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Introduction: Hu sheep, known for its high quality and productivity, lack 
fundamental scientific research in China.

Methods: This study focused on the effects of 24 h postmortem aging on 
the meat physiological and transcriptomic alteration in Hu sheep.

Results: The results showed that the 24 h aging process exerts a substantial 
influence on the mutton color, texture, and water content as compared 
to untreated group. Transcriptomic analysis identified 1,668 differentially 
expressed genes. Functional enrichment analysis highlighted the importance 
of glycolysis metabolism, protein processing in endoplasmic reticulum, and the 
FcγR-mediated phagocytosis pathway in mediating meat quality modification 
following postmortem aging. Furthermore, protein-protein interaction analysis 
uncovered complex regulatory networks involving glycolysis, the MAPK 
signaling pathway, protein metabolism, and the immune response.

Discussion: Collectively, these findings offer valuable insights into the 
molecular mechanisms underlying meat quality changes during postmortem 
aging in Hu sheep, emphasizing the potential for improving quality control 
strategies in mutton production.
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1 Introduction

Mutton holds great value in Chinese culinary culture and offers numerous benefits. 
Its exceptional taste, high protein content, balanced fat levels, and low cholesterol levels 
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contribute to its consumer appeal (1). Consequently, there is a growing 
demand for lamb meat. Additionally, the improvement in living 
standards and changes in dietary preferences have led consumers to 
expect better quality mutton. However, meeting these expectations 
poses challenges due to the large market supply and demand. 
Therefore, it becomes essential to conduct thorough research on the 
post-slaughter quality of mutton.

Postmortem aging is an essential stage in mutton processing, 
and extensive research has demonstrated its significant 
enhancement of meat quality (2–5). This improvement is 
primarily due to anaerobic respiration during post-slaughter 
storage, resulting in the generation of lactic acid. Under controlled 
conditions of temperature, humidity, and airflow, lactic acid is 
enzymatically decomposed into carbon dioxide and water. And 
the intracellular adenosine triphosphate is hydrolyzed into the 
flavor-enhancing substance inosine monophosphate. Moreover, 
the altered pH not only increases tenderness but also aids 
digestion and absorption. Edible quality is a key determinant of 
meat quality, focusing on sensory attributes such as color, 
tenderness, and water retention. The duration of maturation after 
slaughter significantly affects the edible quality of the meat. 
Abdullah and Qudsieh (2) studied the quality changes in mutton 
stored for 24 and 168 h, and found that the meat within 
168 h-treated exhibited increased brightness (L*) and redness (a*), 
as well as improved tenderness. Gao et al. (4) found that Jinta 
mutton that underwent aging process under optimal conditions 
(0–4°C, 90% humidity, hung for 16–20 h, then frozen at −20°C 
and matured on the second day) had superior meat color, pH, and 
flavor compared to untreated mutton. Martínez-Cerezo et al. (5) 
observed that postmortem aging affected the texture of Rasa 
Aragonesa, Churra, and Spanish Merino lambs, especially in the 
first 4 days, and the effect continued until day 16, but with a 
slower tenderization rate. In addition, Choe et al. (3) found that 
increasing the aged temperature (3 or 7°C) for lamb loin 
significantly shortened the required treatment time before 
freezing while maintaining equivalent quality characteristics, such 
as tenderness, drip loss, and shelf life, as 14 days aged-treated loin 
at −1.5°C. Despite significant research on the physiological and 
biochemical effects of postmortem aging on mutton, further 
investigation is needed to decipher the underlying transcriptional 
expression profiles and molecular mechanisms.

Transcriptomics is an effective means of studying gene expression 
and regulatory patterns to reveal biological pathways and molecular 
mechanisms. It is widely used in animal research, especially for 
identifying candidate genes related to meat quality in livestock. For 
instance, Fernández-Barroso et al. (6) identified 200 differentially 
expressed genes and 245 novel isoforms in Iberian pigs with varying 
tenderness levels. Muniz et al. (7) using RNA-Sequencing (RNA-Seq) 
found newly mRNA isoforms linked to beef tenderness, involving 
oxidative processes, energy production, and striated muscle 
contraction. Damon et al. (8) discovered that breed differences in 
pigs’ muscle gene expressions and chemical composition are linked 
to energy metabolism, lipid deposition, and the role of cytoskeleton 
and contractile fibers in determining muscle and meat phenotypes. 
This technology has also been applied to research in mutton. Miao 
et al. (9) observed significant down-regulation of metabolic processes, 
particularly lipid metabolism, in Small Tail Han sheep’s adipose tissue 

compared to Dorset sheep, potentially explaining disparities in fat 
deposition. Moreover, mitochondrial genes ATP synthase F0 subunit 
6, cytochrome c oxidase subunit I, II, and cytochrome b were 
identified as core tenderness-related genes in Tan sheep meat (10). 
RNA-Seq, therefore, offers robust technical support for understanding 
molecular mechanisms after postmortem aging of mutton at the 
transcriptional level.

The Hu sheep (Ovis aries) of China is well-known for its early 
maturity, high productivity, and excellent meat production (11). This 
local variety, with a breeding history of over 800 years, also shows 
resilience to high temperatures and humidity (12). It is preferred for 
factory-scale meat sheep production and its market sales are on the 
rise. However, research on Hu sheep is still in its early stages, 
indicating significant potential for development. Thus, this study was 
performed to explore the potential mechanisms related to meat quality 
during postmortem aging using physiological, transcriptomic, and 
bioinformatic approaches.

2 Materials and methods

2.1 Sample preparation and treatment

In October 2022, nine 6-month-old male Hu sheep (O. aries) from 
a pasture located at Anhui Zhenghua Yang Ye Co., Ltd. in China, with 
comparable body weights (45 ± 1.62 kg) and feeding protocols, were 
selected for this study. Fresh lamb muscles between the 12th and 13th 
ribs on either side were meticulously packed in an insulated container 
and transported to the laboratory under controlled temperature 
conditions ranging between 0 and 4°C (13). The Hu sheep meat batch 
was then segregated into two distinct groups: a control group 
designated as before the aging process (BA) and an experimental 
group referred to as after the aging process (AA). The Hu sheep meat 
samples in the BA group underwent no treatment and were directly 
collected for index testing. On the other hand, the Hu sheep meat 
samples in the AA group underwent a refrigerated aging process at a 
temperature of 4°C for 24 h prior to conducting the assays. A portion 
of the Hu sheep meat samples were selected for physiological analysis 
such as color and pH measurements, determination of textural profile 
and cooking loss, and assessment of nuclear magnetic properties. The 
remaining samples weighing 0.2 g were immediately cryopreserved in 
liquid nitrogen for future transcriptome sequencing studies, with 
three biological repeats.

2.2 Color and pH measurement

To ensure accurate color measurement, only areas without any 
apparent imperfections that could potentially impact the consistency 
of color readings were selected (14). To measure meat color, the 
surface of meat samples was scanned using an NR10QC Color Meter 
from Shenzhen ThreeNH Technology Co., Ltd., which provided 
readings for lightness (L*), redness (a*), and yellowness (b*) in 
accordance with the manufacturer’s instructions. pH values in the 
muscle tissue were measured by inserting a calibrated pH probe 
(PHs-2F from Shanghai INESA Scientific Instrument Co., Ltd.) to a 
depth of 2 cm in postmortem meat at random locations (15).
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2.3 Textural profile determination and 
cooking loss analysis

The TA. XT Express texture analyzer (Stable Micro Systems, 
United Kingdom) was used to analyze the texture of the Hu sheep meat 
before and after the aging process, following the method of Dong et al. 
(11) with slight modifications. Hardness (N) and chewiness (mJ) values 
were obtained by setting the parameters of the texture analyzer, including 
a pre-test speed of 5 mm/s, a test speed of 1.5 mm/s, a post-test speed of 
5 mm/s, a 5-s pause time between compressions, and a trigger force of 
5 g. The cooking loss is performed with the method of Wang et al. (12). 
In brief, high-quality meat samples were precisely weighed and measured 
to ensure a consistent thickness. A thermometer was inserted into the 
center of each sample and sealed in a steaming bag. The samples were 
heated in a controlled 80°C water bath until the core temperature 
reached 75°C. The heating process was stopped after 20 min of constant 
temperature. Once cooled to room temperature, the surface was carefully 
dried, and each sample was weighed. The cooking loss was determined 
by quantifying the weight difference of Hu sheep meat before and after 
cooking, under both BA and AA treatment conditions. The resulting 
values were then expressed as a percentage (%).

2.4 Magnetic resonance imaging 
measurement

Magnetic resonance imaging (MRI) measurements were 
conducted based on the method of Dong et al. (11) with alterations. 
The sample was placed in the center of the coil for MRI testing. A 
SPIN ECHO sequence was employed and the main parameters of the 
magnetic imaging (MRI) were average = 2, slice width (mm) = 3.0, slice 
gap (mm) = 2.0, waiting time (TR) = 500 ms, echo time (TE) = 20 ms, 
phase size = 192, and read size = 256.

2.5 Low-field nuclear MR analysis

The acquisition of transverse (T2) relaxation in Low-field nuclear 
MR (LF-NMR) was carried out following the method of Zheng et al. 
(16), with modifications. Water distribution of the Hu sheep meat 
samples was measured with the NMR analysis software. A sample of 
approximately 2 g of Hu sheep meat was placed in the center of the coil 
for nuclear magnetic testing, and the center frequency of the sample 
was obtained by an FID sequence. The CPMG sequence was then used 
for the subsequent detection. The main parameters of the T2 test 
included SF (MHz) = 21, RFD (ms) = 0.02, O1 (Hz) = 328,606.75, RG1 
(db) = 10.0, P1 (μs) = 14.00, DRG1 = 3, TD = 120,012, PRG = 3, TW 
(ms) = 4,500.00, NS = 16, TE (ms) = 0.200, and NECH = 3,000. After 
information was collected, data inversion was performed to obtain the 
transverse relaxation time T2 of the sample.

2.6 RNA extraction, sequencing, and data 
processing

The samples of Hu sheep meat underwent cryogenic grinding in 
liquid nitrogen. Total RNA was extracted from each sample using a 

Quick RNA isolation kit (Bioteke Corporation, Beijing, China). The 
quality assessment of the extracted total RNA was carried out using 
the NanoDrop  2000 (Thermo Fisher Scientific, USA), Qubit 2.0 
fluorometer (Life Technologies, USA), and Agilent 2,100 bioanalyzer 
(Agilent, USA) (17). Subsequently, the total RNA was sent to Beijing 
Novel Bioinformatics Co., Ltd. for the construction of cDNA libraries 
and de novo transcriptome sequencing using the Illumina 
NovaSeq 6,000 platform, which resulted in the generation of 150 bp 
paired-end reads (18). The raw sequencing data were archived in  
the Sequence Read Archive with the accession number 
SRR25065590-SRR25065595. After rigorous quality control, the clean 
reads were utilized for subsequent analyses. Differential gene 
expression analysis was performed using FPKM values and DESeq2 
(19, 20). Genes meeting the criteria of having a value of p < 0.05 and 
|log2FoldChange| > 0 were deemed as differentially expressed genes 
(DEGs) (21, 22). The potential molecular functions and biochemical 
pathways were determined via Gene Ontology (GO) enrichment 
analysis with a significance threshold of value of p < 0.05, and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) metabolic pathway 
enrichment analysis with a corrected value of p < 0.01, following the 
method of Young et al. (23) and Mao et al. (24).

2.7 Statistical analysis

The One-way ANOVA analysis, followed by Duncan’s multiple 
range test with a significance threshold of p < 0.05, was used to 
perform significance analysis on the data presented in the figures and 
tables of the experiment using SPSS software (Version 21) (18). The 
means ± SE were used to represent all data depicted in the figures. 
Venn diagrams and hierarchical clustering were analyzed on the 
Novogene online platform.1 Additionally, other graphical 
representations were generated using GraphPad Prism software 
(Version 9.0.2).

3 Results

3.1 Changes in mutton color and pH of Hu 
sheep after postmortem aging

To investigate the impact of postmortem aging on the 
physicochemical properties of Hu sheep, color and pH measurements 
were conducted before and after the aging process (Figure 1). The 
results showed substantial variations in both color and pH levels 
between the untreated and treated samples. Notably, the aging process 
significantly increased the values of Lightness (L*), Redness (a*), and 
Yellowness (b*) in Hu sheep meat (Figures 1A–C). Compared to the 
non-aging-treated group, the values of L*, a* and b* were 2.4, 7.2 and 
14.2% higher, respectively. Among these, the b * values changed the 
most. In contrast, the pH value significantly decreased as a result of 
the aging process (Figure 1D).

1 https://magic.novogene.com
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3.2 Effect of aging process on the mutton 
textural characteristics of Hu sheep

Textural characteristics are an important aspect in determining 
the sensory presentation of meat. To explore the relationship between 
the aging process and the textural characteristics of the meat 
products, the hardness and chewiness of the samples were examined. 
The obtained findings, as illustrated in Figure  2, demonstrated a 
marked elevation in the hardness of Hu sheep meat subsequent to the 
aging process compared to controlled samples. Furthermore, a 
substantial alteration in chewiness was observed under aging 
conditions, showing a significant surge of 75.6% relative to the 
controlled level.

3.3 Cooking loss analysis and water 
distribution analysis of Hu sheep meat 
utilizing magnetic resonance imaging and 
low-field nuclear MR relaxometry

To know the effect of the aging process on the moisture of Hu 
sheep meat, the cooking loss rates of meat samples were determined. 
A significant difference in the cooking loss of Hu sheep meat between 
the BA and AA group was found (Figure 3). This difference was evident 

in the marked increase observed after the aging process. Specifically, 
the loss rate of the AA group was more than 30%, which indicated that 
the water retention of Hu sheep meat decreased after the aging process.

The water distribution in the BA and AA-treated meat samples 
was visualized using magnetic resonance imaging (MRI). By 
applying pseudocolor processing, the spatial distribution of water 
molecules in Hu sheep meat could be  distinctly observed 
(Figure 4A). Typically, the red color in the image represents a high 
proton density, the blue color represents the low proton density. As 
shown in Figure 4A, the total signal intensity of aging Hu sheep meat 
decreased and the red area was unevenly distributed, with a 
reduction of red in the center. This suggests a decrease in water 
content and a change in its distribution, with water shifting from the 
center of the meat outward. In Figure 4B, the hydrogen proton signal 
intensity also significantly decreased after the aging process, 
indicating a reduction in water content in Hu sheep meat. This is 
consistent with the results observed in hydrogen proton nuclear 
magnetic imaging and further confirms that the aging process 
reduces the water holding capacity of mutton.

The analysis of multi-component relaxation characteristics 
revealed the presence of four distinct water populations in both BA 
and AA-treated mutton samples. These water populations had T2 
relaxation times ranging from 0.1 to 1, 1 to 10, 10 to 100, and 100 to 
1,000 ms, corresponding to bound water (T2b and T21), immobilized 

FIGURE 1

Color (A–C) and pH (D) changes in Hu sheep meat before (BA) and after the aging process (AA), with significance at p < 0.05 (one-way ANOVA) 
indicated by different lowercase letters above each column.
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water (T22), and free water (T23) (Figures  4C,D). In addition, the 
analysis showed that both BA and AA treated mutton exhibited the 
lowest P2b and P21, while manifesting the highest P22, followed by P23. 
Consequently, immobilized water was the main water phase of 
mutton. Furthermore, it was observed that P23 exhibited a decreasing 
trend, indicating a significant loss of free water (Figure 4C).

3.4 Assembly, differentially expressed 
genes selection, and enrichment analysis 
of GO and KEGG metabolic pathways

In order to gain deeper insights into the molecular mechanism 
behind the aging process of the Hu sheep meat quality, subsequent 
transcriptomic investigations were undertaken. The sequencing and 
assembly results are presented in Table 1. Upon raw read filtration, a 
total of 40,593,128-44,781,602 clean reads were successfully obtained. 
The Q20 and Q30 values were calculated to be 97.46–97.72% and 
93.12–93.57%, respectively. Furthermore, the GC content ranged from 
44.49 to 49.98% (Table 1).

The transcriptomic analysis of Hu sheep yielded a comprehensive 
set of 12,915 genes (Figure 5A). Detailed analysis of the expression 
profiles of meat samples from the control and AA groups facilitated 
the generation of a heatmap, demonstrating the hierarchical clustering 

among Unigenes (Figure 5B). It is noteworthy that 10,998 genes were 
found to be present in both treatment groups. Moreover, specifically 
in the AA and BA treated groups, there were 965 and 952 genes, 
respectively, that were exclusively obtained. Further analysis 
uncovered a total of 1,668 genes exhibiting differential expression. 
Among these, 920 genes displayed a down-regulated pattern, while 
748 genes were observed to be up-regulated (Figure 5C).

To explore the functional distribution characteristics of DEGs 
and their corresponding metabolic pathways, we conducted GO and 
KEGG enrichment analyses. The GO analysis results showed that 
there were 22 significantly affected biological pathways under aging 
conditions (Figure  6). Among them, there was a substantial 
enrichment of DEGs within specific biological processes, namely 
catabolic process, organic substance catabolic process, and cellular 
catabolic process. Furthermore, in the categories of iron ion 
homeostasis, cellular ion homeostasis, cellular iron ion homeostasis, 
cellular chemical homeostasis, transition metal ion homeostasis, and 
cellular metal ion homeostasis, only four upregulated DEGs were 
identified. Similarly, in the categories of negative regulation of the cell 
cycle and cell cycle process, only four and six down-regulated DEGs 
were found.

Further investigation conducted through KEGG pathway analysis 
revealed a notable enrichment of up-regulated DEGs within crucial 
pathways (Figure  7), such as glycolysis and FcγR-mediated 
phagocytosis. Conversely, the down-regulated DEGs displayed a 
conspicuous enrichment in the protein processing in endoplasmic 
reticulum. Specific analysis showed that 13 DEGs were involved in 
the glycolysis metabolic pathway (Figure 8). Out of these, 10 DEGs 
were found to participate in the biosynthesis of pyruvate and 
exhibited an up-regulated expression. Furthermore, 2 DEGs (one 
up-regulated and one down-regulated) and 1 DEG (up-regulated) 
were discovered to participate in the subsequent synthesis of lactic 
acid and alcohol (Figure  8), respectively. In FcγR-mediated 
phagocytosis, a total of 18 DEGs were identified, with 16 up-regulated 
and 2 down-regulated (Figure 8). In the metabolic pathway of protein 
processing in the endoplasmic reticulum, a comprehensive total of 25 
DEGs were identified. It is noteworthy that the majority of these 

FIGURE 2

Comparison of hardness (A) and chewiness (B) of Hu sheep meat 
before (BA) and after the aging process (AA), with significance at 
p  <  0.05 (one-way ANOVA) indicated by different lowercase letters 
above each column.

FIGURE 3

Cooking loss of Hu sheep meat before (BA) and after the aging 
process (AA), with significance at p  <  0.05 (one-way ANOVA) 
indicated by different lowercase letters above each column.
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DEGs exhibited a significant down-regulation, while only a mere 3 
genes displayed an up-regulated pattern (Figure 8). These genes play 
diverse roles, to varying extents, in essential biological processes 
including protein synthesis and degradation, such as the 
ubiquitination-mediated degradation of misfolded proteins.

3.5 Construction and modular analysis of 
protein–protein interaction network

By utilizing the STRING online database and the Cytoscape 
software, we successfully generated a PPI network in order to 
elucidate potential functional modules pertaining to Hu sheep 
meat quality after the aging process. The findings from the 

protein–protein interaction (PPI) analysis unveiled that, upon 
undergoing the aging process, a total of 54 nodes and 177 edges 
were acquired. Moreover, the PPI analysis discerned the existence 
of an intricate regulatory network interconnecting glycolysis, Fc 
gamma R-mediated phagocytosis, and protein metabolism 
throughout the course of the aging process (Figure  9; 
Supplementary Table S1).

Additionally, the implementation of the MCODE plugin led 
to the identification of three distinct functional modules, as 
depicted in Figure  10 and Supplementary Table S2. Cluster 1 
encompasses a total of 11 nodes and 37 edges, with HSPA5 serving 
as the seed node. The proteins within Cluster 1 primarily exhibit 
associations with protein processing and carbohydrate 
metabolism. Cluster 2 consists of 8 nodes and 18 edges, with 

FIGURE 4

Exploration of the effects of the aging process on Hu sheep meat through magnetic resonance imaging (MRI) and Low-field nuclear MR (LF-NMR) 
relaxometry. (A) proton density-weighted images and (B) corresponding quantitative signal intensity histogram, (C) water distribution, (D) low-field 
relaxometry distributed T2 relaxation times, with statistically significant differences at p  <  0.05 (one-way ANOVA) indicated by different lowercase letters 
above each column.

TABLE 1 Summary of assembly results of Hu sheep meat before (BA) and after aging process (AA).

Sample Raw reads Clean reads Clean bases Error (%) Q20 (%) Q30 (%) GC (%)

BA1 45,553,662 44,101,392 6.62G 0.03 97.72 93.57 44.49

BA2 47,197,656 44,781,602 6.72G 0.03 97.53 93.32 46.67

BA3 41,230,828 40,593,128 6.09G 0.03 97.51 93.34 49.98

AA1 46,748,564 46,072,050 6.91G 0.03 97.59 93.48 49.09

AA2 45,088,868 44,475,286 6.67G 0.03 97.57 93.37 46.65

The Q20 and Q30 percentages indicate the proportions of nucleotides with quality values greater than 20 and 30, respectively.
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GAPDH as the seed node, predominantly participating in 
glycolysis, the mitogen-activated protein kinase (MAPK) cascade, 
and protein metabolism. Cluster 3 comprises 4 nodes and 6 edges, 

with FCGR1A acting as the seed node. The proteins within this 
particular module mainly exhibit involvement in Fc gamma 
R-mediated phagocytosis.

FIGURE 5

Visual representations illustrating the unigenes of Hu sheep meat before (BA) and after the aging process (AA): Venn diagram (A), and hierarchical 
clustering (B), accompanied by the histogram (C), presenting the profiles of DEGs.

FIGURE 6

Identification of significantly enriched GO terms based on biological process after the aging process. The x-axis represents the number of DEGs, while 
the left y-axis displays various functional groups. Up-regulated DEGs are highlighted in red, and down-regulated DEGs are highlighted in green.
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4 Discussion

Hu sheep (O. aries) is a crucial breed in China’s efforts to 
conserve domesticated ovine genetic resources. It is essential in the 
Taihu Plain and known for its excellent qualities, such as high lamb 
yield, favorable wool characteristics, rapid growth, and optimal 
meat output (11, 12). Currently, frozen storage is the primary 
method for mutton preservation, as it inhibits the growth of surface 
microorganisms and slows down biochemical reactions, and thus 
plays a vital role in the circulation, sales, and storage process (15, 
25). Improper freezing methods can deteriorate mutton quality by 

accelerating protein denaturation through prolonged freezing time 
and thawing, thereby reducing its edibility. It was reported that the 
appropriate aging process subsequent to livestock slaughter is 
widely recognized as a pivotal factor in the establishment of optimal 
meat quality (2, 4). However, due to limited genetic resources, 
research on Hu sheep is still at its preliminary stages. To enhance 
the understanding of the molecular mechanisms governing 
postmortem aging-induced changes in meat quality in Hu sheep, 
transcriptomics analysis is crucial. Our study findings elucidate the 
fundamental involvement of glycolysis, protein processing in 
endoplasmic reticulum, and the FcγR-mediated phagocytosis 

FIGURE 7

KEGG enrichment analysis of Hu sheep meat after the aging process. The x-axis represents the number of DEGs, while the left y-axis reflects the 
diversity of functional groups. KEGG pathways related to up-regulated DEGs are highlighted in red, and those associated with down-regulated DEGs 
are highlighted in green.

FIGURE 8

Identification of DEGs in metabolic pathways: glycolysis (A), protein processing in endoplasmic reticulum (B), and FcγR-mediated phagocytosis (C). 
Up-regulated DEGs are denoted in red, whereas down-regulated DEGs are represented in green. The color bar in the lower left corner signifies the 
intensity of gene expression profiling.
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pathway in the determination of meat quality following postmortem 
aging in Hu sheep.

4.1 Implication of aging process in quality 
alterations of Hu sheep meat through 
glycolysis-related gene expression 
regulation

Appearance color is the most direct indicator for evaluating the 
edible quality of meat, exerting a considerable influence on 
consumers’ purchasing inclination (26). In this study, the color of Hu 
sheep meat changed during the post slaughter aging process 
(Figure  1). Specifically, the lightness (L*) exhibited a significant 
augmentation (Figure 1A), potentially attributable to the enzymatic 
degradation of mutton proteins leading to protein structure 
deterioration and enhanced light dispersion. Additionally, both the 
redness (a*) and yellowness (b*) values demonstrated noteworthy 
increments when compared to the control group (Figures  1B,C). 
Previous research has established the association between the a* and 
b* values with the oxidation–reduction state of myoglobin and lipid 
oxidation, respectively (27). The increased a* and b* values in this 

study could potentially stem from the generation of oxymyoglobin 
(OxyMb) through the oxygen bonding with myoglobin (Mb) under 
aerobic conditions, along with the accumulation of metmyoglobin 
(MetMb).

The pH dynamics greatly affect meat quality, impacting important 
aspects such as color, tenderness, and water holding capacity (28). 
After slaughter, animal pH levels start neutral or slightly alkaline and 
gradually decline. Our study found that pH significantly decreased 
under aging process (Figure 1D). The accumulation of lactic acid 
resulting from glycolysis during the early postmortem period emerged 
as a significant contributing factor to the decline in muscle pH levels 
(29). Another reason might be due to ATP depletion, resulting in a 
lower ATP threshold. It was also reported that the conversion between 
ATP and ADP, impacting muscle fiber cross-linking and meat 
hardening (10, 30). This explains the increased hardness and 
chewiness observed in the present study (Figure 2). These findings are 
consistent with Abdullah and Qudsieh (2)’s research, which showed a 
significant pH decrease within 24 h after postmortem aging in 
lamb meat.

Water retention in muscles and their products is vital for the 
juiciness of meat. In fact, it is established that meat contains 
approximately 75% water, serving as its principal constituent and 

FIGURE 9

The protein–protein interaction (PPI) network was established using the functional enrichment analysis conducted on Hu sheep after the aging 
process. Each node in the network corresponds to DEGs encoding proteins, and the edges symbolize associations between these proteins. Blue nodes 
specifically represent proteins linked to protein processing in endoplasmic reticulum, while green nodes represent proteins associated with Fc gamma 
R-mediated phagocytosis, and red nodes indicate proteins associated with glycolysis.
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exerting pivotal influence on both its functional attributes and textural 
characteristics (31). In this study, the cooking loss rate of AA-treated 
mutton significantly increased compared to controlled samples, which 
may be attributed to muscle stiffness and contraction after slaughter, 
as well as reduced protein space and muscle water retention. 
Additionally, moisture in meat predominantly occurs as bound water, 
free water, and immobilized water. After complex biochemical changes 
post-slaughter, the structures of muscles undergo alterations that 
impact the distribution and state of these three water types.

Research has shown that Low-field NMR relaxometry is an 
effective tool for quantifying water distribution and mobility, and its 
relationship to meat quality (31, 32). The MRI images of AA-treated 
mutton showed reduced brightness and quantitative signal intensity 
(Figures 4A,B). Moreover, T22 increased (Figures 4C,D), suggesting 
elevated flowability of immobilized water after the 24 h aging process. 

This enhancement contributes to the continuous improvement of 
mutton quality during subsequent aging.

Our transcriptome analysis confirmed the above findings, 
identifying 13 DEGs related to glycolysis (Figure 8). Among these genes, 
12 were up-regulated, including genes encoding hexokinase 3 (HK3), 
phosphoglucomutase 1 (PGM1), fructose bisphophase aldolase A 
(ALDOA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 
phosphoglycerate mutase (PGAM), enolase (ENO), pyruvate kinase 
(PK), aldehyde dehydrogenase 3 family member B1 (ALDH3B1), and 
L-lactate dehydrogenase A (LDHA). HK and PK are recognized as key 
enzymes in the glycolysis pathway. HK facilitates the conversion of 
glucose (Glu) into glu-6-phosphate (G6P). Previous research has 
indicated a potential correlation between HK2 and carcass traits and 
meat quality in pigs (33). PK catalyzes the final rate-limiting step of 
glycolysis, converting phosphoenolpyruvate and ADP into pyruvic acid 
and ATP. PK activity has been observed to be 10 times higher in pale, 
soft, and exudative (PSE) pork than that of normal meat (34). However, 
another study did not find a significant association between PK activity 
and meat quality traits such as muscle pH, L*, and drip loss (35). In our 
investigation, the upregulation of HK and PK expression after the aging 
process implies their possible role in meat quality formation of Hu 
sheep. The relationship between other enzymes in the glycolysis 
metabolic pathway and meat quality has also been extensively studied. 
Such as, PGM can reversibly catalyze the transfer of phosphate groups 
between the G1P and G6P. Silva et al. (36) found that phosphorylation 
of PGM1 in the early postmortem period speeds up the decline in pH, 
resulting in a longer sarcomere length. Wei et al. (37) used iTRAQ 
proteomics to study goat meat quality and found that LDH can be used 
to indicate tenderness, while GAPDH detects fat content. In non-aged 
beef, the brightness is positively correlated with PGM1, while the 
tenderness is negatively correlated with PGAM2 and annexin 2 (38). 
ALDHs are enzymes that facilitate the conversion of aldehydes into 
corresponding carboxylic acids. Gagaoua et al. (39) investigated 29 
protein biomarkers using reverse phase protein arrays and identified the 
ALDH1A1 as a significant biomarker associated with beef tenderness 
and juiciness. This highlights its importance in assessing beef quality. 
The protein ENO3 plays a crucial role in muscle development and 
regeneration by catalyzing the conversion of 2-phospho-D-glycerate to 
phosphoenol-pyruvate. Guillemin et  al. (40) revealed that ENO3 
exhibits higher expression levels and more glycolytic in the muscles of 
steers compared to bulls. Moreover, previous studies have established a 
positive correlation between ENO and shear force (37, 41) as well as 
redness (42, 43). In this study, the up-regulated expression of these 
genes demonstrated enhanced glycolysis which is attributed to the 
respiratory arrest following slaughter and the subsequent interruption 
of oxygen supply in the muscles. Consequently, glycolysis becomes the 
dominant reaction, leading to the continuous conversion of glycogen 
into lactic acid. However, lactic acid produced by glycolysis cannot 
be transported to the liver or excluded from circulation, accumulating 
in muscles and causing a decrease in meat pH (37). These pH decline 
dynamics after slaughter remarkably impact meat quality. The rate of 
pH decrease determines the occurrence of PSE meat, while the extent 
of decline affects meat tenderness, water retention, color, and cooking 
loss (37, 44).

In summary, the 24 h aging process can up-regulate the expression 
of genes related to glycolysis metabolism, such as HK, PGM1, ALDOA, 
GAPDH, PGAM, ENO, PK, and ALDH, regulating the changes in pH, 

FIGURE 10

The PPI network analysis of identified proteins in clusters 1–3. Nodes 
in the network represent the relevant proteins, while edges 
symbolize the associations between them. Yellow circles highlight 
the predicted seed nodes within each cluster.
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color, hardness, chewiness, and water content, thereby affecting the 
meat quality of Hu sheep.

4.2 Aging process influences endoplasmic 
reticulum pathway-associated gene 
expression for Hu sheep meat quality 
regulation

The endoplasmic reticulum (ER) serves as the site for synthesizing 
almost all lipids, secreted proteins, and transmembrane proteins. 
Initially, intracellular protein synthesis begins with free ribosomes in 
the cytoplasm. Some proteins then move to the ER membrane for 
further extension to complete protein synthesis. In this study, a total 
of 25 DEGs associated with the protein processing in the endoplasmic 
reticulum pathway were identified (Figure  8). Notably, calnexin 
(CANX), mannosidase alpha class 1A member 2 (MAN1A2), and 
UDP glucose glycoprotein glucose transfer 1 (UGGT1) are involved 
in the folding of newly synthesized glycoproteins. Secretion associated 
Ras related GTPase 1B (SAR1B) and SEC24 homolog A (SEC24A) 
play roles in the assembly and transport of COPII-coated vesicles. 
Research has demonstrated the importance of CANX as an ER 
molecular chaperone for glycoprotein folding and modification, 
crucial for maintaining correct folding and reducing misfolded 
protein accumulation (45). UGGT is a key participant in ER quality 
control, recognizing nearly folded proteins lacking glucose in 
N-oligosaccharide and catalyzing reglycosylation using UDP-Glu as a 
substrate. Additionally, glucosidase II removes the Glu residue. The 
glycosylation and deglycosylation cycle continues until the 
glycoproteins are correctly folded or targeted for degradation (46). 
SAR1, a samll GTPase, acts as a molecular switch regulating selective 
substance transport from ER to Golgi via SAR1-GDP/SAR1-GTP 
formation, playing a vital role in COPII-coated vesicle mediated 
protein transportation (47). Down-regulation of CANX, MAN1A2, 
UGGT1, SAR1B, and SEC24A indicates the impact of aging process 
on protein assembly, COPII-coated vesicle assembly and transport, 
ultimately influencing protein synthesis.

Abnormal protein synthesis can trigger a cascade of reactions, 
including dysfunction of the ER and an imbalance in calcium levels. 
This leads to the accumulation of unfolded or misfolded proteins in 
the ER, activating signaling pathways and causing ER stress (ERS) 
response. Three genes, protein phosphatase 1 regulatory subunit 15A 
(PPP1R15A), mitogen-activated protein kinase kinase 5 (MAP3K5, 
ASK1) and mitogen-activated protein kinase 9 (MAPK9, JNK2) 
(Figure 8), were found to be involved in the ERS process. The role of 
ER stress sensor protein kinase (PERK) in ER stress is well-established. 
Activation of the PERK pathway leads to phosphorylation of the 
eukaryotic translation initiation factor 2a (eIF2a), which inhibits 
protein synthesis and triggers apoptosis. Phosphorylated eIF2a 
selectively translates activating transcription factor 4 (ATF4), resulting 
in the expression of downstream proteins like GADD34. GADD34, in 
turn, dephosphorylates eIF2a, restoring protein synthesis and 
preventing inhibition (48). This study found that the expression of the 
PPP1R15A gene, which encodes GADD34, was down-regulated, 
suggesting that the 24 h aging process can regulate protein translation 
initiation through the PERK signaling pathway, leading to protein 
synthesis inhibition. ASK1 and JNK have been implicated in the 
unfolded protein response (UPR). Overexpressing ASK1 induces 
apoptosis through mitochondrial-dependent caspase activation (49), 

whereas deletion of ASK1 in mice inhibits NF and H2O2-induced 
apoptosis in ASK1−/− cells (50). ASK1 can activate JNK, which 
impedes the anti-apoptotic function of BCL2. Deactivating BCL2 can 
activate BAX/BAK-mediated apoptosis (51). In this study, BAK1, 
ASK1 and JNK2 were differentially expressed in AA-treated mutton as 
compared to BA (Figure 8). This finding indicates that the 24 h aging 
process mainly modulates apoptosis through regulating ASK1 and 
BAK1. Under severe stress and unrecovered ER function, cells 
undergo programmed cell death (52). Moreover, the ER-associated 
protein degradation (ERAD) pathway regulates the transport of 
misfolded proteins from the ER for degradation through the ubiquitin 
proteasome system. This study identified 16 DEGs involved in ERAD, 
associated with processes like substrate recognition, ubiquitination, 
and retrograde transport (Figure 8). These findings suggest that the 
24 h aging process can potentially impact ERAD function and 
be linked to post-mortem metabolic disorders, such as considerable 
inhibition of ATP-producing aerobic metabolism.

Taken together, the 24 h aging process can affect protein synthesis, 
ERS response, and ERAD pathway by down-regulating the proteins 
processed in endoplasmic reticulum, thus having an impact on the 
meat quality of Hu sheep.

4.3 FcγR-mediated 
phagocytosis-associated genes were 
involved in Hu sheep meat quality changes 
after aging process

Phagocytosis is a vital mechanism for host immune defense, 
providing a direct route for digesting external substances. 
Fcγ-receptors (FcγRs), categorized as activating or inhibitory 
receptors, transmit appropriate signals through immunoreceptor 
tyrosine-based activation motifs or inhibitory motifs (53). FcγR-
mediated phagocytosis involves phagocytic cup formation through 
actin cytoskeletal rearrangements, engulfment of particles, and release 
of proinflammatory mediators like cytokines and reactive oxygen 
species (ROS). This process is tightly regulated by activating and 
inhibitory FcγRs and intracellular signaling molecules (54). In this 
study, three FcγR genes were identified, including two genes encoding 
activating receptor proteins: Fc fragment of IgG receptor Ia (FCGR1A) 
and IgG Fc receptor III-A (FCGR3A); and one gene encoding an 
inhibitory receptor protein: IgG Fc receptor II beta (FCGR2B) 
(Figure  8). The increased expression of FCGR1A and FCGR2B 
signifies the activation of the FcγR-mediated phagocytosis metabolic 
pathway, suggesting a potential mechanism by which the aging process 
influences immune response and cellular clearance.

In addition, the transcriptome analysis revealed the presence of 
14 additional genes inked to FcγR-mediated phagocytosis (Figure 8), 
and their functions have been investigated. For instance, studies have 
demonstrated that PLD catalyzes the hydrolysis of phosphatidylcholine, 
generating the lipid second messenger phosphatidic acid (PA) and 
choline (55). PLD is involved in various cellular functions, including 
intracellular protein transport and cell cytoskeleton dynamics (55, 56). 
SPHK, a member of the DAG kinase family, has been well 
characterized for its activity and function in animals and yeast. In 
mammals, both SPHK and its product sphingosine-1-phosphate (S1P) 
play essential roles in regulating numerous cellular processes (57). 
NCF1 (p47phox) is a vital NADPH oxidase subunit that, upon 
appropriate stimulation, assembles protein subunits, leading to ROS 

https://doi.org/10.3389/fnut.2023.1321938
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Li et al. 10.3389/fnut.2023.1321938

Frontiers in Nutrition 12 frontiersin.org

generation. These ROS, in turn, initiate crucial intracellular signals 
that govern the cell’s response to functional effects including 
phagocytosis (58). Extracellular signal-regulated kinases 1 and 2 
(ERK1/2) are members of the mitogen-activated protein kinase 
(MAPK) family, involved in signal cascades and transmitting 
extracellular signals to intracellular targets. Research has indicated 
that the ERK cascade reaction involves several kinases in the MAP3K 
layer, including Ras/Raf/MAPK (MEK) 1/2  in the MAPKK layer, 
ERK1/2 (MAPK3/1) in the MAPK layer, and seveal MAPKAPKs 
within PLA2  in the subsequent layer. The highly regulated ERK 
cascade is responsible for fundamental cellular processes (59). This 
study suggests that the aging process could affect the cellular signaling 
transduction network through ROS-mediated signal transduction and 
the ERK cascade, as indicated by the up-regulation of NCF1, MAPK3 
and PLA2G4A genes. Cell cytoskeleton rearrangement is a well-
known phenomenon that occurs in various cellular activities, enabling 
the transition between gel and sol states of the cytoplasm. This 
reversible process involves multiple proteins, including gelsolin 
(GSN), a crucial member of the gelsolin superfamily. GSN binds to 
actin and regulates its polymerization and depolymerization, playing 
a significant role in actin dynamics, cell movement, apoptosis, and 
phagocytosis (60). Another member of this family, scinderin (SCIN), 
shows the closest similarity to GSN. SCIN is found in all secretory 
cells and participates in the remodeling of the actin cytoskeleton 
during secretion processes (60, 61). Cdc42, discovered in yeast, 
belongs to the Rho subfamily of small GTPases. It acts as a potent 
regulator of actin cytoskeleton dynamics, cell adhesion interactions, 
and motility, while also playing vital roles in gene expression, 
proliferation, and apoptosis (62). In addition, studies have shown that 
Arp2/3 nucleates branched actin filaments and is important for cell 
motility, endocytosis, and phagocytosis. This activity is stimulated by 
nucleation promoting factors including Wiskott-Aldrich syndrome 
protein (WASP) and ASP family verprolin-homologous protein 
(WAVE) (63). The WAVE family proteins have the function of 
regulating the actin cytoskeleton (64). In our study, we observed an 
up-regulation of GSN, SCIN, CDC42, ARPC1B, ARPC5, and WASF3 
(WAVE3), implying an important role of cytoskeleton remodeling in 
the quality formation of Hu sheep meat.

Collectively, the 24 h aging process can modulate the immune 
response, cellular clearance, and cell cytoskeleton rearrangement by 
enhancing the expression of FcγR-mediated phagocytosis-associated 
genes, ultimately impacting the meat quality of Hu sheep.

4.4 Protein–protein interaction network

Protein complexes in cells play crucial roles in various cellular 
processes (65, 66). PPI analysis is an influential approach for 
investigating the intricate functionality of proteins and their 
networks at a network-based level (65). In this study, the interaction 
networks of DEGs were analyzed and visualized using the STRING 
online database and Cytoscape software. Subsequently, the MCODE 
plugin was applied to identify potential functional modules within 
the network, leading to the discovery of three clusters (Figure 10; 
Supplementary Table S2). In cluster 1, there are 11 nodes and 37 
edges that are primarily associated with protein metabolism and 
glycolysis. Among them, 70 kDa heat shock protein 5 (HSPA5) 
serves as the seed node. HSPA5 is located within the ER lumen and 

plays a dual role as a typical HSP70 chaperone. It assists in the 
folding and assembly of proteins while also acting as a key regulator 
of ER homeostasis (67). Previous studies have investigated the 
correlation between HSPs and meat quality. Zhang et  al. (68) 
observed decreased levels of HSP90 in the Longissimus dorsi muscle 
of pigs with low pH and discovered a significant negative correlation 
between HSP90 levels and cooking loss, drip loss, and brightness. 
Sanchez, et al. (67) proposed HSPA5 as a potential biomarker for 
heat stress in Guang Ming Broilers. Laville et al. (69) found the 
absence of HSP27  in samples of the PSE zones in pig 
semimembranosus muscle compared to the normal treatment 
group. Our analysis indicates that the main interaction involving 
HSPA5 and the nearby proteins was obtained from curated 
databases, suggesting that HSPA5 might function as a master 
regulator in this sub-network. In cluster 2, GAPDH, ALDOA, 
ENO1, ENO3, LDHAL6B, and PKM participate in glycolytic 
metabolism. MAPK3 is involved in the MAPK signaling pathway, 
while CRYAB acts as a molecular chaperone in protein metabolism. 
This suggests a close connection between glycolysis, the MAPK 
signaling pathway, and protein metabolism. Additionally, GAPDH 
acts as the seed node in this cluster. It has been reported that 
GAPDH is a key enzyme that converts 3-phosphoglycerate (3-PGA) 
to glyceraldehyde 3-phosphate (G3P) (70). Along with other 
endogenous enzyme systems, GAPDH is believed to play important 
roles in postmortem protein hydrolysis and meat tenderization 
(71). A recent study revealed that GAPDH, ATP-dependent 
6-phosphofructokinase (PFKM), and PKM may directly interact 
with other differentially expressed proteins, affecting glycolytic 
muscle characteristics (72). The interactions among these proteins 
highlight the vital role of GAPDH in interacting with adjacent 
proteins like PKM, and thus participating in regulating the quality 
changes in mutton. Cluster 3 proteins are primarily engaged in 
FcγR-mediated phagocytosis, with FCGR1A being predicted as the 
seed node. FcγRs play a vital role in both humoral and cellular 
immune responses due to their interaction with the Fc region of IgG 
(53). FCGR1A is the only high-affinity receptor for IgG and 
functions in both innate and adaptive immune responses. In this 
study, FCGR1A may participate in the immune response and 
contribute to the quality maintenance of mutton in Hu sheep 
through its interaction with adjacent proteins. Taken together, PPI 
analysis reveals an intricate regulatory network connecting 
glycolysis, the MAPK signaling pathway, protein metabolism, and 
immune response during the aging process in Hu sheep meat. 
Nevertheless, further investigation is warranted to elucidate the 
specific regulatory mechanisms involved.

5 Conclusion

This study was conducted with the aim of investigating the 
impacts of a 24 h aging process on the physiological and transcriptomic 
changes of Hu sheep meat. The results obtained from our study 
demonstrate that the application of the aging process leads to 
significant increases in the L*, a*, b* values, as well as its hardness and 
chewiness, while concurrently causing a notable decrease in pH value. 
Furthermore, the aging process has a discernible influence on the 
water content. Through transcriptomic analysis, it has been revealed 
that the primary effects of the 24 h aging process predominantly 
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involve the modulation of glycolysis metabolism, protein processing 
in endoplasmic reticulum, and the FcγR-mediated phagocytosis 
pathway, thereby facilitating changes in the mutton quality attributes. 
In light of these discoveries, a schematic diagram has been devised to 
visually depict the observed 24 h aging process effects on Hu sheep 
(Figure 11).
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FIGURE 11

Schematic presentation of the aging process effects on Hu sheep meat. The expression profiles of DEGs are highlighted and denoted by circles, 
with red and green colors signifying up- and down-regulated expression levels. ALDH, aldehyde dehydrogenase; ALDOA, fructose-bisphosphate 
aldolase A; ARPC, actin related protein 2/3 complex; ASAP1, ArfGAP with SH3 domain; ATF6, activating transcription factor 6; BAK1, BCL2 
antagonist/killer 1; CANX, calnexin; CDC42, cell division control protein 42 homolog; CFL, cofilin; CRYAB, crystallin alpha B; DAG, Diacylglycerol; 
DERL1, derlin 1; α-D-Glu-1-P, α-D-Glucose-1-phosphate; β-D-Fru-1,6P2, β-D-Fructose-1,6-diphosphate; DNAJA2, DnaJ heat shock protein family 
(Hsp40) member A2; DNAJB1, DnaJ heat shock protein family (Hsp40) member B1; ENO, enolase; ERP57, protein disulfide-isomerase A3; FCGR1A, 
Fc fragment of IgG receptor Ia; FCGR3A, IgG Fc receptor III-A; FCGR2B, IgG Fc receptor II beta; FcγRIIA, low affinity immunoglobulin gamma Fc 
region receptor II-A; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; Glyceraldehyde-3P, glyceraldehyde 3-phosphate; Glycerate-1,3P2, 
glycerate-1,3-bisphosphate; HK3, hexokinase 3; HSP, heat shock protein; IgG, Immunoglobulin G; IRE1, inositol-requiring enzyme-1; MAN1A2, 
mannosidase alpha class 1A member 2; MAP3K5, mitogen-activated protein kinase kinase kinase 5; MAPK9, mitogen-activated protein kinase 9; 
MEK, mitogen-activated protein kinase kinase 1; NCF1, neutrophil cytosolic factor 1; LDHA, L-lactate dehydrogenase A; LIMK, LIM domain kinase 1; 
PERK, PKR-like endoplasmic reticulum kinase; PGAM, phosphoglycerate mutase; PGM, phosphoglucomutase; PK, pyruvate kinase; PLD1, 
phospholipase D1; PLA2G4A, phospholipase A2 group IVA; PPPIR15A, protein phosphatase 1 regulatory subunit 15A; Rac, Ras-related C3 botulinum 
toxin substrate 1; SAR1B, secretion associated Ras related GTPase 1B; SEC24A, SEC24 homolog A; SEL1L, SEL1L adaptor subunit of ERAD E3 
ubiquitin ligase; SRP, signal recognition particle; Syk, spleen tyrosine kinase; UBE2D3, E2 ubiquitin-conjugating enzyme D3; VASP, vasodilator-
stimulated phosphoprotein; Vav, guanine nucleotide exchange factor VAV; VCP, transitional endoplasmic reticulum ATPase; WASF3, WASP family 
member 3; WASP, Wiskott-Aldrich syndrome protein.
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