control: p ≤ 0.001), indicating the induction of a strong sickness 
behavior which was not prevented by saffron. Then, all LPS-treated 
mice progressively recovered, as confirmed by the lack of significant 
differences in the multiple groups comparison analysis of the sickness 
scores measured 23 h post-LPS. Of note, although sickness scores were 
not significantly different between LPS-and SE-LPS-treated mice at 
the two time points, the delta sickness score was bigger in the SE-LPS 
group (p = 0.05; Figure 2D), suggesting that saffron may potentially 
facilitate recovery.

To further investigate sickness symptoms, particularly reduced 
self-care, changes in latency and duration of grooming were assessed 
in the splash-test at the peak of the sickness phase (5 h30 post-LPS). 
The LPS challenge drastically increased the latency to groom 
[H(3,54) = 43.12; p ≤ 0.001; LPS vs. Control: p ≤ 0.001; Figure  2E] 
despite SE pretreatment (SE-LPS vs. Control: p ≤ 0.001). All 
LPS-treated mice also spent less time grooming than controls 
[H(3,54) = 44.54; p ≤ 0.001; LPS and SE-LPS vs. Control: p ≤ 0.001; 
Figure 2F]. Besides, the 2-by-2 groups comparison shows that saffron 
increased the duration of grooming when administered alone (SE vs. 
Control: p ≤ 0.05), suggesting it may beneficially impact mice welfare 
under basal conditions.

3.2. Impact of saffron extract on 
LPS-induced neuroinflammation

The impact of SE on LPS-induced activation of brain inflammatory 
processes was then assessed by measuring the expression of genes 
coding for different cytokines, chemokines and markers of microglial 
activation in the FCx, STR and HPC. These brain areas were chosen 
because they are both sites for induction of inflammation and control 
of related behavioral alterations (53, 57, 58). Moreover, we recently 
reported neurobiological changes in these structures after SE 
administration (30, 31).

Consistent with the development of sickness behavior, 
LPS-induced neuroinflammation was detected in the three brain areas 
24 h after treatment, although with some specificities. Compared to 
controls, LPS-treated mice exhibited significantly higher relative 
expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), 
interferon gamma-induced protein 10 (IP-10) and CC motif 
chemokine ligand 2 (CCL2) in all brain areas. This was true whether 
mice were pretreated with SE or not (see multiple comparisons in 
Figures 3–5), excepted for IP-10 overexpression in the STR that was 
attenuated by this pretreatment (SE-LPS vs. LPS: p ≤ 0.05; Figure 4). 
IL-6 expression was reduced in the FCx [H(3,50) = 37.04; p ≤ 0.001; 
Figure  3], STR [H(3,49) = 33.73; p ≤ 0.001; Figure  4] and HPC 
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[F(1,47) = 7.72; p ≤ 0.01; Figure 5] of LPS-and SE-LPS-treated mice. 
Regarding markers of microglial activation, LPS upregulated the 
expression of cluster of differentiation-86 (CD86) [F(1,48) = 44.34; 

p ≤ 0.001], CD74 [F(1,46) = 8.27; p ≤ 0.01] and CD11b [H(3,51) = 37.71; 
p ≤ 0.001] in the FCx (Figure 3), as well as CD86 [H(3,52) = 28.42; 
p ≤ 0.001] and CD11b [H(3,53) = 38.33; p ≤ 0.001] in the HPC 

FIGURE 2

Effects of oral saffron extract administration (6.25  mg/kg) on LPS-induced sickness behavior (830  μg/kg, ip). (A) Body weight (g) measured 30  min 
before LPS injection (T0) and 5  h30 and 23  h after; (B) Food intake (g) measured 5  h30 and 23  h after LPS injection; (C) Total sickness score assessed 
5  h30 and 23  h after LPS injection; (D) Delta sickness scores (between the two timepoints) in LPS-treated groups; (E) Latency to groom (sec) and 
(F) Duration of grooming (sec) in the splash-test conducted 5  h30 after LPS injection. Results are shown as mean  ±  SEM. * p  ≤  0.05, *** p  ≤  0.001 vs. 
Control; # p  ≤  0.05 vs. LPS.

FIGURE 3

Effects of oral saffron extract administration (6.25  mg/kg) on LPS-induced neuroinflammation (830  μg/kg, ip) in the FCx. Heatmaps displaying relative 
gene expression (as compared to Controls  =  1) of inflammatory and anti-inflammatory factors measured 24  h after the LPS challenge. Numbers on the 
heatmaps represent the mean foldchange of each group. In the table, the columns represent the results of multiple comparisons following significant 
Kruskal-Wallis test. * p  ≤  0.05, ** p  ≤  0.01, *** p  ≤  0.001, ns  =  not significant, −  =  not determined (parametric data with no significant SE x LPS 
interaction). IL-1β: Interleukin-1β; TNF-α: Tumor Necrosis Factor-α; IP-10: Interferon gamma-induced Protein 10; CCL2: CC motif Chemokine Ligand 2; 
IL-6: Interleukin-6; CD86/74/11b/14/36/206: Clusters of Differentiation; TLR4: Toll-Like Receptor 4; CX3CL1: CX3C motif Chemokine Ligand 1; 
CX3CR1: CX3C motif Chemokine Receptor 1; TGFβ: Transforming growth factor-β; Socs3: Suppressor of cytokine signaling 3; Arg1: Arginase 1.
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(Figure  5), regardless of SE pretreatment. Expression of CD86 
[H(3,49) = 13.39; p ≤ 0.01] and CD11b [H(3,49) = 15.19; p ≤ 0.001] was 
also increased by LPS in the STR, but this was prevented by saffron 
(SE-LPS vs. Control: p > 0.1; Figure 4). The 2-by-2 comparison shows 

that LPS also enhanced striatal CD74 expression, but only in the group 
without saffron pretreatment (LPS vs. Control: p ≤ 0.01; Figure 4). All 
LPS-treated mice also exhibited, in the 3 brain areas, increased 
expression of the co-receptors involved in LPS detection, CD14 [FCx: 

FIGURE 4

Effects of oral saffron extract administration (6.25  mg/kg) on LPS-induced neuroinflammation (830  μg/kg, ip) in the STR. See legend of Figure 3 for 
details. * p  ≤  0.05, ** p  ≤  0.01, *** p  ≤  0.001, ns  =  not significant, −  =  not determined (parametric data with no significant SE x LPS interaction).

FIGURE 5

Effects of oral saffron extract administration (6.25  mg/kg) on LPS-induced neuroinflammation (830  μg/kg, ip) in the HPC. See legend of Figure 3 for 
details. * p  ≤  0.05, ** p  ≤  0.01, *** p  ≤  0.001, ns  =  not significant, −  =  not determined (parametric data with no significant SE x LPS interaction).
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H(3,52) = 37.95; STR: H(3,48) = 35.23; HPC: H(3,50) = 38.30; p ≤ 0.001] 
and toll-like receptor-4 (TLR4) [FCx: H(3,48) = 26.03; HPC: 
H(3,50) = 27.47; p ≤ 0.001; STR: F(1,42) = 80.82; p ≤ 0.001]. Of note 
however, hippocampal CD14 expression was globally downregulated 
as compared to controls in SE-treated mice (SE vs. Control: p ≤ 0.01; 
Figure  5). Lastly, expression of CX3C motif chemokine ligand 1 
(CX3CL1) and receptor 1 (CX3CR1) was upregulated by LPS in the 
FCx [F(1,45) = 8.57; p ≤ 0.01 and F(1,44) = 28.83; p ≤ 0.001 respectively; 
Figure 3] and STR [F(1,44) = 11.36; p ≤ 0.001 and H(3,46) = 13.64; 
p ≤ 0.01 respectively; Figure 4].

Concurrently, we measured the expression of several important 
anti-inflammatory factors, such as transforming growth factor 
(TGFβ), CD36, CD206, suppressor of cytokine signaling (Socs3) and 
arginase type-1 (Arg1). LPS increased expression of TGFβ [FCx: 
H(3,49) = 31.21; STR: H(3,47) = 26.66; HPC: H(3,48) = 24.03; p ≤ 0.001] 
and Socs3 [FCx: H(3,51) = 26.19; STR: H(3,46) = 32.88; HPC: 
H(3,51) = 38.94; p ≤ 0.001], independently of SE pretreatment 
(Figures 3–5). CD206 expression was significantly upregulated by LPS 
in the STR [F(1,45) = 3.45; p ≤ 0.0001; Figure  4] and tended to 
be increased in the HPC [F(1,46) = 3.06; p = 0.08; Figure 5], what was 
confirmed by the 2-by-2 comparison analysis (LPS vs. Control: 
p ≤ 0.05). Still in the HPC, LPS decreased CD36 expression 
[H(3,47) = 11.43; p ≤ 0.01; Figure 5] unless mice were pretreated with 
SE (SE-LPS vs. Control: p > 0.1). Lastly, expression of Arg1 was 
increased by LPS only in the STR [H(3,44) = 28.47; p ≤ 0.001; Figure 4]. 
However, the group comparisons indicate that SE pretreatment tended 
to reduce Arg1 expression in the FCx and HPC in the absence of LPS 
treatment (SE vs. Control: p = 0.065 and p = 0.054 respectively; 
Figures 3, 5), while it increased its expression in the FCx of LPS-treated 
mice (SE-LPS vs. Control and vs. LPS: p ≤ 0.05; Figure 3). Altogether, 
these results showed that SE pretreatment interfered with LPS-induced 
activation of neuroinflammatory processes 24 h after treatment by 
targeting different inflammatory and/or anti-inflammatory factors 
depending on the brain area.

3.3. Impact of saffron extract on 
LPS-induced activation of KYN and BH4 
pathways

LPS-induced brain inflammation is well-known to change the 
activity of the KYN and BH4 pathways (Figure 6D), which in turn 
contribute to inflammation-related neurotoxicity and monoamine 
alterations (1, 5). The potential impact of SE pretreatment on these 
processes was therefore assessed by measuring the expression of key 
enzymes of each pathway.

No significant pretreatment or treatment effect was detected 
regarding the expression of KYN enzymes in the HPC (Figure 6C). In 
the FCx, IDO expression was significantly increased by LPS 
[H(3,52) = 20.45; p ≤ 0.001; Figure 6A], although to a lesser extent 
when mice were pretreated with SE (SE-LPS vs. Control: p ≤ 0.05; LPS 
vs. Control: p ≤ 0.001). Similarly, expression of 3-hydroxyanthranilate 
3,4-dioxygenase (Haao), which significantly differed between the 
groups [H(3,52) = 8.9; p ≤ 0.05], was reduced in SE-LPS-treated mice 
as compared to controls and LPS-treated mice (p ≤ 0.05). In the STR, 
LPS decreased Haao expression [F(1,44) = 8.01; p ≤ 0.01; Figure 6B] 
regardless of SE pretreatment and increased kynurenine 
aminotransferase (KAT) expression, but only in non-pretreated mice 

[H(3,48) = 15.02; p ≤ 0.001; LPS vs. Control: p ≤ 0.01; SE-LPS vs. 
Control: p > 0.1; Figure 6B]. Likewise, kynurenine 3-monooxygenase 
(KMO) and kynureninase (Kynu) expression appeared to 
be upregulated by LPS when administrated alone, but this did not 
reach statistical significance (Figure 6B).

Concerning the BH4 pathway, the expression of its first enzyme, 
GTPCH1, was enhanced by LPS in the FCx [F(1,47) = 6.53; p ≤ 0.05; 
Figure  6A], STR [F(1,43) = 6.17; p ≤ 0.05; Figure  6B] and HPC 
[H(3,53) = 15.3; p ≤ 0.05; LPS vs. Control: p ≤ 0 0.01; SE-LPS vs. 
Control: p ≤ 0.05; Figure 6C]. SE pretreatment only prevented this 
induction in the STR [LPS x SE: F(1,43) = 4.85; p ≤ 0.05; LPS vs. 
Control: p ≤ 0.01; SE-LPS vs. Control: p > 0.1; Figure  6B]. Taken 
together, these results highlight the ability of SE pretreatment to 
modulate the impact of LPS on the KYN and BH4 pathways.

3.4. Impact of saffron extract on 
LPS-induced modulation of monoamine 
neurotransmission

Based on the aforementioned data and previous studies reporting 
positive modulation of monoamine neurotransmission by saffron in 
other experimental conditions (30, 31), we  checked whether this 
pretreatment may improve LPS-induced monoamine impairments. 
Results are shown in Figure 7A.

Levels of DA and its metabolites were undetectable in the HPC 
and similar in all groups in the STR, as well as striatal expression of 
the DA degradation enzymes (Figure  7C). On the contrary, DA 
concentrations differed among the experimental groups in the FCx 
[H(3,50) = 8.54; p ≤ 0.05], with LPS-treated mice displaying lower DA 
levels than SE-LPS mice (p ≤ 0.05). DA levels were also significantly 
reduced in the LPS group as compared to controls (p ≤ 0.05), as 
revealed by the group-by-group comparison. Consistent with this, 
both cortical DOPAC/DA [H(3,44) = 13.8; p ≤ 0.01] and HVA/DA 
[H(3,45) = 18.35; p ≤ 0.001] ratios were significantly higher in LPS 
than control groups (LPS vs. Control: p ≤ 0.01 and p ≤ 0.001 
respectively). Interestingly, SE pretreatment normalized DOPAC/DA 
ratio (SE-LPS vs. Control: p > 0.1) and tended to blunt LPS-induced 
increase in HVA/DA ratio, although it was still significantly different 
from controls (SE-LPS vs. Control: p ≤ 0.05). This is likely due to the 
slight increase in HVA concentrations displayed by SE-LPS mice 
[H(3,51) = 10.37; p ≤ 0.05; SE-LPS vs. Control: p ≤ 0.05]. Supporting 
further increased cortical DA turnover in response to LPS, it also 
significantly upregulated monoamine oxidase-A (MAO-A) and 
MAO-B expression [F(1,47) = 5.24; p ≤ 0.05 and F(1,47) = 10.23; 
p ≤ 0.01 respectively; Figure 7B].

Regarding 5-HT-related measures, no significant impact of LPS and/
or SE administration was observed in the FCx, while in the STR 
LPS-treated mice displayed a significant increase in 5-HIAA levels 
whether or not they received SE pretreatment [H(3,47) = 11.76; p ≤ 0.01; 
LPS and SE-LPS vs. Control: p ≤ 0.05]. On the contrary, hippocampal 
5-HIAA levels were selectively enhanced by LPS when administered alone 
[H(3,46) = 10.6; p ≤ 0.05; LPS vs. Control: p ≤ 0.05; SE-LPS vs. Control: 
p > 0.1], suggesting that SE pretreatment may interfere with LPS-induced 
5-HT degradation, although it did not prevent LPS-induced 
overexpression of the 5-HT degradation enzyme MAO-A [F(1,47) = 13.12; 
p ≤ 0.001; Figure 7D]. In summary, these results show that beyond its 
impact on LPS-induced inflammation and enzymatic pathways activation, 

https://doi.org/10.3389/fnut.2023.1267839
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Monchaux de Oliveira et al. 10.3389/fnut.2023.1267839

Frontiers in Nutrition 08 frontiersin.org

pretreatment with SE was also able to counteract the associated 
dysregulations of monoamine neurotransmission.

3.5. Global impact of saffron extract on 
LPS-induced brain alterations

Finally, a PCA was performed to visualize the global impact of 
SE pretreatment on the inflammatory and neurobiological profile 
displayed by the different experimental groups. In the FCx, STR and 
HPC, the 1st principal component (PC) explained more than 30% 
of the total variance (Figures  8B–D). Interestingly, PC1 was 
associated with higher levels of inflammatory factors (Figure 8A) 
and a highly significant LPS effect (p < 0.001) in the three brain 
areas, as well as a pretreatment by treatment interaction (p < 0.05) 
in the STR. As shown in the different individuals maps 
(Figures  8B–D), LPS-untreated and LPS-treated mice displayed 
negative and positive average scores for PC1, respectively, and they 
were therefore clearly dissociated. Importantly, while the 
distribution of individuals was always essentially comparable 
between the Control and SE groups, saffron pretreatment changed 
the profile of mice challenged with LPS, this effect depending 
however on the brain area. In the HPC, PC2 explained 13% of the 
total variance and revealed a highly positive score for KYN enzymes 
expression (Figure  8A). Nevertheless, there was a clear overlap 
between the scatter of individuals from the two LPS-treated groups 
(Figure 8D), in agreement with the lack of SE-induced modulation 
of KYN pathway activation reported in this brain area (Figure 6C). 

On the contrary, the PCA individuals score plots showed that PC2 
separated LPS and SE-LPS groups in the FCx (Figure 8B) and to a 
lesser extent in the STR (Figure 8C). PC2 accounted for 13.7 and 
10.3% of the total variance, respectively, and was related in both 
cases to KYN pathway and monoamine neurotransmission 
(restricted to DA in the STR; Figure 8A). Importantly, the average 
scores of SE-LPS groups for PC2 were always shifted to the side 
associated with lower KYN pathway activation and higher 
monoamine neurotransmission.

Altogether, these findings nicely illustrate the beneficial impact of 
saffron pretreatment on the different brain alterations occurring in 
response to a systemic immune challenge and notably involved in 
inflammation-driven neuropsychiatric alterations.

4. Discussion

Identifying new strategies to circumscribe the deleterious 
consequences of neuroinflammation on brain function is a major 
health concern due to its role in the pathophysiology of many medical 
conditions, including neuropsychiatric disorders. The present study 
provides valuable data relevant to this issue by showing that oral 
administration of a saffron extract modulates the neuroinflammatory 
response to an LPS challenge and its impact on several neurobiological 
processes known to contribute to LPS-induced emotional alterations. 
In addition, we  highlighted the ability of saffron extract to act at 
different levels of the cascade of events leading from cytokine 
production to impairment of monoamine neurotransmission.

FIGURE 6

Effects of oral saffron extract administration (6.25  mg/kg) on LPS-induced activation of KYN and BH4 pathways (830  μg/kg, ip). Relative expression of 
Indoleamine 2,3-dioxygenase (IDO), Kynurenine 3-Monooxygenase (KMO), Kynurenine Aminotransferase (KAT), Kynureninase (Kynu), 
3-Hydroxyanthranilate 3,4-Dioxygenase (Haao) and GTP-Cyclohydrolase 1 (GTPCH1) measured in the (A) FCx, (B) STR, and (C) HPC 24  h after the LPS 
challenge. (D) Schematic representation of the activation of the KYN and BH4 pathways in inflammatory conditions. Data are represented as 
foldchanges normalized to the control group (baseline  =  1). Results are shown as mean  ±  SEM. * p  ≤  0.05, ** p  ≤  0.01, *** p  ≤  0.001 vs. Control;  
# p  ≤  0.05 vs. LPS; $ p  ≤  0.05, $$ p  ≤  0.01 global LPS effect.
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Chronic exposure to stressful environmental factors, inflammation 
inducers, or even their combination, is the primary paradigm used in 
many preclinical models of inflammation-driven depression (3, 35, 
59-61). Although highly informative, these models are also often 
heavy to set up and therefore not necessarily the best suited to conduct 
studies specifically focused on the first stages of activation of brain 
inflammatory processes and their neurobiological consequences, as 
we  meant to do here. By allowing to experimentally dissociate 
transient sickness behavior from protracted depressive-like behavior 
in rodents, the acute LPS challenge procedure has been particularly 
useful in identifying their respective neurobiological correlates (12, 
53, 62). Thereafter, it turned out to be relevant to study the potential 
protective impact of interventional strategies against the adverse 
effects of inflammation, especially due to its ease of implementation 
and suitability for conducting rapid mechanistic studies (63–67). In 
the present study, LPS-treated mice exhibited the expected marked 
sickness behavior and anorexia, which are adaptive behavioral 
responses essential for the body to fight infection (1, 2, 4). SE 
pretreatment did not interfere with these responses, suggesting that it 
did not change the underlying early induction of brain inflammatory 
cytokines (mainly IL-1β, TNF-α and IL-6), which is consistent with 
what was found 24 h post-treatment. It could be argued that using 
higher doses of SE and/or changing the administration schedule could 
achieve an effect. However, a significant improvement of stress-
induced neurobiological and behavioral alterations was previously 

reported by applying the current experimental procedure (31). 
Moreover, while SE pretreatment did not reduce the intensity of 
sickness behavior, it seemed to promote its resolution. Indeed, the 
overtime change in sickness score was larger in SE-LPS-treated mice, 
which also displayed blunted activation of inflammatory processes 
and related neurobiological impairments 24 h post-LPS treatment. 
Together, these findings strengthen the assumption of a preferential 
impact of saffron on late rather than early stages of the 
neuroinflammatory responses to LPS, which may be  particularly 
valuable to reduce inflammation-driven emotional alterations. 
Supporting this assumption, SE supplementation was recently found 
to improve chronic LPS-induced anxiety-like behavior (60).

As anticipated, LPS-treated mice displayed 24 h post-treatment 
changes in the expression of many inflammatory markers, which 
testify to the induction of neuroinflammatory processes known to 
ultimately impair brain function (12, 62, 68). This implies that 
modulating the expression of inflammation-related genes does 
translate into changes in levels of corresponding proteins. Although 
this has not been directly demonstrated here, it has already been 
clearly established (69–71). In line with previous studies 
highlighting the immunomodulatory and anti-inflammatory 
properties of saffron or its bioactive components (crocins and 
safranal) (21, 23–26, 43, 44, 72), we showed here that the brain 
immune reactivity to an LPS challenge was different when mice 
were pretreated with SE. It notably modulated LPS-induced changes 

FIGURE 7

Effects of oral saffron extract administration (6.25  mg/kg) and LPS-induced changes of brain concentrations of monoamines and their metabolites 
(830  μg/kg, ip). (A) Levels of monoamines (DA, 5-HT) and their metabolites (DOPAC, HVA and 5-HIAA; nmoles/g of tissue) measured in the FCx, STR 
and HPC 24  h after the LPS challenge. Relative gene expression plotted as foldchanges normalized to the control group (baseline  =  1) of Catechol-O-
methyltransferase (COMT), Monoamine Oxidase-A (MAO-A) and MAO-B measured in the (B) FCx, (C) STR, and (D) HPC. Results are shown as 
mean  ±  SEM. nd: not detectable. * p  ≤  0.05, ** p  ≤  0.01, *** p  ≤  0.001 vs. Control; # p  ≤  0.05, ## p  ≤  0.01 vs. LPS; $ p  ≤  0.05, $$ p  ≤  0.01, $$$ p  ≤  0.001 global 
LPS effect.
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in expression of anti-inflammatory factors, as reported in the FCx 
and HPC, suggesting that this pretreatment likely promotes the 
delayed anti-inflammatory side of the response to LPS, which is set 
up to resolve inflammation (2, 4). Interestingly, similar modulations 
of anti-inflammatory gene expression recently reported following 
the administration of other plant extracts or nutrients, including 
under LPS stimulation, have been associated with changes in the 
polarization of macrophage/microglia from inflammatory towards 
anti-inflammatory states (73–76). Consistent with these findings, 
LPS-induced overexpression of inflammatory state markers, such 
as CD86 and CD11b in the STR, was blunted in mice pretreated 
with SE, suggesting that it may counteract the sustained microglial 
activation which underlies the damaging consequences of 
neuroinflammation on brain function (1, 2, 5, 6). Supporting this, 
crocins were previously shown to prevent LPS-induced increase of 
CD11b expression in microglial cell cultures (43, 77). SE-LPS-
treated mice also exhibited dampened upregulation of the 
expression of IP-10, a chemokine whose modulation is indicative of 
that of its inducer interferon-γ (IFN-ϒ) (78). Besides, 
administration of saffron or crocins has been reported to reduce the 
induction of IFN-ϒ in different models of immune diseases (49, 
79). Noteworthy, both IP-10 and IFN-ϒ have been associated with 
inflammation-induced KYN pathway activation and related 
development of neuropsychiatric symptoms (80–84). Therefore, 
their modulation by saffron could contribute to improve the 
harmful consequences of inflammation. This issue, however, needs 
to be investigated further, as well as the potential contribution of 
other inflammatory factors likely to be also targeted by saffron.

This study demonstrates for the first time that the impact of 
saffron on neuroinflammation extends to the downstream 
neurobiological systems known to trigger the neuropsychiatric 
comorbidities of inflammation, notably the BH4 and KYN pathways 
(2, 3, 5) which were activated here, as anticipated, 24 h after LPS 
administration. The lack of significant induction of KYN enzymes in 
the HPC may seem unexpected, but it actually fits with previous data 
reporting earlier peaks of expression, as well as different temporal 
expression patterns depending on the brain areas (62, 68). Besides, 
several studies have confirmed that the increase in levels of KYN and 
its derivatives measured in the FCx and STR 24 h post-LPS was also 
significant in the HPC (13, 63, 68, 85). Here, we  showed that 
pretreatment with SE blunted the LPS-induced increase in expression 
of GTPCH1 in the STR and KYN enzymes in the FCx and STR. In line 
with these last results, the multivariate analysis reveals a shifted in the 
average score of the LPS groups pretreated with SE towards lower 
KYN pathway activation, as compared to those receiving only 
LPS. Importantly, the more contributive variables were KYN enzymes 
belonging to the neurotoxic branch of the pathway. Together, these 
findings argue for a protective role of saffron pretreatment against 
inflammation-driven neuronal insults, as already reported regarding 
stress-induced (86) or chemical treatment-induced neurotoxicity (33, 
87). This notion is further supported by the reduced microglial 
activation also displayed by SE-LPS treated mice since the production 
of KYN neurotoxic derivatives occurs precisely in activated microglia 
(5, 9, 13). Moreover, we recently showed that SE pretreatment also 
reduced stress-induced KYN-related neurotoxicity in the FCx and 
STR (31). Interestingly, this was associated with a concomitant 

FIGURE 8

Principal Component Analysis (PCA) calculated for each brain area considering all the inflammatory and neurobiological parameters measured 24  h 
after the LPS challenge. (A) Factor loadings obtained for each variable and that reflect its correlation with the principal component (PC) score from the 
PCA. Shaded cells indicate the dominant variables, i.e., those with the highest loading values (≥ 0.25) within each PC. The loadings described how 
much each variable contributes to the PC; Individuals maps of PCA analysis for the (B) FCx, (C) STR, and (D) HPC.
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improvement of related depressive-like behavior, suggesting that the 
same could occur following the positive impact of SE on inflammation-
driven KYN pathway activation. Upcoming experiments should help 
to test this assumption, but it already fits with recent data indicating 
that crocin administration ameliorates emotional behavior in different 
inflammatory conditions, including those related to stress or 
corticosterone exposure (33, 35, 88).

Compelling studies point to 5-HT and DA systems as additional 
targets of inflammation and important contributors of its 
comorbidities (1, 3, 5, 6). Consistent with this, LPS-treated mice 
displayed here increased 5-HIAA levels in the STR and HPC, which 
are indicative of enhanced 5-HT catabolism. This effect was prevented 
by SE pretreatment in the HPC, although it did not change the local 
overexpression of MAO-A induced by LPS. This might suggest that 
saffron counteracts the impact of LPS on 5-HT catabolism without 
targeting its degradation enzyme, but only the direct assessment of its 
enzymatic activity would allow to conclude on this issue. Besides, it 
should be  mentioned that other mechanisms, still to be  explored 
further, could contribute to the modulation of 5-HT system by saffron 
which, for example, decreases the expression of the 5-HT transporter 
while inflammation increases it (30, 89–91). Beyond the 5-HT system, 
pretreatment with SE also counteracted LPS-induced reduction in DA 
levels and increase in DA turnover ratios reported in the FCx. This 
agrees with recent studies providing evidence of a saffron-induced 
modulation of the DA mesocortical pathway albeit under other 
experimental conditions (30, 31, 33). Although the underlying 
mechanisms are still poorly understood, the fact that altering this 
pathway usually impairs behaviors related to reward processing and 
motivation (7, 92, 93) suggests that saffron supplementation could 
preferentially improve these behavioral alterations. Supporting this, 
crocins were recently shown to reduce anhedonia in mice (33, 88). A 
limitation of the current work is that it does not allow to conclude on 
the inflammation-induced symptoms more likely to be ameliorated by 
nutritional interventions with saffron or on which brain area might 
be most important in this regard. However, this was not the question 
addressed here and it would not necessarily be  relevant anyway, 
depression being a highly multidimensional disorder that involves 
complex neuronal networks broadly distributed in the brain (94, 95). 
Instead, this study focused on the main neurobiological systems 
whose alteration in inflammatory conditions can contribute to the 
development of a large panel of behavioral symptoms. By doing this, 
we provided important clues to direct further experiments specifically 
focused on behavioral issues and thereby progress towards a better 
understanding of the clinical therapeutic relevance of saffron in the 
context of inflammation.

In conclusion, by reporting an in-depth characterization of the 
inflammatory and neurobiological profile displayed by saffron-
pretreated mice in response to an LPS challenge, this study provides 
new and valuable insights on how oral administration of saffron 
interferes with activation of brain inflammatory processes and related 
changes in the activity of BH4 and KYN pathways and monoamine 
systems. Although more investigations are now needed, in particular to 
identify the behavioral implications of such modulations, including in 
conditions of chronic inflammation, this work reinforces the interest of 
investigating further the relevance of saffron-based nutritional 
interventions to reduce the damaging consequences of inflammation. 
It therefore represents an essential first step in the development of future 
research aiming to improve the management and treatment of 

inflammation-related comorbidities and to identify the clinical profile 
of patients likely to benefit from nutritional interventions in that context.
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Glossary

KYN Kynurenine

BH4 Tetrahydrobiopterin

IDO Indoleamine 2,3-dioxygenase

5-HT Serotonin

LPS Lipopolysaccharide

DA Dopamine

GTPCH1 GTP-cyclohydroxylase-1

SE Saffron extract

FCx Frontal cortex

STR Striatum

HPC Hippocampus

5-HIAA 5-hydroxyindoleacetic acid

DOPAC Dihydroxyphenylacetic acid

HVA Homovanillic acid

PCA Principal Components Analysis

PC Principal Component

IL-1β Interleukin-1β

TNF-α Tumor Necrosis Factor-α

IP-10 Interferon gamma-induced Protein 10

CCL2 CC motif Chemokine Ligand 2

IL-6 Interleukin-6

CD86/74/11b/14/36/206 Clusters of Differentiation

TLR4 Toll-Like Receptor 4

CX3CL1 CX3C motif Chemokine Ligand 1

CX3CR1 CX3C motif Chemokine Receptor 1

TGFβ Transforming growth factor-β

Socs3 Suppressor of cytokine signaling 3

Arg1 Arginase type-1

KMO Kynurenine 3-Monooxygenase

KAT Kynurenine Aminotransferase

Kynu Kynureninase

Haao 3-Hydroxyanthranilate 3,4-Dioxygenase

COMT Catechol-O-methyltransferase

MAO Monoamine Oxidase
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