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Nutrient synergy refers to the concept that the combined effects of two or more 
nutrients working together have a greater physiological impact on the body than 
when each nutrient is consumed individually. While nutrition science traditionally 
focuses on isolating single nutrients to study their effects, it is recognized that 
nutrients interact in complex ways, and their combined consumption can lead 
to additive effects. Additionally, the Dietary Reference Intakes (DRIs) provide 
guidelines to prevent nutrient deficiencies and excessive intake but are not 
designed to assess the potential synergistic effects of consuming nutrients 
together. Even the term synergy is often applied in different manners depending on 
the scientific discipline. Considering these issues, the aim of this narrative review 
is to investigate the potential health benefits of consuming different nutrients and 
nutrient supplements in combination, a concept we define as nutrient synergy, 
which has gained considerable attention for its impact on overall well-being. 
We will examine how nutrient synergy affects major bodily systems, influencing 
systemic health. Additionally, we  will address the challenges associated with 
promoting and conducting research on this topic, while proposing potential 
solutions to enhance the quality and quantity of scientific literature on nutrient 
synergy.
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Introduction

Nutrient synergy refers to the concept that the combination of two or more nutrients 
working in conjunction exert greater physiological impact on the body than each nutrient 
consumed in isolation (1–5) — in other words, the whole is greater than the sum of the parts. 
Traditionally, nutrition science has utilized the reductionist approach to understand the impact 
of nutrition, diet, and nutrients on health, where most research attempts to draw conclusions by 
isolating a single nutrient and examining its effect on a specific health outcome or biological 
system (6–9). The study of how a single nutrient influences the body is of course not without 
merit, as we know that the consumption of single nutrients in appropriate amounts contributes 
to the prevention of certain nutrient deficiencies (10–13). This is classically demonstrated with 
the consumption of vitamin D to prevent rickets, vitamin C to prevent scurvy, or folic acid to 
prevent neural tube defects (14). As such, the Dietary References Intakes (DRIs) were established 
by the Food and Nutrition Board of the National Academies of Sciences Engineering, and 
Medicine and consist of several types of nutrient reference values, which are intended to reduce 
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the risks of both nutrient inadequacy and excessive nutrient intake 
(15, 16). However, one shortcoming of the DRI framework is that it 
does not account for the additive effect some nutrients possess when 
consumed concurrently. Fortunately, during the Food and Nutrition 
Board’s recent discussions in 2021 on an update to Riboflavin 
guidelines, the board acknowledged the need to examine evidence for 
nutrient “clusters” for all DRI nutrients, considering these nutrients 
are not consumed in isolation and have metabolic interactions (16).

In pharmacology, synergy is discussed in various ways, such as 
through the enhancement of drug absorption, distribution, 
metabolism, or elimination (ADME). Changes in ADME result from 
interactions between drugs that affect different biological targets in the 
body, such as enzymes, receptors, or ion channels (17, 18). In other 
research disciplines, synergy has been interpreted more broadly in 
that ingredients that target differing physiological pathways work 
together for a greater physiological impact. For example, one 
ingredient may provide an energy substrate to improve physical 
capacity directly, while another nutrient may decrease fatigue through 
a separate pathway (19, 20). Furthermore, a recent meta-analysis of 35 
randomized controlled trials found significantly greater gains in 
fat-free mass and strength in healthy adults consuming multi-
ingredient supplements, that influence multiple physiological 
endpoints, compared to those consuming protein alone (21).

Nutrient synergy is commonly discussed in nutrition with regards 
to the way nature provides a multitude of nutrients in whole food 
sources (1–5). To date, over 10,000 different phytonutrients have been 
discovered with many likely still unidentified (22). Fruits, vegetables, 
legumes, and nuts contain a complex matrix of phytonutrients which 
are orchestrated to produce positive biological effects on the human 
body (Figure 1). Further, the concept of “eating the rainbow” has 
gained popularity in recent years as practitioners and researchers 
acknowledge the benefits of consuming various “color groups” of 
foods due to the unique blend of phytonutrients associated with the 
color of a plant (23–25). This strategy is reinforced by data indicating 
an inverse relationship between fruit and vegetable intake and the 
reduction of all-cause mortality and specifically cancer, depression, 
cardiovascular disease, and respiratory disease (26–28).

For this discussion, we define nutrient synergy as the dynamic 
interaction between different nutrients in the body, where their 
combined effects are greater than the sum of their individual 
contributions. The purpose of this review is to explore the health 
benefits of consuming various nutrients and nutrient supplements in 
combination. This phenomenon has garnered significant attention in 
the context of human health, and we  will examine the effects of 
nutrient synergy on major bodily systems. Furthermore, we  will 
discuss the inherent challenges when promoting and conducting 
research on nutrient synergy. Lastly, we  hope to provide possible 
solutions to increase the quality and quantity of scientific literature on 
nutrient synergy, including proposing innovative research 
methodologies to explore this concept.

Nutrient synergy and nervous system 
health

Nutrient synergy can improve brain health by enhancing cognitive 
function, supporting neuroprotective mechanisms, and regulating 
depression or anxiety as certain combinations of nutrients work 

synergistically to promote optimal brain function and reduce the risk 
of neurodegenerative diseases. In particular, human trials have 
demonstrated benefit from supplementing with a combination of B 
vitamins (e.g., vitamin B12, folate, and vitamin B6) on homocysteine 
levels and other aspects of nervous system health. Analysis of the large 
VITATOPS study, which was a cohort of 1,400 participants expanding 
over 10 countries, found a significant reduction (~4 μmol/L) in 
homocysteine in the group receiving vitamin B12, folate, and vitamin 
B6 supplementation compared to the control (29, 30). Researchers 
also found that the B vitamin treated group experienced a slowing of 
brain white matter loss progression, which may be attributed to the 
reduction in homocysteine (30). The mechanism is not entirely clear 
but it is hypothesized that the reduction in homocysteine from B 
vitamin supplementation may exert favorable and protective effects on 
nerve demyelination (31), and may attenuate the neurotoxic effects of 
homocysteine and N-methyl-D-aspartate (NMDA) agonists (32). 
Additionally, a randomized double-blind placebo controlled trial 
combining coenzyme Q 10 (CoQ10) with a multivitamin blend found 
that this combination may modulate parameters involved in blood 
flow to the brain which the researchers hypothesized provide a 
beneficial effect on neurovascular function (33).

Regarding anxiety and stress, Boyle et al. (34) investigated the 
effects of nutrient synergy on stress and anxiety in 100 moderately 
stressed adults. Participants received oral supplementation of either 
(1) Rhodiola + green tea + magnesium (Mg) + B vitamins; (2) 
Rhodiola + Mg + B vitamins; (3) Green tea + Mg + B vitamins; or (4) 
placebo in a double-blind parallel design before being exposed to the 
Trier Social Stress Test which involved delivering a speech and 
mathematical cognitive test in front of an unresponsive human panel. 
A synergistic effect was observed as most interventions provided some 
positive effects, but the most profound increase in 
electroencephalogram (EEG) resting state theta activity (indicative of 
a relaxed and alert state) was observed in the group where all the 
nutrients were provided in one treatment (Rhodiola + green tea + 
Mg + B vitamins). Furthermore, the blend of all ingredients attenuated 
subjective stress, anxiety, and mood disturbance, and heightened 
subjective and autonomic arousal to the greatest extent (Table 1). A 
follow-up study from this lab demonstrated the same combination of 
ingredients (Rhodiola + green tea +Mg + B vitamins) increased 
spectral theta brain activity while performing two attentional tasks 
suggesting an increased attentional capacity under conditions of stress 
compared to smaller isolated groups of ingredients (54). The 
synergistic effects of Mg and vitamin B6 were also examined as a 
therapy for anxiety-related premenstrual symptoms (55). Forty-four 
adult women were randomly assigned to one of four groups: (1) 
200 mg Mg; (2) 50 mg vitamin B6; (3) 200 mg Mg + 50 mg vitamin B6; 
or (4) placebo. After supplementation through one full menstrual 
cycle, the investigators reported a synergistic effect of the combined 
Mg + vitamin B6 supplementation for reducing premenstrual anxiety 
related symptoms to a greater extent than either ingredient alone. 
Another study investigating the effects of nutrient synergy on 
Alzheimer’s disease severity provided participants with either a 
placebo, omega-3 fatty acids alone [675 mg docosahexaenoic acid 
(DHA) and 975 eicosatetraenoic acid (EPA)], or omega-3 fatty acids 
+ alpha-lipoic acid (ɑLA; 600 mg) taken daily for 1 year (35). Data 
revealed that there was significantly less decline in the Mini-Mental 
State Examination score and Activities of Daily Living assessment for 
the omega-3 fatty acid + ɑLA group only. Based on the results, the 
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authors concluded that the combination of ɑLA with omega-3 fatty 
acids was effective at slowing the cognitive and functional decline in 
Alzheimer’s disease over a 12-month period.

Nutrient synergy and cardiovascular health

Nutrient synergy is particularly relevant in the context of 
cardiovascular health, where various nutrients play crucial roles in 
supporting heart health, blood flow, and vasculature compliance. 
Epidemiological data have consistently indicated that elevated levels of 
homocysteine in circulation are associated with an increased risk of 
cardiovascular disease (56, 57). Studies have shown that consuming 
adequate amounts of folate, vitamin B6, and vitamin B12 can work 
synergistically to lower homocysteine levels, thus reducing the risk of 
heart disease (58, 59). Specifically, data indicate that combining vitamin 
B12 with folic acid supplements optimizes the reduction in homocysteine 
levels in a study including 150 young women, potentially amplifying the 
advantages of these interventions in preventing cardiovascular disease 
(36). Additional work has been done examining the effects of CoQ10 and/
or vitamin E on cardiometabolic outcomes in patients with polycystic 
ovary syndrome (PCOS), which is the most prevalent endocrine disorder 

in reproductive age women (37). Eighty-six women with PCOS were 
allocated to supplement with either CoQ10, vitamin E (as d-α 
-tocopherol), CoQ10 plus vitamin E, or placebo for 8 weeks. Interestingly, 
only the CoQ10 plus vitamin E treatment significantly reduced 
low-density lipoprotein cholesterol (LDL-C), increased high-density 
lipoprotein cholesterol (HDL-C), reduced atherogenic coefficient, and 
decreased visceral adiposity index values. Savinova et al. (38) conducted 
a parallel clinical trial assessing the effects of 2 g/day of extended release 
niacin, 4 g/day of omega-3 fatty acids, a combination of the two, or a 
respective dual placebo for 16 weeks on plasma lipids and lipoproteins in 
56 adults with metabolic syndrome. The combination of niacin and 
omega-3 fatty acids demonstrated a synergistic effect, significantly 
increasing LDL apoE/apoB ratios and LDL apoA1/apoB ratios, suggesting 
that the enhanced cardiovascular effect likely arises from the 
combination therapy.

Nutrient synergy and respiratory health

The adverse impact of pollution on various chronic respiratory 
conditions is well-documented (60–62). According to the World 
Health Organization, air pollution stands out as the most significant 

FIGURE 1

Example of Nutrient Synergy in foods (Spirulina spp.). This figure illustrates the diverse array of nutrients found in foods, highlighting their vital roles in 
supporting human health and well-being. In addition to macronutrients, foods provide an intricate blend of micronutrients, phytonutrients, and 
bioactive compounds, each contributing to various physiological functions. FA, fatty acid.
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environmental health risk globally (63). Recent attention has been 
drawn to the potential of dietary changes and antioxidant 
supplementation in reducing the harmful effects of pollution in 
healthy populations and in individuals with conditions like asthma 
and other chronic respiratory diseases (64). Further, nutrient synergy 
may be an advantageous strategy as there are mixed data regarding 
supplementation with single vitamins for respiratory health (65, 66). 
Indeed, most studies which observed a benefit of antioxidant 
supplementation on protection against environmental pollutants 
involve both vitamin A and C (64). Likely due to a multi-targeted 
approach where, in vitro, vitamin C serves as a potent free radical 
scavenger, while vitamin A protects against membrane damage due to 
its ability to disrupt lipid peroxidation (67, 68). Grievink and 
colleagues (39) reported that daily supplementation of 500 mg of 
vitamin C and 100 mg of vitamin E for 15 weeks provided protection 
against the acute effects of ozone environmental pollution on forced 
expiratory volume (FEV) and forced vital capacity (FVC) in 38 
non-smoking Danish cyclists. Additionally, an antioxidant 
intervention (650 mg vitamin C + 75 mg vitamin E + 15 mg beta-
carotene) significantly improved FVC, FEV, and forced expiratory flow 
compared to a placebo in Mexican street workers exposed to 

hazardous environmental air conditions in a cross-over fashion. In 
follow-up assessments, it was also observed that the synergistic effects 
of the antioxidants provided a residual protective effect (40). Given 
that a majority of studies observing beneficial effects of antioxidant 
supplementation on respiratory function include a mixture of multiple 
nutrients, it is likely that the concept of nutrient synergy is driving 
these outcomes, possibly by an increase in total antioxidant capacity. 
However, a recurring limitation in understanding the synergistic 
potential of nutrients is the general lack of individual nutrient arms in 
many clinical trials utilizing nutrient combinations.

Nutrient synergy and digestive health

One prime example of nutrient synergy specific to the gut 
microbiome and gut health is synbiotics. Synbiotics, in its name, is the 
synergy between prebiotics and probiotics. The intended purpose of a 
synbiotic is to deliver both prebiotics as well as probiotics to the 
human gut to exert health benefits. The prebiotic used can either 
directly support the efficacy of the probiotic itself or it can support the 
resident microbiota. For example, fructans can be very supportive of 

TABLE 1 Examples of nutrient synergy benefits in clinical trials.

Body system Synergistic ingredients Outcome

Nervous

Rhodiola + Magnesium + Green Tea 

+ B-vitamins S

Attenuated stress, heightened subjective and autonomic arousal, increased EEG theta activity (34)

Vitamin B12, Folate, and Vitamin B6 
C

Reduction in homocysteine; Slowing of brain matter loss progression (29, 30)

Omega-3 + Alpha Lipoic Acid S Less decline in the Mini-Mental State Examination score and activities of daily living assessment (35)

Cardiovascular

Folic Acid + Vitamin B12 S Reductions in homocysteine (36)

Coenzyme Q10 + Vitamin E S Reduced low-density lipoprotein cholesterol (LDL-C), increased high-density lipoprotein cholesterol 

(HDL-C), reduced atherogenic coefficient (37)

Omega-3 + Niacin S Increased LDL apoE/apoB ratios and LDL apoA1/apoB ratios (38)

Respiratory

Vitamin C + Vitamin E C Protection against the acute effects of ozone pollution (39)

Vitamin C + Vitamin E + Beta-

carotene C

Improved FVC, FEV, and forced expiratory flow in hazardous environmental conditions (40)

Digestive

Synbiotic (probiotic + prebiotic)S Greater quality-of-life improvements and a significant decrease in CRP levels (41)

Synbiotic (probiotic + prebiotic) C More effective in eradicating Helicobacter pylori when combined with a standard medication therapy 

(42)

Endocrine

Zinc + Selenium S Improved T3, free T4, and TSH levels (43)

Vitamin D + Calcium + Leucine-

enriched whey protein drink C

Suppression of parathyroid hormone, increased serum 25(OH)D, and accompanying small 

improvements in bone mineral density (44)

Musculoskeletal

Calcium + Vitamins D + Vitamin K S Improved bone mineral density, circulating levels of biomarkers associated with bone health, and risks 

of fractures (45, 46)

Vitamin D + Calcium S Reduced parathyroid hormone and increased calcium/creatinine ratio (47)

Immune

Chlorella vulgaris + Vitamin E S Attenuation of TNF-α levels in patients with NAFLD (48)

Vitamin C + Zinc C Symptom relief from the common cold (49)

Vitamin C + Vitamin E S Enhanced immune response (50)

Integumentary

Hesperiden + Rosemary C Increased the minimal erythema dose after UV irradiation (51)

Vitamin C + Vitamin E C Increased the minimal erythema dose after UV irradiation (52)

Lycopene + Beta-carotene C Prevent erythema following exposure to UV irradiation (53)

S, synergistic study design; C, combination study design; EEG, electroencephalogram; CRP, C-reactive protein; T3, triiodothyronine; T4, thyroxine; TSH, thyroid stimulating hormone; TNF- 
α, tumor necrosis factor alpha; NAFLD, non-alcoholic fatty liver disease; UV, ultra-violet.
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probiotic lactic acid bacteria and stimulate their growth (69), and 
glucose derived oligosaccharides like polydextrose can increase 
intestinal Ruminococcus intestinalis and enhance butyrate production 
(70). These are just a few of many in an exhaustive list that is beyond 
the scope of this review. However, through a strategic approach, 
unique prebiotics and probiotic species can be  selected to exert 
specific and beneficial synergistic effects to the gut microbiome and 
ultimately to the host’s health. In a human clinical trial, Fujimori et al. 
(41) compared the effectiveness of probiotic (2 ×109 CFU of 
Bifidobacterium longum), prebiotic (8 g psyllium), and synbiotic 
therapies (probiotic + prebiotic) in the treatment of ulcerative colitis 
using Inflammatory Bowel Disease Questionnaires and blood analysis. 
The results indicated that synbiotic therapy led to greater quality-of-
life improvements and a significant decrease in C-reactive protein 
levels compared to probiotic or prebiotic treatment, suggesting its 
potential synergistic effect in treating ulcerative colitis. Additionally, 
one study found that a synbiotic consisting of Lactobacillus acidophilus 
(4×109 CFU) with the prebiotic inulin (800 mg) was more effective in 
eradicating Helicobacter pylori when combined with a standard 
medication therapy as opposed to the medication regimen alone (71).

Beyond just the common example of synbiotics, there could 
be beneficial synergy between specific components of whole foods, 
phytonutrients, and microbes (both probiotics and resident 
microbiota). There is growing evidence that some phytonutrients (e.g., 
phenolic acids or flavonoids) can exert a prebiotic-like effect on the 
resident microbiota (42, 72–74). Despite this growing evidence, more 
data is needed to understand which specific phytonutrients or classes 
of phytonutrients provide a prebiotic effect and if these nutrients have 
unique interactions with particular probiotic species or strains. 
Therefore, more research is needed to fully understand the effects of 
using phytonutrients as a prebiotic in a synbiotic formulation.

Nutrient synergy and musculoskeletal 
health

Bone health research has primarily focused on dietary intake or 
supplementation of vitamin D and calcium (Ca) due to their 
relationship with bone mass and fall risk, but several other 
micronutrients play a role in bone health [e.g., vitamin K, Mg, 
potassium (K)] (75). Although the data are mixed with some studies 
demonstrating no effect of supplemental vitamin D and/or Ca on 
bone health (76, 77) there are several well-controlled clinical trials and 
meta-analyses suggesting there is a synergistic relationship between 
intake of Ca and vitamins D and K on markers of bone health (i.e., 
bone mineral density, circulating levels of biomarkers associated with 
bone health, and risks of fractures) (44–47, 78). Two systematic 
reviews assessing the combined effects of vitamin D and Ca on 
fractures demonstrated significant reduction in fracture risk in 
middle-aged to older populations and osteoporotic individuals (46, 
78). Furthermore, a clinical trial assessing the effects of vitamin 
D + Ca + vitamin K vs. vitamin D + Ca in postmenopausal women 
(>60 years) for 6-months demonstrated significantly better 
improvements in lumbar bone mineral density for the vitamin K 
group compared to no vitamin K (45). This may be partially explained 
by data indicating that vitamin D augments vitamin K-dependent 
bone proteins and triggers bone formation in vitro by upregulating 
expression of genes specific to osteoblasts (79, 80). Lastly, Gariballa 

et  al. (47) demonstrated that vitamin D + Ca reduced parathyroid 
hormone and increased Ca/creatinine ratio after 6-months compared 
to vitamin D, Ca, or placebo in adults with relatively low baseline 
25(OH)D levels (19.0–25.4 ng/mL). The results from Gariballa et al. 
(47) suggest that supplementation with calcium and vitamin D, 
compared to vitamin D or Ca individually, may improve bone health 
due to the relationship with high parathyroid hormone and increases 
in bone turnover (81). Taken together, the data from meta-analyses 
and clinical trials suggest there may be a synergistic effect of nutrients 
that are individually important for bone health.

The food matrix of whole food protein sources (e.g., milk, eggs) 
offer distinct nutrient compositions that can impact their effects on 
muscle protein synthesis (MPS) (82, 83). For example, protein sources 
which are high in micronutrients such as vitamin B12, zinc, choline, 
and selenium (e.g., whole eggs) appear to better support muscle 
growth and repair compared to protein sources lower in 
micronutrients (e.g., egg whites) indicating a synergistic relationship. 
Elliot et al. (84) was the first to demonstrate a more robust increase in 
MPS when comparing consumption of whole milk to skim milk 
following resistance exercise. Other studies have shown that acute 
consumption of whole eggs compared to the egg white alone leads to 
a more pronounced upregulation of mTORC1 and MPS response 
following resistance exercise (83, 85). A recent human trial also 
observed greater gains in muscle hypertrophy when adults consumed 
whole eggs following resistance training bouts for 12 weeks, compared 
to those which only consumed egg whites (86). Collectively, these data 
support a synergistic effect of the food matrix that increases the 
utilization of amino acids for muscle protein synthesis.

Nutrient synergy and endocrine health

Multiple nutrients including selenium and zinc are necessary for 
hormone function, in particular thyroid hormones. Selenium is an 
essential cofactor for thyroid function as it is involved in thyroid 
hormone metabolizing enzymes known as selenoproteins. Selenium 
also works to protect the thyroid gland from oxidative stress (87, 88). 
Two large epidemiological studies found an inverse correlation 
between selenium levels and thyroid function metrics in mildly iodine 
deficient women (89, 90). Additionally, zinc plays a key role in the 
metabolism and function of various thyroid hormones, including 
thyroid-stimulating hormone (TSH) (43). Selenium and zinc together 
appear to have a synergistic benefit on biologically active forms of 
thyroid hormone. One double-blind randomized controlled clinical 
trial allocated women with obesity and hypothyroidism to 4 groups 
(30 mg zinc +200mcg selenium, 30 mg zinc, 200ug selenium, or 
placebo). The combination of selenium and zinc significantly 
improved free triiodothyronine (T3) compared to selenium alone or 
placebo. Further, only the zinc + selenium group significantly 
improved free thyroxine (T4) and TSH levels, with all three other 
groups eliciting no effect (43). Hill et al. (44) assessed the effects of a 
vitamin D, calcium, and leucine-enriched whey protein drink in 380 
adults with sarcopenia for 13 weeks and reported suppression of 
parathyroid hormone, increased serum 25(OH)D, and accompanying 
small improvements in bone mineral density compared to an 
isocaloric control. Given the complex nature of endocrine function, 
more data is needed regarding the effects of synergistic nutrient 
combinations on male and female endocrine parameters.
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Nutrient synergy and immune function

Certain nutrients, when combined, can have more potent effects 
on immune response and overall immune health. A review of two 
double-blind randomized placebo-controlled trials suggests that 
there may be a synergistic benefit when vitamin C is combined with 
zinc for symptom relief from the common cold (49). A single-
blinded human trial assessing the combination of vitamin C (1 g) 
and vitamin E (400 mg) in healthy adults showed the combination 
of the two vitamins improved Interlukin-1β and tumor necrosis 
factor-α (TNF-α) levels and reduced lipopolysaccharide-induced 
prostaglandin E2 production, suggesting an enhanced immune 
response (50). Another study evaluated the additive effects of 
Chlorella vulgaris (1.2 g) supplementation along with vitamin E 
(400 mg) in adults with obesity and non-alcoholic fatty liver disease 
(48). The study demonstrated significant improvements in 
bodyweight, fasting serum glucose, and TNF-α levels in the 
Chlorella vulgaris + vitamin E group compared to the placebo + 
vitamin E group, suggesting that Chlorella vulgaris could be  an 
adjunctive therapy to improve weight management, inflammation, 
glucose control, and liver function in patients with non-alcoholic 
fatty liver disease.

Nutrient synergy and integumentary health

Polyphenols and antioxidants are both bioactive compounds 
that, when used in combination, can provide synergistic effects that 
have been studied for their potential to offer mild protection 
against harmful ultraviolet (UV) radiation from the sun, retain 
moisture, and enhance the skin barrier function (91–93). When 
UV rays are absorbed by the skin, they can increase production of 
free radicals which can directly damage intracellular components 
such as DNA, proteins, lipids, and increase the risk of certain skin 
disorders (94). Vitamin E is a fat-soluble antioxidant primarily 
residing in cell membranes, where it protects the cell against lipid 
peroxidation. When vitamin E neutralizes a free radical, it becomes 
oxidized itself. However, in vitro, vitamin C can regenerate vitamin 
E by donating an electron to the oxidized vitamin E molecule, 
essentially recycling it and allowing it to continue its antioxidant 
function (95). In a double-blind placebo-controlled study, 
participants consumed vitamin C combined with vitamin E for 
8 days leading up to a sunburn exposure to determine the minimal 
erythemal dose (MED) or the threshold in which a sunburn would 
occur (52). Data revealed that the vitamin C and vitamin E 
supplementation significantly increased the MED and reduced 
subcutaneous blood flow, indicating a protective effect against UV 
radiation. Lycopene (16 mg) and β-carotene (500mcg), two efficient 
singlet oxygen quenchers, have been shown to prevent erythema 
following exposure to UV irradiation compared to a placebo 
following 10 weeks of supplementation (53). Furthermore, a 
synergistic oral mixture of hesperidin, a type of citrus bioflavonoid, 
and rosemary for 12 weeks significantly increased the MED after 
UV irradiation at 8 and 12 weeks compared to placebo (51). This 
study also reported an in vitro experiment which showed that the 
hesperidin/rosemary combination allowed for a greater number of 
human keratinocytes surviving following UVB exposure while 
protecting against oxidative stress (51).

Challenges investigating nutrient synergy 
and future directions

While nutrient synergy may be an accepted premise in the field of 
nutrition, there are relatively few studies which specifically investigate 
this phenomenon outside of whole food investigations. In recent 
decades, whole food interventions have been the main avenue of 
research investigating multiple nutrients in combination, in large part 
due to commodity grants (96). While this is promising for advancing 
our knowledge on the benefits of nutrient synergy, these studies 
cannot indicate which constituents of the whole food are driving the 
health benefit. To provide better solutions for human health, research 
is needed to identify which constituents of whole foods (e.g., vitamins, 
minerals, phytonutrients) are primarily responsible for the synergistic 
effects seen in the host. Furthermore, foods vary in nutrient content 
based on region or soil quality, and research shows that nutrient 
quality has declined over the decades (97, 98). Another limitation in 
interpreting some food interventions (via powder, juice, or whole 
food) is that the phytonutrient(s) responsible for a desired health 
outcome has not been quantified in methodology, making it difficult 
to determine if a Type II error occurred due to low levels of a desired 
constituent of the food (99–101).

It is also important to note that although there are some well-
designed clinical trials ideally suited to investigate nutrient synergy (e.g., 
placebo, treatment A, treatment B, vs. treatment A + B), some of the 
studies included in this review are not properly designed to delineate a 
synergistic effect (e.g., treatment A + B vs. placebo) but a combination 
study design (see Table  1). Specifically, multivitamin and mineral 
research is especially challenging to elucidate nutrient synergy due to 
the large number of ingredients contained in the active treatments 
group compared only to a placebo. However, the reason these trials did 
not employ a true nutrient synergy design was likely in order to build 
upon previous evidence indicating these individual nutrients provided 
a benefit for the same endpoint or had a similar mechanism. These 
studies utilized the theoretical framework that the combination of 
nutrients will have a greater effect than the individual nutrients. Clinical 
trials specifically designed to assess nutrient synergy are also more 
expensive and require larger sample sizes compared to the trial designs 
employed in some studies discussed in this review.

Nutrients present in whole foods may have different effects on our 
health compared to nutrients that are supplemented in sufficient or 
even substantially higher amounts. Few nutrition experts would refute 
a “food first” approach to optimizing human health; it is also 
undeniable that consuming adequate amounts of certain nutrients to 
exert a physiological effect is often not practical or possible from 
whole food sources (102). Conversely, if the desire is to provide 
supplemental nutrients in the quantities they are provided in nature, 
researchers and companies can apply innovative delivery systems that 
combine different nutrients to further enhance bioavailability and 
absorption. For instance, encapsulating two or more synergistic 
nutrients in liposomes or nanoparticles may improve their uptake and 
distribution in the body, potentially enhancing their beneficial effects 
(103–105). Additionally, several studies have demonstrated superior 
effects of nutrient combinations at lower doses compared to larger 
amounts of the isolated nutrients and improved research practices 
may allow for more effective dosing strategies within the framework 
of synergism (106–108).

One key limitation in the current understanding of nutrient 
synergy is the lack of precise mechanisms of action. Many of the 
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aforementioned studies examined key physiological outcomes that 
benefit from nutrient synergy, however the mechanism of how they 
are achieved is not always clear. Investigators may start utilizing 
cell culture models or new technologies to study the synergistic 
effects of different nutrients (109). For example, immune cells can 
be  exposed to combinations of vitamins, minerals, and 
phytochemicals to exert specific changes in immune cell activity, 
cytokine production, or cell proliferation. Additionally, other 
investigators have suggested utilizing in vitro diffusion assays, 
checkerboard arrays, or time-kill assays to study the interactions 
between nutrients which are traditionally utilized in microbiology 
(110). Beyond cell models, utilizing an organ-on-a-chip model, 
which is a microfluidic cell culture device that replicates the 
structure and function of a specific human organ or tissue, may 
allow researchers to study organ-level responses to drugs, 
phytonutrients, or synergistic combinations of nutrients in a 
controlled environment (111–113). These models can provide 
mechanistic insights into how nutrients work together to support 
health and longevity.

Advances in technology and the new -omics era may help 
elucidate nutrient mechanisms of action and provide more nuance 
in synergy in clinical settings. Transcriptomics, proteomics, and 
metabolomics may clarify if unique nutrient combinations impact 
the ADME of specific nutrients. Advances in the field of 
microbiomics could also shed light on how the microbiome and 
their metabolites shape how nutrients are processed in the 
gastrointestinal tract, before even reaching systemic circulation. 
The application of nutrigenomics, or the understanding of unique 
polymorphisms in a person’s genome impacts metabolism, can 
help identify individuals who may need more or less of specific 
nutrients to achieve similar serum concentrations relative to a 
majority population. Ultimately, the use of all these -omics can 
be applied to demonstrate key differences in the way whole foods 
or unique nutrient combinations impact the body when compared 
to the individual nutrients alone.

Through the use of artificial intelligence (AI), it may be less 
daunting for researchers to utilize these emerging tools to gain a 
deeper understanding of the complex interactions between 
nutrients and biological systems (114). Leveraging this technology 
may allow for novel nutrient synergies to be discovered in a cost-
efficient manner that can be harnessed to enhance health, prevent 
diseases, and optimize nutrition interventions (115, 116). AI 
algorithms can efficiently integrate data from various sources, 
especially sources with exhaustively large data sets (e.g., 
microbiome genomics, proteomics, metabolomics, clinical study 
outcomes), to create comprehensive analyses. These data sets can 
be analyzed to identify patterns and correlations between different 
nutrients and their effects on biological processes (117). For 
example, some researchers have already developed a “Combination 
Index” which uses mathematical modeling to quantitatively express 
the interaction between nutrients and the software which analyzed 
these processes may be facilitated and enhanced by the use of AI 
(118, 119). Despite this potential, there would still be a vital need 
for AI-driven nutrient synergy discoveries and its effects on human 
health to be validated by traditional experimental research and 
clinical studies (120).

While outside the purpose and scope of this review, it is 
important to note that alongside nutrient synergy exists the concept 
of nutrient antagonism (110, 118). Antagonism in nutrient synergy 

refers to a situation where the presence of one nutrient interferes with 
the absorption, utilization, excretion, or function of another nutrient 
(118, 119). More recently, the term “anti-nutrients” have been applied 
to perpetrator nutrients which exert an antagonistic effect on other 
nutrients (119). Common examples of these perpetrator nutrients 
include, but are not limited to phytic acid, lectins, oxalates, and 
tannins. Phytic acid, as an example, impedes the absorption of iron, 
zinc, magnesium, calcium, and manganese by forming insoluble salts 
with the ionized minerals (121, 122). A similar mechanism of action 
is true for oxalates which form insoluble salts with calcium and 
magnesium and tannins which form insoluble salts with iron (123, 
124). Alternatively, lectins have been known to damage the brush 
border of proximal small intestine epithelial cells leading to impaired 
absorption by altering the permeability of the cells (125). Beyond 
nutrient-nutrient interactions, it is also important to understand that 
prescription medications can act as perpetrators and impede nutrient 
absorption. Several antibiotics (e.g., penicillins, fluoroquinolones, 
tetracyclines) can either inhibit the synthesis of vitamins, decrease 
absorption, or form insoluble complexes decreasing the bioavailability 
of various minerals and vitamins (126). Beyond antibiotics, antacids, 
proton pump inhibitors, metformin, antipsychotics, antiepileptics, 
ACE inhibitors, and aspirin are just a few in an exhaustive list of 
pharmacologic agents which have an equally diverse range of 
mechanisms which alter nutrient bioavailability (126). Antagonism 
can lead to reduced overall health benefits when certain nutrients are 
consumed together or consumed together in incorrect quantities 
and/or ratios. This highlights the complexity of nutrient relationships 
and emphasizes the need to carefully consider adopting improved 
research techniques and methodologies in the study of 
nutrient interactions.

Conclusion

In conclusion, mounting evidence suggests that certain nutrients, 
when consumed together, can have a greater efficacy than when 
consumed alone and have a profound impact on health and longevity. 
Understanding the intricate mechanisms of nutrient synergy has 
implications for developing dietary strategies to support human health 
and potentially improve disease prevention. As research in this area 
continues to evolve, uncovering the full extent of nutrient synergy’s 
influence on health could pave the way for more targeted and effective 
interventions to promote overall well-being.
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