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Fusing hyperspectral imaging and 
electronic nose data to predict 
moisture content in Penaeus 
vannamei during solar drying
Jiarong Wang , Wenxiu Wang *, Wenya Xu , Huanjiong An , 
Qianyun Ma , Jianfeng Sun  and Jie Wang *

College of Food Science and Technology, Hebei Agricultural University, Baoding, China

The control of moisture content (MC) is essential in the drying of shrimp, directly 
impacting its quality and shelf life. This study aimed to develop an accurate 
method for determining shrimp MC by integrating hyperspectral imaging (HSI) 
with electronic nose (E-nose) technology. We employed three different data 
fusion approaches: pixel-, feature-, and decision-fusion, to combine HSI and E 
nose data for the prediction of shrimp MC. We developed partial least squares 
regression (PLSR) models for each method and compared their performance 
in terms of prediction accuracy. The decision fusion approach outperformed 
the other methods, producing the highest determination coefficients for both 
calibration (0.9595) and validation sets (0.9448). Corresponding root-mean 
square errors were the lowest for the calibration set (0.0370) and validation 
set (0.0443), indicating high prediction precision. Additionally, this approach 
achieved a relative percent deviation of 3.94, the highest among the methods 
tested. The findings suggest that the decision fusion of HSI and E nose data 
through a PLSR model is an effective, accurate, and efficient method for 
evaluating shrimp MC. The demonstrated capability of this approach makes it a 
valuable tool for quality control and market monitoring of dried shrimp products.
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1 Introduction

Penaeus vannamei shrimp, a leading species in global aquaculture with a production 
exceeding 6.5 million tons in 2021, is highly susceptible to spoilage due to physiological traits 
that foster microbial growth, such as high moisture content (MC) in tissues, minimal connective 
tissue, and active enzymes at room temperature (1). Its vulnerability to deterioration necessitates 
rapid processing and selling, commonly through freezing or drying. Drying is especially 
important in shrimp processing because the resultant low MC means that these aquatic 
products no longer depend on the cold chain and are easy to distribute (2). Among drying 
techniques, solar drying has proven to be a superior method that shortens processing time, 
enhances textural qualities, preserves nutrients, and reduces energy consumption, offering a 
green and efficient alternative to conventional natural and hot-air drying methods (3, 4).

Moisture is the main component of aquatic products. Real-time monitoring of MC and 
rapid prediction of quality changes are essential for maintaining the quality of P. vannamei 
during various stages of processing as improper drying can lead to diminished product quality 
through excessive shrinkage and hardening (5–7). While traditional oven-drying methods for 
measuring MC are reliable, they are also time-intensive and unsuitable for rapid analysis. 
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Therefore, the P. vannamei drying industry requires a method that can 
monitor MC changes at different processing stages and quickly predict 
quality changes. Advancing technologies like Hyperspectral Imaging 
(HSI) significantly reduce the time needed for moisture analysis by 
concurrently capturing both imaging and spectral data, enabling the 
prediction of moisture content in meat products, such as in minced 
pork (8) and salted pork (9).

HSI is used to characterize the spectral information of shrimps, 
which is influenced by the stretching and vibration of chemical bonds. 
As moisture can influence the spectral characteristics of shrimp, the 
analysis of spectral information allows for the indirect determination 
of the shrimp’s water content. In addition. As an efficient tool, HSI 
adeptly captures color and texture variations in shrimps, a preliminary 
indicator of quality, yet its inability to discern odor—a critical quality 
determinant in seafood—highlights the necessity for a holistic 
evaluation method (10). Here, the combination of HSI and E-nose 
technologies becomes promising. Employing the electronic nose 
(E-nose) enables the detection of volatile compounds in shrimp, 
reflecting the influences of drying, enzymatic, and microbial processes 
alongside physicochemical interactions. The use of an E-nose allows 
for the detection of volatile compounds in shrimp, changes in which 
are influenced by enzymes and microorganisms, as well as by physico-
chemical interactions. As moisture drives these activities, changes in 
them lead to changes in the concentration of specific volatiles. The 
sensors of E-nose can convert these detected chemical signals into 
electrical signals, allowing us to explore the relationship between these 
volatile compounds and MC. By employing multi-sensor data-fusion 
technology, data from HSI and E-nose can be effectively integrated, 
enabling a more comprehensive and accurate assessment of shrimp 
quality. This approach allows for the simultaneous acquisition of 
spectral information and volatile compound data of the shrimp, both 
of which are crucial factors in assessing shrimp quality (11). 
Furthermore, this also provides a new perspective for predicting the 
MC of shrimp.

Multi-sensor data fusion synthesizes diverse methods and tools to 
combine data from various sources. This innovative approach aims to 
harness the cumulative benefits of multiple data collection 
instruments, delivering enhanced accuracy data quality that 
supersedes the capabilities of a single technique. Embracing pixel-, 
feature-, and decision-level data-fusion strategies increases the 
reliability, robustness, and adaptive capacity of recognition systems. 
In pixel-level data fusion, comprehensive pre-processing is pivotal to 
seamlessly integrate multiple data sources. This foundational step 
ensures unblemished and harmonized data amalgamation. Feature-
level fusion strategically selects specific variables from diverse datasets, 
amalgamated for enriched subsequent modeling and comprehensive 
analysis. In contrast, decision-level fusion involves the synthesis of 
various model results, culminating in a definitive and informed 
decision. This multifaceted approach to data fusion underscores its 
indispensable role in bolstering the precision and efficiency of modern 
recognition systems, solidifying their robust functionality across a 
spectrum of applications. However, no research to date has 
investigated the use of both HSI and E-nose for appraising the quality 
of solar-dried shrimp.

Therefore, the purpose of this study was to address this gap in the 
research using different data-fusion strategies. The specific objectives 
were to: (1) monitor changes in shrimp MC during solar drying; (2) 
acquire hyperspectral (color and texture) and E-nose sensor data, and 

then extract relevant variables (color, texture, and odor); (3) establish 
partial least squares regression (PLSR) quantitative MC prediction 
models with single-data or data-fusion (pixel-, feature-, and decision-
level) strategies; and (4) compare model performance to determine 
the best fit and validate the HSI/E-nose combination technique. Our 
findings should benefit the aquaculture industry and contribute to an 
improved method for predicting MC when drying shrimp.

2 Materials and methods

A summary of all experimental procedures is shown in the 
flowchart in Figure 1.

2.1 Sample preparation

Fresh shrimp (P. vannamei) were purchased at the Hebei 
Agricultural University Science and Technology Market in China. 
We selected fresh shrimp (average wet weight: 11.62 ± 2.2 g) with a 
complete body, uniform size, and disease-free status as the 
experimental material. The selected fresh shrimp were washed and 
boiled in salt solution 3% (w/v) at a 1:2 shrimp: salt solution ratio 
(w/w), boiled for 2 min, and then dried. The samples were spread on 
plastic mesh trays and dried using solar drying equipment 
(Supplementary Figure S1) for approximately 12 h. Shrimp were 
sampled at different stages, including boiled shrimp and after drying 
for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 h. Eight samples were selected 
from each sampling site, resulting in 104 samples for subsequent HSI, 
E-nose, and MC analyses.

2.2 HSI acquisition and calibration

An HSI system, operating in reflectance mode, was employed 
to obtain hyperspectral images of shrimp samples. The system 
comprised an HSI workstation with a spectral range of 
400–1,000 nm, a charge-coupled device camera (FX10, Specim Ltd., 
Helsinki, Finland) featuring a spatial resolution of 1,024 pixels and 
224 spectral bands, two halogen lamps, and a computer equipped 
with HSI analysis software. Before collecting images, shrimp 
samples were placed on the electric replacement platform. Full-
band images were captured at a resolution of 1,024 × 1,500 pixels 
and an imaging speed of 330 frames/s. Camera exposure time and 
conveyor belt speed were set to 50 ms and 7.5 mm/s, respectively. 
All shrimp samples across 13 groups were scanned, yielding 104 
HSI encompassing both spectral (range: 400–1,000 nm, 224 bands) 
and spatial image data. The collected hyperspectral pictures were 
subjected to black-and-white correction to eliminate the effects of 
light-source nonuniformities and dark currents. To obtain a white 
calibration image, a standard white correction board was scanned 
under identical acquisition settings as the shrimp samples. The lens 
was covered to secure a black calibration image. The correction 
formula for HSI is given as Eq. 1.

 
R R R

R R
=

−
−

raw black

white black  
(1)
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where R is the reflectance image, Rraw is the raw HSI, Rblack is the 
black calibration image, and Rwhite is the white calibration image.

2.3 E-nose data acquisition

The volatile compounds in shrimp samples were identified using 
a commercial portable E-nose system (PEN3, AIRSENSE, Germany), 

comprising a sampling unit, a sensor array, and pattern recognition 
software. The sensor array comprised 10 metal oxide sensors 
(Supplementary Table S1). The edible parts of shrimp at different 
drying stages were weighed and crushed with a blender. Then, 4.0 g of 
the sample was placed in a 15 mL headspace vial, with eight parallel 
sets prepared, and stored at 4°C. Samples were incubated at 30°C for 
30 min, and then subjected to E-nose analysis. The parameters of the 
E-nose were set as follows: the sampling time was 100 s, flow rate was 

FIGURE 1

The primary experimental process's flowchart.
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400 mL/min, and cleaning time was 60 s with a 5 s zeroing time. 
Voltage data were recorded at between 90 and 91 s of stable state. 
These steps were repeated for each sample to acquire the E-nose data 
of 104 samples. The E-nose has 10 sensors; thus, each sample has 10 
response values as odor variables for subsequent studies. The air 
chamber was ventilated and cleaned before each sample collection. To 
determine whether flavor characteristics could be used to distinguish 
between samples with different drying times, we employed principal 
component analysis (PCA) and hierarchical clustering analysis (HCA) 
to classify samples based on E-nose data.

2.4 MC measurements

After obtaining hyperspectral images and E-nose measurements, 
the MC per shrimp sample was analyzed using the oven-drying 
procedure specified in the National Standard of China (GB 5009.3-
2016). Glass weighing bottles were dried to a constant weight in a 
105°C oven. Samples were placed in the bottles and dried for 2 h at 
103°C ± 2°C in an oven. After cooling to room temperature (25°C), 
each bottle was weighed and oven-dried for an additional hour. This 
process was repeated until the difference between the consecutive 
weighing results was less than 1.0 mg. The MC of shrimp samples was 
calculated using Eq. 2.

 
X m m

m m
=

−
−

×2 3

2 1

100%

 
(2)

where X (unit: g/100 g) is the MC of shrimp samples, m1 is the 
bottle weight, m2 is the weight of shrimp samples and bottles before 
drying, and m3 is the weight of shrimp samples and bottles after drying.

2.5 Data processing

2.5.1 Extraction of raw spectral variables
For background correction, each region of interest (ROI) was 

extracted from the corresponding hyperspectral image in ENVI 5.2. 
A mask was constructed by subjecting each image to threshold 
segmentation at 685.5 nm (the wavelength that exhibited the largest 
reflectance difference between the shrimp sample and background). 
The binary masks of the shrimps were then used to extract ROIs for 
all spectral images at wavelengths between 400 and 1,000 nm. 
Subsequently, the average reflectance of all pixels within a given ROI 
was calculated and the spectrum of each sample was obtained.

2.5.2 Extraction of raw image variables
Masks were applied to red, green, and blue (RGB) images 

synthesized from hyperspectral images captured at 647, 550, and 
460 nm, respectively. Color and texture variables were extracted from 
mask images based on the color moment and gray-level co-occurrence 
matrix (GLCM) (12), respectively.

Color moments are a simple and effective way to represent the 
distributions of colors. Their advantages are that they have 
low-dimensional feature vectors and do not require quantization of 
the color space (13). Color distribution can be well-represented with 
low-order moments containing most of the relevant information (14), 
i.e., first-order (mean), second-order (standard deviation), and 

third-order (skewness). Consequently, RGB trichromatic values were 
transformed into hue, saturation, and value (HSV) trichromatic 
values. The first, second, and third moments of these six color 
components were employed to represent the color variables of distinct 
sample images, resulting in 18 color characteristics to represent 
between-sample differences. The GLCM-based analysis for extracting 
texture features is a typical statistical method with strong adaptability 
and robustness, primarily used for image detection and classification. 
First, masked images were subjected to PCA. Second, PC images with 
a cumulative variance contribution rate of up to 99% were selected to 
extract texture features (15), described using four basic values: 
contrast, correlation, energy, and homogeneity. We selected a d value 
of 1, meaning that the central pixel was directly compared with its 
adjacent pixels. Eigenvalues of the four directional matrices were 
calculated at 0°, 45°, 90°, and 135°, and then the average of the four 
eigenvalues was calculated as the final eigenvalue.

2.5.3 Data pre-processing and feature variable 
extraction

Redundant data could potentially be  present in the original 
hyperspectral imaging and E-nose datasets, arising from phenomena 
encountered during the experiment, such as light scattering, 
glossiness, and volatile aromatic compounds. Thus, both types of data 
require pre-processing. The sensor signals from the E-nose may 
be  affected by baseline drift, and the pre-processing step helps 
eliminate this drift, normalize data, and remove superfluous and 
irrelevant information. This not only enhances the quality and stability 
of the data but also ensures the precision and efficiency of the model. 
Data were pre-processed using standard normal variate (SNV) and 
Savitzky–Golay derivative (S-G-Der) analysis. The former eliminates 
errors caused by different scattering levels between samples (16). The 
latter corrects for baseline drift and resolved peak overlaps in 
spectra (17).

Pre-processed data were multicollinear. To address this problem, 
redundant variables were eliminated by identifying a smaller set of 
optimal feature variables that most strongly affected prediction 
outcomes. These feature variables were extracted with competitive 
adaptive reweighting sampling (CARS). This method uses Monte 
Carlo sampling techniques to build several PLSR models and selects 
wavelengths with the fewest prediction errors as feature variables (18).

2.5.4 Data fusion
Data fusion allows for the integration of data collected using 

various detection techniques. The strategy combines multiple data 
blocks into one model and improves predictive performance by 
working collaboratively between the individual blocks (19). 
Depending on the fusion structure, data fusion is typically divided 
into three levels: pixel-, feature-, and decision-level (20). The data 
fusion process of this study is shown in Supplementary Figure S2.

In pixel-level fusion, pre-processed data with the same number of 
lines were concatenated in series and then used as input variables for 
the samples. In feature-level fusion, feature variables were 
independently extracted from HSI and E-nose data and then 
concatenated into a matrix (21). This study selected feature variables 
(spectral, image, and E-nose characteristics) separately using CARS. In 
decision-level fusion, a separate PLSR model was established based on 
feature variables per source data type. Model outcomes were merged 
depending on decision criteria (typically mean, weighted mean, or 
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majority vote) to yield the ensemble decision (22). Decision-level 
fusion was resolved with multiple linear regression, as follows:

 y b k x k x k xac spectra pvc image pvc E nose pvc= + + + −1 2 3, , ,  (3)

 y b k x k x k xdfpc spectra pvc image pvc E nose pvc= + + + −1 2 3, , ,  (4)

 y b k x k x k xdfpv spectra pvv image pvv E nose pvv= + + + −1 2 3, , ,  (5)

In Eq. 3, yac is the actual value of the calibration set;
In Eq.  4, ydfpc is the decision-fusion predicted value of the 

calibration set;
In Eqs  3, 4, xspectra,pvc is the predicted values of the spectral 

calibration set; ximage,pvc is the predicted values of the image calibration 
set; xE-nose,pvc is the predicted values of the E-nose calibration set;

In Eq.  5, ydfpv is the decision-fusion predicted value of the 
validation set; xspectra,pvv is the predicted value of the spectral validation 
set; ximage,pvv is the predicted value of the image validation set; and xE-

nose,pvv is the predicted value of the E-nose validation set;
In Eqs 3–5, b is the intercept of multiple linear regression; k1 is the 

weight of spectra; k2 is the weight of the image; and k3 is the weight 
of E-nose.

2.5.5 Establishing and evaluating different models
The linear regression method PLSR is commonly applied in 

chemometrics (23, 24). This model fits the distribution of random 
variables to a linear equation by combining PCA with maximum 
correlation analysis and thus works best when variables are highly 
correlated (25). Using a 3:1 ratio, we  selected 84 samples for the 
calibration set and 28 samples for the validation set. A regression 
model was established with PLSR to correlate spectral data, image 
data, and E-nose data with measured MC values. Data analysis and 
model evaluation were implemented in Matlab version 2014b.

In summary, regression model performance is comprehensively 
evaluated using various metrics including the root-mean-square 
errors of the calibration (RMSEC) and validation (RMSEV) sets, 
determination coefficients of the calibration (Rc2) and validation (Rv2) 
sets, and relative percent deviation (RPD) (26). The coefficient of 
determination (R2) reflects the correlation between the actual and 
predicted values, a closer approach to 1 indicates better regression 
performance. Additionally, a low root-mean-square errors (RMSE) 
signifies a high model accuracy by indicating a small error between 
actual and predicted values. High R2 and low RMSE values collectively 
point to an excellent model performance (27). Furthermore, the RPD, 
a ratio of sample standard deviation to its root-mean-square error, 
provides insight into prediction stability. A higher RPD value 
underscores better model stability, signaling a more reliable calibration 
model (28).

3 Results

3.1 Reference measurements of MC

The MC and drying rates of shrimp samples are shown in Figure 2. 
The MC showed clear and gradual decreases with extended drying 

times. The MC of boiled shrimp was 72.75% and decreased to 15.67% 
after 12 h of drying. The MC decreased slowly within the first 2 h of 
drying, with a drying rate of 4.2% w.b·h−1. The MC decreased faster 
from 2 to 7 h, with a maximum drying rate of 8.31% w.b·h−1 at 4 h. The 
drying rate decreased slowly after 7 h.

3.2 Spectral variable analysis

The average spectra of the ROIs in shrimp samples are shown in 
Figure  3. Figure  3A shows the original hyperspectral data over a 
wavelength range of 397.66 to 1003.81 nm with 224 spectral bands. 
The overall trends of the spectral curves of all shrimp samples were 
similar but the intensities of some bands were different (Figure 3A). 
These findings imply that the drying process leads to some significant 
changes in the shrimp samples that can be detected in the spectra. The 
spectral reflectance decreased slightly in the range of 400–480 nm, 
showed an upward trend beginning from 480 nm, and maintained a 
high level between 700 and 900 nm, after which it showed a small 
decreasing trend for different stages of shrimp samples between 900 
and 1,000 nm. Figure 3B shows the representative reflectance spectra 
of shrimp at different drying times (2, 4, 6, 8, 10, and 12 h) and those 
of boiled shrimp; the reflectance of dried shrimp was lower than that 
of boiled shrimp between 400 and 830 nm, although a clear absorption 
peak appeared at 480 nm. In addition, the reflectance of the shrimp 
samples varied considerably at 960 nm, which was related to moisture 
and could have been caused by second overtone O-H stretches.

3.3 Image variable analysis

The color variables of shrimp sample images are shown in Table 1. 
With the first-order moments, all variables showed an increasing 
trend except for H; with the second-order moments, the R, S, and V 
variables showed increasing trends, and the G, B, and H variables 
showed decreasing trends; with the third-order moments, the V 
variable showed no change, the S variable showed an increasing trend, 
and the remaining variables showed insignificant trends. The observed 

FIGURE 2

The MCs and drying rates of shrimp samples during the drying 
process.
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alterations in the first-order moment variables may be attributed to 
the degradation of astaxanthin, which results in a darker and more 
intense coloration.

To extract texture variables, PCA was performed on the masked 
images of shrimp samples (Figure 4). The first principal component 
(PC1) explained >96% of the variance, and the first two principal 
components (PC1 and PC2) explained >99%. Therefore, texture 
variables (including contrast, correlation, energy, and homogeneity) 
were extracted with a GLCM for PC1 and PC2.

With increasing drying times, sample contrast tended to rise and 
then fluctuate smoothly, reflecting variation in muscle textural 
changes as the shrimp dried (Figure 4A). This trend likely stemmed 
from the gradual evaporation of water as shrimp meat dried, 
increasing muscle density and thus enhancing image contrast before 
it plateaued. The correlation coefficient for PC1 remained around 0.99, 
whereas that for PC2 fluctuated over a small range (0.96–0.98). In 
addition, PC1 explained far more of the variance than PC2, suggesting 
that the PC1 consistently represented the textural features of the 

shrimp throughout the drying process (Figure 4B). Energy fluctuations 
of PC1 (0.42–0.47) and PC2 (0.46–0.51) showed a small range and 
similar trends (Figure 4C) suggesting that the texture of the shrimp 
meat remained relatively uniform during the drying process. This may 
be because the drying process as a whole did not cause drastic changes 
in the texture of the shrimp meat. Variance was homogenous for PC1, 
reaching its minimum value after 6 h of drying; for PC2, variance 
ranged between 0.94 and 0.97 (Figure 4D).

3.4 E-nose variable analysis

According to the results of PCA and hierarchical cluster analysis 
(HCA) of the electronic nose (E-nose) data (Figure 5), the cumulative 
variance contributions of the first principal component (PC1) and the 
second principal component (PC2) reached 92% (62.6 and 29.4%, 
respectively; Figure 5A). The samples were divided into seven distinct 
regions in the PCA analysis, which were identifiable in the component 

FIGURE 3

Reflectance spectra (A) average reflectance spectra of the ROIs for all samples and (B) reflectance spectra at different drying times (boiled, 2, 4, 6, 8, 10, 
and 12 h).

TABLE 1 Extracted image feature information of color.

Drying 
Times(h)

First order moments (mean) Second order moments (standard 
deviation)

Third order moments (skewness)

R G B H S V R G B H S V R G B H S V

Boiled 56.16 49.74 43.26 0.11 0.15 0.24 84.11 77.65 70.20 0.22 0.24 0.34 87.72 85.35 81.44 0.30 0.28 0.35

1 51.97 46.53 42.48 0.12 0.13 0.22 81.20 76.19 70.89 0.24 0.22 0.33 87.34 86.06 82.46 0.32 0.28 0.35

2 51.12 45.53 41.70 0.12 0.14 0.21 79.75 74.02 69.16 0.25 0.23 0.33 86.44 83.82 80.93 0.32 0.28 0.35

3 51.01 44.90 39.26 0.11 0.14 0.21 80.06 73.67 67.09 0.23 0.24 0.32 86.44 83.56 80.23 0.31 0.29 0.35

4 50.57 44.82 39.39 0.10 0.13 0.21 80.17 73.78 67.19 0.23 0.23 0.33 86.76 83.53 79.96 0.31 0.28 0.35

5 51.70 44.46 39.02 0.10 0.14 0.21 81.93 73.67 67.34 0.23 0.24 0.33 88.28 83.85 80.71 0.31 0.29 0.35

6 53.52 46.84 41.43 0.11 0.15 0.23 81.99 74.42 68.35 0.24 0.24 0.34 86.80 82.85 80.17 0.31 0.28 0.35

7 51.98 45.46 39.1 0.10 0.14 0.22 81.87 74.09 67.09 0.22 0.24 0.34 87.62 83.27 80.25 0.30 0.29 0.35

8 53.76 47.03 40.19 0.10 0.14 0.22 83.44 75.32 67.88 0.22 0.24 0.34 88.17 83.48 80.44 0.30 0.29 0.35

9 53.36 45.22 39.47 0.10 0.14 0.22 83.55 73.99 67.81 0.23 0.24 0.34 88.62 83.46 80.99 0.31 0.29 0.36

10 50.49 44.04 37.73 0.10 0.14 0.21 81.26 73.00 65.95 0.22 0.24 0.33 88.23 83.01 79.90 0.30 0.29 0.35

11 51.55 45.00 38.88 0.11 0.14 0.22 81.72 74.38 67.40 0.23 0.24 0.34 87.81 84.09 80.89 0.31 0.29 0.35

12 53.18 45.55 39.01 0.10 0.15 0.22 82.92 74.02 67.09 0.22 0.25 0.34 87.72 83.03 80.42 0.30 0.29 0.35
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space. Specifically, Based on PC1, the 2 h samples were located at the 
rightmost end and in the first region; 1 and 3 h samples were in the 
second region; B samples were in the third region; 4 h samples were in 
the fourth region; 5 h samples were in the fifth region; 6 h samples 
were in the sixth region; and 7–12 h samples were in the seventh 
region. These regions indicate that different drying durations have a 
significant effect on the flavor of shrimp.

Based on HCA, seven principal groups were identified among the 
shrimp samples that corresponded to the seven regions revealed by 
PCA (Figure 5B). These results showed that the E-nose data of shrimp 

could be separated across the entire drying period and that drying 
duration influenced shrimp flavor characteristics. The results showed 
that the shrimp samples dried for 5–12 h had closer flavor 
characteristics than those dried for 2–4 h at the initial stage of drying 
(B, 1 h, and 3). This shows that this is a dynamic process, and some 
volatile compounds evaporated in the early stage of drying may lead 
to flavor differences between 2 h and 4 h. However, as the drying time 
exceeds 4 h, flavor rebalance may occur, which may make the flavor 
more consistent with the original flavor or the early stage of drying, as 
complex compounds break down into simpler compounds.

FIGURE 4

The PCA process and texture features of samples. (A), (B), (C), and (D) stand for the change of contrast, correlation, energy, and homogeneity, 
respectively.

FIGURE 5

The PCA (A) and HCA (B) for all samples.
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3.5 Performance analysis for the MC 
prediction model

3.5.1 Prediction model based on raw variables
The results displayed in Table  2 indicate that the FD-SNV 

preprocessing technique significantly enhanced the predictive 
performance of the PLSR model based on spectral and image data. 
This model improved the RPD of spectral and image data by 57.32 and 
12.22% compared with that of the PLSR model without pre-processed 
data. These results demonstrated the efficiency of FD-SNV as a 
pre-processing technique in reducing interference and improving 
prediction accuracy. The FD-SNV pre-processed spectral and image 
data were used for follow-up experiments. All pre-processed E-nose 
data were modeled and yielded RPD values >1.5 (Table 2). Among 
them, the PLSR model based on SNV pre-processing was the best 
predictor of MC, with Rc2, Rv2, and RPD of 0.7995, 0.7884, and 2.10, 
respectively. Therefore, SNV was chosen as the pre-processing method 
for E-nose data.

3.5.2 Prediction model based on feature variables
The extracted multivariate (high-dimensional) data contained 

many inter-band correlations, resulting in slow data processing, poor 
model accuracy, and weak model robustness (29, 30). The CARS 
method was used to select feature variables from spectral, image, and 
E-nose data, respectively yielding 14, 16, and 8 feature variables. 
Separate PLSR prediction models for shrimp MC were established 
based on these spectral, image, and E-nose feature variables (Figure 6). 
Fourteen bands (505.67, 542.91, 564.26, 588.36, 612.53, 737.25, 

748.19, 786.58, 800.34, 850.06, 888.93, 891.71, 894.50, and 953.19 nm) 
were selected out of 224 bands in the spectrum. Compared with that 
of the PLSR model based on FD-SNV pre-processed spectra, the RPD 
of the PLSR model based on feature variables improved by 3.12%. For 
the PLSR model, basing the model on image feature variables 
improved the RPD by 2.27%. However, basing the model on E-nose 
feature variables did not improve predictive accuracy. Hence, only 
spectra and images are suitable for improving results when modeling 
with feature variables. The lack of improvement from E-nose feature 
variables may reflect a lack of features or low quality of features, 
resulting in the poor robustness of the model.

3.5.3 Prediction model based on fusion variables
Figure 7A displays the results of MC prediction models based on 

data fusion of spectral variables and image variables (HSI). Pixel- and 
decision-level fusion models based on HSI outperformed models that 
contained only raw image variables or feature variables. However, 
pixel- and decision-level fusion models showed smaller improvements 
than the model based on spectral feature variables, with the RPD 
values only improving by 2.82 and 1.38% (Figures 6, 7A), respectively. 
The results were also slightly lower for the model with feature-level 
fusion than for the model based on spectral feature variables.

Figure 7B displays the results of MC prediction models based on 
data fusion of spectral, image, and E-nose variables (HSI and E-nose 
fusion). Prediction models based on three-level fusion of spectral, 
image, and E-nose data yielded better results than those based on a 
single variable or a single feature variable. Compared with the best 
model based on a single variable (a spectral feature), the RPD of 

TABLE 2 The MC prediction models based on different pretreatments.

Models Pre-processing Variables 
number

LVs Calibration set Validation set RPD

Rc
2

RMSEC
Rv
2

RMSEV

Spectra

RAW 224 9 0.9020 0.0577 0.8910 0.0700 2.18

FD-SNV 224 10 0.9466 0.0425 0.9386 0.0479 3.43

SD-SNV 224 7 0.9376 0.0460 0.9244 0.0528 3.08

SNV 224 10 0.9349 0.0470 0.9336 0.0596 2.68

SNV-FD 224 9 0.9339 0.0474 0.9336 0.0525 3.15

SNV-SD 224 10 0.9470 0.0424 0.9367 0.0505 3.30

Image

RAW 26 10 0.6865 0.1031 0.6460 0.1108 1.47

FD-SNV 26 9 0.6986 0.1011 0.6845 0.1101 1.65

SD-SNV 26 9 0.6800 0.1041 0.6492 0.1119 1.49

SNV 26 10 0.6764 0.1047 0.5838 0.1224 1.37

SNV-FD 26 10 0.7333 0.0951 0.6666 0.1082 1.57

SNV-SD 26 9 0.6669 0.1063 0.6400 0.1126 1.43

E-nose

RAW 10 6 0.7746 0.0874 0.7649 0.0961 2.02

FD-SNV 10 6 0.7392 0.0940 0.6773 0.1096 1.64

SD-SNV 10 7 0.7631 0.0896 0.6980 0.1043 1.71

SNV 10 7 0.7995 0.0824 0.7884 0.0874 2.10

SNV-FD 10 7 0.7916 0.0841 0.7763 0.0897 2.03

SNV-SD 10 8 0.7674 0.0888 0.7345 0.0977 1.82
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models with pixel-level, feature-level, and decision-level fusion were 
improved by 3.09, 9.75, and 11.53% (Figures 6, 7B), respectively.

Predictions obtained by HSI and E-nose data fusion were compared 
with those obtained by the HSI technique alone (spectral and image 
data). HSI and E-nose fusion did not significantly improve model 
prediction under feature-level fusion, with the RPD increasing by only 
0.26%. However, pixel- and decision-level fusion improved the model, 
increasing the RPD by 10.25 and 10.01%, respectively. Thus, the model 
with decision-level fusion based on spectral, image, and E-nose variables 
was the best predictor of MC. It exhibited the highest Rc2and Rv2 values 

(0.9595 and 0.9448, respectively), lowest RMSEC and RMSEV values 
(0.0370 and 0.0443, respectively), and highest RPD value (3.94).

4 Discussion

This study introduced an innovative approach employing multi-
sensor data-fusion technology to predict the MC in shrimp during 
solar drying, integrating data from HSI and E-nose sensors. The 
experiments demonstrate that the prediction accuracy of MC 

FIGURE 6

The MC prediction model based on a single information.

FIGURE 7

The MC prediction model based on data fusion. (A) Prediction results from spectral and image data fusion. (B) Prediction results from fusion of 
spectral, image, and E-nose data.
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prediction model based on spectral data is the best. Concurrently, 
although the contribution of image data and E-nose data to MC 
prediction is relatively limited, its integration still fortifies the 
predictive capacity of the model. The results provided valuable 
insights into the potential and limitations of combining these 
technologies for enhanced MC prediction.

The HSI technique, which captured the spectral information, 
significantly contributed to the accuracy of MC prediction model. The 
changing spectral curves during the drying process, evidenced by the 
varying intensities at certain bands, provided crucial information 
correlating with the MC in the shrimp. For example, the third and 
second overtones of O-H stretching (absorbed at 750 and 980 nm, 
respectively) are linked to water content (31). This correlation 
underscores the critical role of spectral data in predicting MC, and the 
enhanced accuracy achieved with the fusion of spectral and image 
variables substantiates this assertion. Multiple previous studies have 
investigated the suitability of techniques we used here, either alone or 
in combination. For example, a previous study (32) utilized spectral 
data derived from near-infrared HSI to determine the chemical 
compositions of minced and whole pork, obtaining determination 
coefficients for MC prediction (Rp2) of 0.91 in the former and 0.58 in 
the latter. Another study (33) assessed the MC of frozen–thawed fish 
using spectral data generated from visible-near-infrared (Vis–NIR) 
HSI, obtaining an MLR model with Rp2 = 0.9258 and root-mean-
square error of prediction (RMSEP) = 1.12. Similarly, a study on 
scallops (34) developed an HSI method to ascertain MC at various 
dehydration stages, achieving optimal results with a wavelength-based 
PLSR model that yielded RP, RMSEP, and RPD of 0.9673, 3.5584%, and 
3.7150, respectively. However, spectral data cannot accurately assess 
all changes that occur during drying. One possible reason for this 
limitation is that spectral data alone do not capture the complexity of 
interactions between different components within the food matrix as 
it dries.

Notably, E-nose data can effectively capture volatile compounds; 
however, in this case, it is less effective in improving MC predictions 
compared to spectroscopy. This may be  owing to the insufficient 
correlation between the changes in volatile compounds during the 
drying process and MC, or these data may not provide valuable 
information for the prediction model. Despite the modest predictive 
performance of E-nose data when used independently, its fusion with 
HSI data, particularly the decision-level fusion, augments predictive 
accuracy. Future research might explore the potential of E-nose data 
in other aspects of shrimp quality assessment where the detection of 
volatile compounds plays a more central role.

Additionally, a significant improvement in the prediction model 
based on the fusion of HSI and E-nose variables emphasizes the value 
of integrating multiple types of data for enhanced prediction accuracy. 
A similar conclusion was reached by Ma et al. (6), who fused spectral 
data with image texture data to build an MC prediction model for 
pork that yielded Rv2 = 0.9489 and RMSEV = 1.4736. In our study, the 
model accounting for odor variations yielded better results, which was 
consistent with the results of Cheng et al. (35), who fused spectral 
data, image data, and E-nose data to obtain a predictive model for MC 
in frozen–thawed pork with Rp2 = 0.9533, and RMSEP = 0.3869. These 
results demonstrate that fusing multiple data types enhances 
prediction accuracy compared with using only one data type. 
Integrating diverse data sources enables the model to capture the 
complex relationships between different variables. Feature-level fusion 

can improve the predictive power of the model by reducing data 
redundancy but it may also reduce the stability of the model owing to 
an improper fusion strategy. Therefore, the model based on HSI 
feature-level fusion was not improved compared with the model based 
on spectral feature variables. Decision-level fusion enables 
independent model fitting without scaling adjustments (36). This 
strategy not only takes advantage of the complementary strengths of 
the information but also reduces the adverse effects of weak sensors 
by changing the result weights (35), which is also the main reason why 
the performance of the decision-level fusion model based on HSI and 
E-nose has been significantly improved in this study.

Understanding the importance of selected variables in decision 
fusion is crucial for developing effective predictive models. In this case, 
the weight assigned to each variable in the multiple linear regression 
equation provides insights into their significance. In the decision fusion 
based on HSI and E-nose, the multiple linear regression equation is 
y = 0.802×1 + 0.074×2 + 0.184×3−0.026. The equation reveals that the 
spectrum-based PLSR prediction model has the highest weight, 
followed by the weight of the electronic nose. The higher weight 
assigned to the spectrum-based PLSR prediction model suggests that 
certain characteristic spectra are strongly correlated with moisture 
changes. For instance, the paper mentions that the third and second 
overtones of O-H stretching are correlated with water content. This 
correlation explains why the spectrum-based PLSR prediction model 
holds greater importance in the decision fusion. On the other hand, the 
relatively lower proportion of the PLSR prediction model based on the 
electronic nose can be  attributed to the instability of the test data 
collected by the electronic nose. Environmental factors such as air 
humidity can easily distort the data obtained from the electronic nose, 
leading to its lower weight in the decision fusion. This highlights the 
need for further refinement and stabilization of electronic nose data to 
enhance its effectiveness in moisture prediction. Furthermore, the 
small proportion of PLSR prediction models based on image data 
indicates that image data has limited significance in predicting 
moisture content. Although image data can capture changes in the 
appearance, shape, and color of shrimp, its correlation with moisture 
prediction is relatively low. Therefore, when analyzing different data 
types, it would be beneficial to explore and construct predictive models 
for other indicators to further study their changes and significance.

In conclusion, this study highlighted the effectiveness of 
employing a multi-sensor data-fusion approach for predicting the MC 
in shrimp during solar drying. However, the selection of suitable 
sensors and the discerning fusion of the corresponding data types 
remain paramount for optimal prediction performance. The 
contribution of E-nose data to predictive modeling is still limited. 
Further research can delve deeper into exploring other potential 
sensor technologies and data-fusion strategies for comprehensive and 
accurate evaluation of the quality of aquatic products from the drying 
process. Nuclear magnetic resonance and radio frequency sensing 
technology allow for non-contact, real-time monitoring of internal 
MC and distribution in food. This enables a better understanding and 
control over the drying process. In addition, this enhanced 
understanding is further complemented by employing advanced data 
analysis and machine learning algorithms, such as support vector 
machines and deep learning. These technologies not only facilitate the 
processing and analyzing of sensor data but also markedly augment 
the accuracy of predictions and assessments pertaining to the quality 
of dried food.
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5 Conclusion

We successfully combined HSI and E-nose techniques to establish 
an accurate method for assessing shrimp MC. Our model is a unique 
tool for quality evaluation and market monitoring. During our 
creation of this MC prediction model, we compared multiple data-
fusion techniques (pixel-, feature-, and decision-fusion). The results 
led us to conclude that models with a data-fusion strategy were 
superior to those based on a single variable. Additionally, decision-
level fusion yielded better results than pixel- or feature-level fusion. 
Finally, incorporating E-nose data into the fusion model improved 
predictive accuracy. Our findings confirmed that the PLSR model 
based on decision fusion of HSI and E-nose data was the best predictor 
of MC. This model yielded the highest Rc2 and Rv2, lowest RMSEC and 
RMSEV, and highest RPD. However, the model can be improved and 
its applications expanded. To this end, additional research should 
be  conducted to simulate different drying temperatures and 
procedures to broaden sample variety. Furthermore, a tailored 
detection system with integrated portable HSI and E-nose sensors 
should be developed to support industrial applications.
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