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Quinoa is a highly nutritious whole-grain crop with unique values as both a 
food and medicinal supplement. At present, the roles played by the intestinal 
microflora in human health are gaining considerable attention from the 
research community, and studies to date have shown that the occurrence of a 
range of diseases may be associated with an imbalance of the intestinal flora. 
The bioactive compounds of quinoa affect the production of SCFAs and the 
adjustment of intestinal pH. In this article, we review the mechanisms underlying 
the effects of different quinoa constituents on the intestinal flora, the effects 
of these constituents on the intestinal flora of different hosts, and progress in 
research on the therapeutic properties of quinoa constituents, to provide a better 
understanding of quinoa in terms its dual medicinal and nutritional properties. 
We hope this review will provide a useful reference for approaches that seek to 
enhance the composition and activities of the intestinal flora.
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1 Quinoa

Chenopodium quinoa, a plant originating from the Andes Mountains of South America, 
can be divided into white, red, and black color varieties. It is a hardy plant noted for its broad 
environmental tolerance to low temperatures, drought, and saline–alkaline conditions, and 
has become a traditional food crop on account of its excellent cold tolerance and ability to 
grow in high-altitude regions. Today, C. quinoa is mainly cultivated in South America and 
Asia, and in China, it is grown primarily in Shanxi and Qinghai provinces, and the northwest 
of the country. It is noted as a particularly nutrient-rich grain crop and a valuable source of 
proteins, fat, minerals, vitamins, fiber, and other nutrients, the levels of which tend to be higher 
than those in more common cultivated grain crops (1, 2). Quinoa is considered a whole-grain 
product containing a rich variety of bioactive substances, including phenols, saponins, and 
glucans, and can play potentially essential roles in the treatment of different diseases (3–5), 
based on the anti-oxidative, anti-cancer, anti-radiation, antibacterial and cholesterol 
metabolism-regulatory effects of its constituent (6). Figure 1 shows the nutrient contents of 
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quinoa and Figure 2 presents a profile of the associated bioactive 
substances, which have been widely described in previous 
studies (6–13).

Quinoa is considered an example of a plant with dual nutritional 
and medicinal properties, in that it can either be consumed as a food 
or applied for therapeutic purposes, depending on the context 
(Figure 3). In addition to being consumed as a whole grain, quinoa 
can be  processed to produce a diverse range of food products, 
including yogurt, bread, noodles, biscuits, ice cream, porridge, and 
meal replacement powders. However, despite its medicinal value, such 
as in the supplementation of amino acids, there has to date been 
comparatively little in-depth research to assess the potential medicinal 
uses of quinoa and its therapeutic effects (13–15).

In the past few years, there has been an increase in research assessing 
the application of quinoa in the treatment of liver cancer, obesity, 
diabetes, colon cancer, and other diseases (Figure 4). In this context, 
recent discoveries regarding the mechanisms underlying gut–brain–liver 
andintestinal flora –brain interactions have led to an increasing 
recognition of the importance of intestinal flora as a mediator in the 
body’s resistance and response to disease. It is accordingly speculated that 
the beneficial effects of consuming quinoa may be associated with an 
enhancement of the health and activities of gut microbiota (16–29).

1.1 Intestinal flora

Intestinal flora is a key component of the microenvironments of 
the small and large intestines. It is a dynamic and complex microbial 

system that plays essential roles in host metabolism, the occurrence of 
disease, and immune regulation (30). The principal bacterial taxa 
comprising intestinal flora include Bacteroidetes, Actinobacteria 
(mainly Bifidobacterium), Proteobacteria (mainly Enterobacter), and 
Firmicutes (mainly Lactobacillus, Enterococcus, and Clostridium). The 
outer mucosal layer of the colon is primarily populated by bacteria in 
the phyla Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, 
Fusobacteria, and Verrucomicrobia. It is composed of six bacterial 
genera, accounting for more than 90% of the total intestinal flora, with 
genera of Verrucomicrobia accounting for 3–5% (31). Different 
dominant strains inhabit different intestinal sites, wherein interspecific 
competition and inhibition contribute to maintaining the equilibrium 
of the intestinal microenvironment.

Based on their different effects on the host, the bacterial taxa 
comprising the intestinal flora can be  classified as pathogenic, 
beneficial, and neutral. The pathogenic bacteria, which can cause 
foodborne intestinal diseases, food poisoning, and other harmful 
diseases, include Clostridium perfringens and species of Proteus and 
Salmonella, which account for 10% of the total intestinal flora. Host-
beneficial bacteria, accounting for approximately 20% of the total 
intestinal flora, include Clostridium butyricum, and species of 
Akkermansia, Lactobacillus, and Bifidobacterium, which play 
particularly important roles in the intestine that anti-inflammatory 
effect, mutual inhibition with harmful bacteria, etc. Neutral bacteria, 
also referred to as opportunistic pathogens, account for approximately 
70% of the total number of intestinal bacteria, among which are 
Escherichia coli, Lactobacillus, Streptococcus, and Veillonella. Under 
normal conditions, these bacteria are generally harmless, although 

FIGURE 1

Nutrients of quinoa. Data were obtained from the US Department of Agriculture database. In the figure, n represents the proportion of this substance.
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FIGURE 2

Bioactive substances of quinoa.

FIGURE 3

Usage of quinoa (13–15).
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they can become pathogenic in response to the interference of adverse 
external factors (31–33). Increasingly, it is becoming evident that these 
gut bacteria play key roles in regulating multiple body processes, about 
which comparatively little is known at present, thereby highlighting 
the necessity of further in-depth research.

In recent years, studies have shown that the occurrence of diseases 
is closely related to the reduction of beneficial bacteria. Based on this 
research, people have made great achievements in the treatment of 
intestinal flora disorders by supplementing probiotics or 
supplementing synbiotics. Since grains are rich in components that 
promote the growth of beneficial bacteria (34, 35), we focused our 
attention on the beneficial effects of grains on intestinal flora.

1.2 Further research on intestinal flora can 
provide a reference for the occurrence of 
diseases related to intestinal flora

One of the primary contributions of intestinal flora is the 
production of beneficial metabolites, such as short-chain fatty acids 
(SCFAs), which mainly include acetic, propionic, and butyric acids. 
SCFAs can bind to the G-protein-coupled receptors (GPCR) GPR41 
and GPR43, thereby inducing the secretion of glucagon-like peptide-1 
(GLP-1), peptide YY (PYY), and leptin, which enhance the body’s 
energy metabolism (36). SCFAs can, to a certain extent, influence 
glucose and lipid metabolism by inhibiting the synthesis of fat, 
participating in immune regulatory processes, promoting intestinal 
digestion and absorption, reducing intestinal pH, and playing an 
important role in maintaining the balance of the intestinal flora (37). 
An unfavorable imbalance among intestinal flora can influence the 
nervous and immune systems via the brain–intestine–kidney and 
brain–intestine–bone marrow axes. Among the disorders that have 
been established to be associated with imbalanced intestinal flora is 

inflammatory bowel disease (IBD), in which patients are characterized 
by changes in the proportions, diversity, and composition of gut flora, 
which is reflected in an altered balance among pathogenic, conditional 
pathogenic, and beneficial bacteria, with increases in pathogenic types 
and reductions in beneficial bacteria (38). Generally, such imbalances 
between beneficial and pathogenic bacteria contribute to the 
development of diseases and disorders, and in this regard, some 
studies have found that changes in the intestinal microenvironment 
are reflected in increases or reductions in microbial metabolites, 
which in turn will influence the normal host metabolic activities and 
may be  accompanied by metabolic disease (36). These findings 
accordingly highlight the close relationship between intestinal flora 
and human health, and thus, further research on intestinal flora could 
provide a reference for the occurrence of diseases associated with the 
activities of these microorganisms.

A number of cereal crop plants characterized by coarse grains 
have been established to influence the regulation of intestinal flora. 
For example, a study on polysaccharides derived from the coarse-
grained Tartary buckwheat based in vitro-simulated fermentation 
found that these polysaccharides have a regulatory effect on intestinal 
flora and SCFA metabolites (39). Among these SCFAs, the contents of 
acetic, propionic, and butyric acids were observed to have increased 
during in vitro fermentation, which, compared with the control, was 
accompanied by corresponding increases in the abundance of 
probiotic flora, thus contributing to a regulation of the intestinal 
microenvironment. In a further study, Zhao et al. demonstrated that 
consumption of adzuki beans can alleviate obesity caused by a high-fat 
diet, which was found to be closely associated with the activities of 
intestinal flora (40). Compared with mice in a high-fat diet group, 
those consuming an adzuki bean-supplemented diet were found to 
have a significantly enriched bacterial flora in terms of abundance, 
although there were no obvious changes in bacterial diversity. The 
intestinal flora of mice fed the adzuki bean supplement was found to 

FIGURE 4

The number of studies on the active functions of quinoa.
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contain a greater abundance of probiotic strains, which partially 
compensated for the detrimental effects of a high-fat diet on the 
intestines of mice, and also contributed to a reduction in the 
biosynthesis of lipopolysaccharides. Accordingly, these findings 
indicate the positive effects of adzuki beans in regulating intestinal 
flora. Similarly, examination of the effects of different proportions of 
buckwheat in regulating the abundance of intestinal flora has indicated 
that high doses of dietary buckwheat can promote increases in the 
abundance of intestinal flora, reduce the intestinal absorption of 
cholesterol, and enhance the intestinal excretion of cholesterol (41). 
These findings accordingly provide important clues regarding the 
potential mechanisms whereby coarse-grain products can contribute 
to improving the intestinal microenvironment.

Based on the research conducted to date, it is speculated that the 
natural active constituents of quinoa can influence disease 
development by regulating intestinal flora. In this review, 
we accordingly focus on the regulatory effects of quinoa extracts and 
their active constituents on the composition and activity of 
intestinal flora.

2 The regulatory effects of quinoa 
bioactive components on intestinal 
flora

2.1 Saponins

The saponins in quinoa are characterized by their low 
bioavailability, poor absorption, and prolonged intestinal residence. 
These characteristics indicate the potential availability for metabolism 
by intestinal microorganisms and that they can serve as a source of 
secondary glycosides or aglycosides (42). Studies have shown that (43) 
Under the action of intestinal flora, quinoa saponin can be effectively 
hydrolyzed into sapogenin by the host, the release of sapogenin is 
related to the initial microbial composition of intestinal microflora, 
and the initial intestinal microflora interferes with the later conversion 
process of sapogenin of quinoa saponin through some mechanism. In 
addition, these saponins have been shown to play a beneficial role in 
regulating the intestinal flora in rats (44). A comparison of rats 
administered high, medium, and low doses of quinoa saponins 
revealed significant differences between the experimental and control 
groups with respect to the diversity of intestinal flora. The findings of 
metabolomic analyses revealed that these saponins influence multiple 
processes, including the metabolism of vitamin B6 and tryptophan and 
the ammonia cycle, thus regulating host metabolism and modifying 
the composition of the intestinal flora in rats. The findings of this 
study also provided evidence to indicate that in contrast to low doses, 
medium and high doses of quinoa saponins may have potentially toxic 
effects on the kidneys. These observations accordingly indicate that it 
would probably be safe to consume low amounts of quinoa saponins 
in the diet or quinoa-based food products.

Although an imbalance in the intestinal flora has been established 
to influence host metabolism (43), with metabolites having both 
beneficial and detrimental effects on the intestinal flora, the respective 
mechanisms of action remain unclear. Within the intestines, quinoa 
saponins can be effectively microbially hydrolyzed to yield sapogenin, 
the release of which has been shown to influence the initial microbial 
composition of intestinal microflora, which in turn interferes with the 

subsequent conversion of sapogenin. In this regard, Li et al. (42) have 
reported that total quinoa saponins have a bidirectional regulatory 
effect on intestinal microorganisms, with the ability to selectively 
promote the growth of beneficial bacteria. For example, treatment 
with quinoa saponins has been found to promote a significant increase 
in the relative abundance of Lactobacillus, has a beneficial effect on 
butyrate-producing bacteria, promotes health by enhancing the 
relative abundance of anti-inflammatory intestinal microbiota, 
inhibits the excessive growth of harmful bacteria, and reduces the 
production of lipopolysaccharides (LPS). Moreover, long-term 
supplementation with quinoa saponins is associated with anti-obesity 
effects by promoting a significant reduction in fat accumulation in 
obese rats, enhancing energy metabolism, and modifying the 
composition of intestinal flora. These findings also indicate a potential 
link between the composition of the intestinal flora and enhanced 
glucose tolerance and reductions in the levels of IL-6 and serum LPS 
levels. On the basis of these findings, it would thus appear that quinoa 
saponins have positive regulatory effects on intestinal flora.

Studies on rats, examining the effects of saponins derived from 
different varieties of quinoa have shown that quinoquinosides have 
membranolytic activity on small intestinal mucosal cells, with the 
effect being most pronounced with the quinoquinosides in bitter 
grains, and is associated with marked food aversion and impaired 
growth responses in rats. However, there is no clear evidence to 
indicate any deleterious effects on animal health (45). In a further 
study, Chen et al. extracted saponins from different colored varieties 
of quinoa and compared their compositions, digestion, and 
fermentation characteristics (46). They accordingly found that the 
quinoquinosides of black and white varieties had a higher saponin 
content than those from a red variety. The quinoquinosides of black 
quinoa were found to inhibit the growth of harmful bacteria (e.g., 
Shigella spp.) and promotes the growth of probiotic strains 
(Lactobacillus and Bifidobacterium spp.). Conversely, intestinal flora 
also releases sapogenin from quinoquinoside saponins. In a study 
assessing the safety of quinoa saponins and their effects on intestinal 
flora, in which rats were orally administered quinoa saponins for 
90 days, the authors established that the maximum non-toxic dose of 
these saponins was in the range between 5 and 50 mg/kg (47). This 
result may be  due to the consistent and inseparable relationship 
between the pathological characteristics of chronic kidney injury 
shown by the high-dose group of female rats after the experiment. 
More experiments are needed to verify the dose relationship between 
quinoa saponin and the body. Analysis of the intestinal flora of the 
treated rats revealed that the orally administered saponins promoted 
an increase in the number of intestinal flora species in female rats with 
relatively poor intestinal flora. Contrastingly, in male rats with 
relatively abundantintestinal flora, these saponins were found to alter 
the composition of the intestinal flora and also promoted an increase 
in the abundance of beneficial bacteria, whereas no corresponding 
increase was observed regarding the abundance of harmful bacteria. 
These findings thus provide further evidence to indicate that quinoa 
saponins have a positive effect with respect to improving intestinal 
flora, although the underlying mechanisms remain to be determined.

Ruoyu (44) and Zhang et al. (47) reported that quinoa saponin has 
no adverse effect on the host at a small dose of less than 5 mg/kg, on 
the contrary, at higher doses, such as 5 mg/kg-500 mg/kg, there is an 
adverse effect on the host. Under the influence of a higher dose of 
quinoa saponin, the host will cause kidney damage and chronic 
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inflammation in the gastrointestinal tract. At present, more details of 
the safe dosage of quinoa saponin need to be further explored. In 
contrast, further exploration of the safe dosage range of quinoa 
saponin is of greater significance for the application of quinoa saponin. 
In addition to increasing the utilization of quinoa saponin, the related 
mechanism of saponin improving intestinal flora can also 
be further revealed.

2.2 Polyphenolic compounds

Among the polyphenolic constituents of quinoa, esculin has been 
identified as a polyphenol with medicinal properties. In a study using 
red junglefowl, Agarwal et  al. examined the effects of quercetin 
3-glucoside, 5% inulin, 5% quinoa cellulose, and other treatments on 
the microbiota populating the duodenum and cecum of these birds 
(48). The findings of duodenal 16rDNA analysis revealed that 
compared with the control group, treatment with 1% quinoa quercetin 
promoted increases in the numbers of in the group of probiotic 
microorganisms, reduced the numbers of potentially pathogenic 
E. coli, and increased the relative abundance of the dominant bacterial 
phylum Firmicutes in the intestinal flora. In addition, the combination 
of 1% quinoa quercetin and 5% quinoa cellulose resulted in an 
increase in goblet cells, which is good for the intestinal flora. The more 
goblet cells, the more mucin they produce, which strengthens the first 
line of defense of the intestinal flora (49). Another hypothesis is that 
acidic goblet cells may lower luminal pH, thereby influencing resident 
bacteria and directing the intestinal flora in a positive direction. These 
findings thus indicated that 1% quinoa quercetin has a prebiotic effect 
on the intestinal flora of red junglefowl, which could contribute to 
enhancing the composition of intestinal flora. Given the presumed 
pivotal role of intestinal flora in metabolic regulation, several studies 
have examined its effects on the metabolism of glucose and lipids, and 
in this regard, it has been established that the biological activity of 
quinoa polyphenols can also be manifested via their hypoglycemic 
effects mediated through inhibition of gastrointestinal digestive 
enzymes. In this process, quinoa polyphenols have been demonstrated 
to hinder the degradation of polysaccharides and retard the absorption 
of carbohydrates in the intestine by inhibiting α-amylase and 
α-glucosidase, which are key enzymes in the digestion and absorption 
of gastrointestinal sugars. Moreover, these compounds have also been 
found to contribute to lowering blood glucose levels (50). Collectively, 
these findings provide evidence indicating that quinoa polyphenols 
can enhance intestinal flora, which may be  associated with the 
production of prebiotics and glucose metabolism-related mechanisms. 
Zhang et  al. (51) reported that quinoa polyphenols could inhibit 
α-glucosidase activity in a dose-dependent manner through free 
polyphenols (FPE) and bound polyphenols (BPE). FPE and BRE 
inhibit α-glucosidase activity by binding to the enzyme site in a 
non-competitive mode and an un-competitive mod, thereby inhibiting 
the elevation of blood glucose level according to the previous reports 
on quinoa polyphenols, we speculate that the mechanism of quinoa 
polyphenols involved in intestinal flora may be  that quinoa 
polyphenols inhibit enzymes involved in the regulation of the digestive 
tract, thereby affecting the abundance of intestinal flora and improving 
the microenvironment of intestinal flora. This also gives us an 
important hint that quinoa polyphenols have a great potential impact 
on the improvement of the body and provides strong support for the 

development and utilization of quinoa. The more detailed mechanism 
remains to be further explored.

2.3 Polysaccharides

The findings of previous studies have indicated that the extraction 
yield of quinoa polysaccharides differs among different cultivars, 
among which, the yield obtained from cultivar ‘NSL92331’ has been 
reported to be as high as high as 6.88% (52). Quinoa polysaccharides 
are considered prebiotics, and in this regard, simulated in vitro 
fermentation studies have revealed increases from 3.33 to 10.88% in 
the proportion of Bifidobacteria in a quinoa polysaccharide-treated 
group. Similarly, whereas Actinobacteria accounted for 5.28% of the 
intestinal flora in the control group, the proportion had increased to 
16.98% in the quinoa polysaccharide group. Quinoa polysaccharides 
have been established to promote the growth of beneficial bacteria 
after fermentation, for example, Bifidobacterium and Collinsella, 
thereby indicating that these polysaccharides can be used as a crude 
source of fermented carbohydrates and have a significant prebiotic 
promotion effect on Bifidobacterium and other probiotic bacteria (53).

Quinoa polysaccharides can also contribute to ameliorating 
hyperlipidemia induced by consumption of a high-fat diet (HFD), the 
underlying process of which is regulated by intestinal flora. In a study 
in which Cao et al. examined the effects of quinoa polysaccharide 
supplementation in rats fed an HFD, the rats were orally administered 
a quinoa polysaccharide preparation (54). It was accordingly found 
that low-dose quinoa polysaccharide supplementation had regulatory 
effects on the bacterial community at the phylum, class, order, family, 
and genus levels. At the phylum level, the populations of Firmicutes, 
Bacteroidetes, and Proteobacteria were found to account for more than 
90% of the total gut bacteria. However, this supplementation was 
observed to reduce the Firmicutes and increase those of Bacteroidetes, 
thereby leading to a reversal in the Firmicutes to Bacteroidetes ratio in 
the HFD group rats. Furthermore, in response to the low-dose 
polysaccharide treatment, there was an increase in the proportion of 
Proteobacteria, to levels similar to those observed in the normal 
control group. These findings thus provide further evidence 
supporting the role of quinoa polysaccharides as prebiotics in 
regulating intestinal flora. These reports indicate that quinoa 
polysaccharide has a positive effect on intestinal flora, and the related 
regulatory mechanism needs to be further explored. From the above 
reports, we also know that the imbalance of intestinal flora is not a 
simple process, but more a multi-sided regulation, and quinoa 
polysaccharide shows changes in intestinal flora, which also gives us 
favorable support for the development of quinoa.

Quinoa dietary fiber has been established to have a positive effect 
with respect to the regulation of intestinal flora, with SCFAs being 
notable beneficial products of the microbial fermentation of dietary 
fiber. The effects of quinoa bran soluble dietary fiber (QBSDF) on 
intestinal inflammation and homeostasis have been studied in mice 
with ulcerative colitis induced by sodium dextran sulfate (DSS) (55). 
Functional analyses of the intestinal flora in these mice revealed that 
QBSDF-induced improvements in the grouping, and structure of the 
intestinal flora community may include functional changes among 
these microbes. QBSDF was found to enhance the production of 
SCFAs (as determined from an analysis of fecal samples), attenuated 
DSS-induced dysbiosis of intestinal flora, and had positive effects on 
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the maintenance of intestinal integrity. This fiber was also found to 
contribute to a significant enhancement of gut barrier function by 
promoting increases in the expression of tight junction proteins at 
both the mRNA and protein levels. Furthermore, the prebiotic 
properties of quinoa soluble cellulose have been confirmed based on 
an examination of the effects of intra-amniotic administration of 5% 
quinoa fiber to viable embryos mediated via its influence on the cecal 
bacterial population and intestinal morphology (45). Previous reports 
mentioned that there is another possible mechanism of quinoa 
polysaccharide related to SCFAs, which involves that quinoa 
polysaccharide may be related to the production of SCFAs during the 
fermentation process, which also involves the change of pH, thereby 
improving the living environment of beneficial bacteria and guiding 
the intestinal flora in a positive direction (Table 1).

2.4 Bioactive peptides

Bioactive peptides are peptide compounds that have positive 
effects on biological activities, and whereas microorganisms can 
metabolize protein peptides, bioactive peptides have in turn, been 
established to have regulatory effects on the structure of intestinal 
flora (59).

Quinoa proteins are an important source of bioactive peptides. In 
an in vivo study of quinoa proteins in spontaneously hypertensive rats 
(SHR), analysis of the gastrointestinal contents revealed the presence 
of numerous promising bioactive peptide precursors released from 
quinoa proteins. Moreover, examination of fecal microbes in SHR 
treated with quinoa proteins revealed that these microbes have more 
common characteristics regarding genus composition than those in 
non-hypertensive rats (59). Quinoa proteins were found to promote a 
significant reduction in the blood pressure of SHR, an increase in 
bacterial alpha diversity (the number, evenness, and abundance of 
species), and a shift in the structure of intestinal flora to one closer to 

that of non-hypertensive rats. These findings accordingly indicate that 
quinoa proteins may serve as a potential therapeutic candidate for 
reducing blood pressure by ameliorating the intestinal flora dysbiosis 
associated with hypertension. In this regard, quinoa proteins have 
been identified as a promising natural source of angiotensin-
converting enzyme (ACE) inhibitory peptides and can reduce blood 
pressure in SHR, in which the fecal microbiota undergo significant 
alterations. A further study on bioactive peptides derived from quinoa 
proteins has similarly confirmed that as precursors of bioactive 
peptides, quinoa proteins have regulatory effects on intestinal flora. 
The effects of quinoa proteins and the associated hydrolysate have also 
been investigated in an azoxymethane/dextran sulfate sodium (AOM/
DSS)-induced mouse model of colorectal cancer (CRC) (60). Analysis 
of the intestinal flora and potential mechanisms associated with 
SCFAs showed that quinoa proteins or protein hydrolysates can 
alleviate the clinical symptoms of CRC and increase the contents of 
SCFAs in colonic tissues. In addition, these proteins, or the hydrolysate 
thereof, were found to partially alleviate an imbalance in the intestinal 
microbiota of CRC mice, which could be attributed to the fact that 
quinoa proteins can contribute to reducing the abundance of 
pathogenic bacteria and promote increases in the relative abundance 
of probiotic strains. Furthermore, PICRUSt analysis revealed that the 
functional characteristics of the intestinal flora in the quinoa protein-
treated group were similar to those in the control group. Collectively, 
the findings of this study revealed that quinoa proteins and their 
hydrolysate can contribute to ameliorating AOM/DSD-induced CRC 
in mice, by altering intestinal flora and enhancing the production of 
beneficial SCFAs.

The findings of a further study conducted by Fotschki et al. have 
revealed that flour containing quinoa protein can significantly 
enhance cecal microbial activity, the activities of α-glucosidase, 
β-glucosidase, and α-galactosidase, and the production of SCFAs in 
rats, while promoting a reduction in the pH of digesters, thereby 
indicating the favorable effects of these proteins on growth parameters 

TABLE 1 Characteristic differences among quinoa cultivars.

Characteristic White Red Black Ref.

Quinoa saponin antioxidant activity + ++ +++ (11)

Saponins content 0.65 g/100 g 0.28 g/100 g 0.59 g/100 g (46)

Sapogenin 24 g/100 g 4.66 g/100 g 24.82 g/100 g

Polyphenolic substance

The total concentration 466.99 ± 3.27 mg/kg 634.66 ± 5.87 mg/kg 682.05 ± 4.73 mg/kg (56)

Minimum Inhibitory Concentration 

(MIC)

0.111–0.592 mg/mL 0.074–0.739 mg/mL 0.107–0.867 mg/mL

Mechanisms of effects on intestinal 

flora

/ Inhibits the activity of 

α-glucosidase

/ (51)

Related reported diseases / Type 2 diabetic patient /

Inhibition of α-Glucosidase + ++ +++ (57)

Inhibition of Lipase Activities + ++ +++

Quinoa polysaccharide

Related reported diseases HLP (hyperlipidaemia) and 

colonitis

/ / (58)

Changes in the number of intestinal 

floras

Increase Bifidobacterium and 

Collinsella

/ /
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and metabolism of intestinal flora (61). Furthermore, in a study 
evaluating the effects of quinoa seeds supplemented with phytase and 
protease alone or in combination on microbial activity and intestinal 
flora, it was found that the addition of phytase and protease to the 
basal diet had beneficial effects on the growth performance, intestinal 
flora ecology, and gut morphology of broilers (62). The addition of 
protease supplements and phytase to a quinoa seed-based diet 
promoted increases in the viable cell counts of Lactobacillus and 
reduced those of E. coli, which could be associated with the effects of 
these enzymes on protein digestibility, thereby altering amino acid 
bioavailability and influencing microbial composition, as well the 
antimicrobial properties of protease supplements.

The diseases mentioned in these reports include spontaneous 
hypertension and colorectal cancer, both of which show a close 
relationship with intestinal flora in these reports. However, it is 
extremely strange that in a report by Zhang et al. (51), it is mentioned 
that α-glucosidase activity was inhibited. However, Fotschki et al. (61) 
report increased the activities of α-glucosidase, which is obviously in 
conflict. Nevertheless, since the diseases targeted by these two reports 
and the varieties of quinoa tested in these two reports are different, 
this may be explained. This also gives us some hints that, perhaps 
because of its various bioactive functions, quinoa is the good choice 
for a versatile grain in the face of so many different diseases (Table 2).

Figure  5 shows the molecular structures of the chemical 
components of quinoa (5, 6, 63, 64, 66–70).

2.5 Improvements in the intestinal flora 
promoted by whole quinoa extract

Studies that have evaluated the prebiotics in quinoa and amaranth 
have shown that these can promote the production of SCFAs, lactate, 
and formate during fermentation, which can serve as suitable 
substrates for intestinal flora metabolism (71). The high acetate 

concentrations obtained from the fermentation of both these 
substrates may be  associated with increases in Bifidobacterium, 
Proteus mirabilis, or Bacteroides, thereby indicating potential prebiotic 
effects on the intestinal flora. Bianchi et al. have also demonstrated 
that a symbiotic beverage based on a soybean and quinoa water 
extract (30% quinoa and 70% soybean) had positive effects on the 
colon, promoting increases in the populations of beneficial 
Lactobacillus and Bifidobacterium and reducing those of potentially 
harmful genera, such as Bacteroides and Clostridium (72). 
Administration of this beverage also promoted a significant reduction 
in ammonia ion production and enhanced the diversity and richness 
of Lactobacillus spp. without influencing their activity. These findings 
thus indicate that quinoa and soy are good candidate plants for 
delivering probiotics to the intestinal flora, thereby enhancing the 
composition of the intestinal flora and hence improving human health 
(72). The findings of these and similar studies have thus confirmed 
that whole quinoa extracts can improve intestinal flora by yielding 
fermentation products beneficial to intestinal microbial metabolism, 
as well as through their roles as prebiotics. All the above reports show 
that quinoa has a certain role in promoting the health of intestinal 
flora. What can be  observed now is that after the animal quinoa 
experiment, the beneficial bacteria increases, and the harmful bacteria 
decreases. All the reports seem to prove this. In addition, there is 
evidence in the signal transduction pathway, which also gives us a 
great hint. Perhaps from the molecular mechanism, we can further 
discover the improvement of quinoa on intestinal flora, and then 
expand the utilization value of quinoa.

2.6 The effects of quinoa on the intestinal 
flora in different hosts

In addition to studies on rodents and poultry, researchers have 
also assessed the intestinal flora-associated effects of quinoa in a 
range of other hosts. For example, Traughber et al. evaluated the 
effects of five ancient grains (including rice and quinoa) as 
carbohydrate sources on blood glucose and insulin levels in dogs 
(73). The intestinal flora of animals in the quinoa group were 
found to be characterized by an increase in the relative abundance 
of Bacteroidetes, and these authors established that diets 
comprising up to 40% of these grains, would have beneficial 
effects on overall host health, without adversely influencing 
nutrient digestibility, and had no significant effects on the levels 
of blood glucose or insulin in healthy dogs. These findings imply 
that quinoa-based diets might benefit dogs with obesity, insulin 
resistance, or diabetes. In a further study using alpacas, Carroll 
et al. examined the effects of four dietary supplements of quinoa, 
barley, amaranth, or soybean meal on the gastrointestinal tracts 
of these animals, and accordingly found that none of the four 
supplements significantly altered the composition of the 
compartment 1 C1 microbiota in alpacas. Moreover, they detected 
no significant difference between normal and poor alpacas with 
respect to the abundance of different (Operational Taxonomic 
Unit) orders (74). A study in humans consuming quinoa bread 
showed (75) that a small but not significant change in the type of 
grain consumed (whole grain quinoa instead of 20 g refined wheat 
flour) did not significantly modulate the intestinal flora, with a 

TABLE 2 The regulation mechanisms of quinoa bioactive peptides in 
different diseases.

Disease Related mechanism Ref.

Obesity Regulation of the PPAR-α/γ 

signaling pathway in the liver 

and the community structure 

of intestinal flora

(65)

Spontaneously 

hypertensive

Angiotensin converting 

enzyme (ACE) inhibitory 

peptide is released

(59)

Colorectal Cancer (CRC) Increased SCFAs content in 

colon tissue

(60)

Colorectal Cancer (CRC) Inhibition of HDAC1 activity 

and regulation of cancer-

related gene expression

(83)

Colonic inflammation Quinoa protein and derived 

peptides inhibited TLR4 

levels and IκB-α and NF-κB 

phosphorylation in colon 

tissues

(84)
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FIGURE 5

The chemical composition of quinoa. (A) 3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid; (B) 1h-Imidazole-4-carboxamide; (C) vanillic acid; 
(D) quercetin; (E) phytic acid; (F) phytosterol; (G) tocopherols; (H) C14-18 and C16-18-unsatd; (I) salicylic acid; (J) 4-methylsalicylic acid; (K) hesperetin 
7-rhamnoglucoside; (L) naringenin-7-O-glucoside; (M) 4-aminosalicylic acid; (N) 2-fluorobenzoic acid; (O) scutellarin; (P) lasalocid; (Q) afzelin; 
(R) apigenin-7-O-neohesperidoside; (S) telmisartan; (T) kaempferol.
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small but not significant increase in the relative abundance of 
Firmicutes in the control (quinoa free) and quinoa bread groups. 
Furthermore, in their study of the effects of quinoa extract on 
oviparous animals, Gee et al. examined the guts of chicks treated 
with quinoa extract (5% quinoa fiber) administered to the 
amniotic cavity of eggs containing viable embryos (45). Compared 
with the control group, this treatment was found to promote 
increases in the number of goblet cells in the villi and crypts. In 
addition, consumption of quercetin 3-glucoside and soluble 
quinoa fiber was found to have beneficial effects on the 
morphology of the duodenal brush border membrane and 
duodenal microbiota. In their study assessing the effects of quinoa 
supplementation in fish (76), Ahmed examined the histological 
structure of the intestinal wall in tilapia, and found that compared 
with the control group, fish fed a 20% quinoa-supplemented diet 
were characterized by significant increases in villus width and 
goblet cell number, although no significant differences were 
observed with respect to villus length. Thus, collectively, studies 
on the intestinal flora of a range of different hosts have provided 
evidence to indicate that consumption of quinoa can have positive 
regulatory effects on intestinal flora, which provides further 
potential clues for quinoa as a drug for intestinal flora regulation.

Table 3 summarizes recent research on quinoa in terms of disease 
treatment (58, 77–82).

3 Summary and discussion

In this review, we discuss the potential applications of quinoa 
in enhancing the composition and activity of intestinal flora, with 
a specific focus on the different physiologically active constituents 
of this grain, namely, saponins, polyphenolic compounds, 
polysaccharides, bioactive peptides, and dietary fiber. Quinoa 
saponins can be  hydrolyzed by the intestinal flora to yield 
sapogenin, which has been demonstrated to have positive effects 
regarding the abundance of probiotic bacteria. However, at high 
doses, the saponins in quinoa may have toxic side effects on the 
kidneys and may adversely influence the bacterial metabolism of 
vitamin B6 and tryptophan and the ammonia cycle of intestinal 
flora. Moreover, saponins derived from different varieties of quinoa 
characterized by different grain color have been found to have 
differing effects on intestinal flora. In animal experiments, quinoa 
quercetin was found to increase the number of probiotic bacteria 
(such as Bifidobacterium and Phylum Firmicutes) and reduce the 
number of pathogenic bacteria in the duodenum and cecum. This 
quercetin has also been established to have regulatory effects on the 
host through its hypoglycemic effects, mediated via the glucose and 
lipid metabolism of intestinal flora. As a crude source of 
carbohydrates, quinoa polysaccharides have been demonstrated to 
play an active role in ameliorating hyperlipidemia induced by 
high-fat diets, promoting the activity of probiotic strains, inducing 
changes in pH, and yielding SCFAs. In addition, quinoa proteins 
can be used as a source of bioactive peptide precursors to alleviate 
the symptoms of colorectal cancer in mice and enhance the 
production of SCFAs in colonic tissues. These proteins have also 
been found to promote the activities of microbial α-glucosidase, 

β-glucosidase, and α-galactosidase in the cecum, and contribute to 
reductions in cecal pH. Studies in oviparous animals have also 
shown that protein digestibility may alter amino acid bioavailability, 
thereby influencing intestinal flora composition.

Collectively, studies conducted to date on the bioactive 
constituents of quinoa have revealed their common effects in 
promoting the abundance of probiotic bacteria and inhibiting 
pathogens, as well as their contribution in reducing intestinal pH 
and promoting increases in the production of SCFAs and other key 
factors. Moreover, these effects have been demonstrated in a diverse 
range of hosts, including mammals, birds, and fish, and evaluations 
of the therapeutic potential of using whole-quinoa extracts have 
facilitated further progress in disease-related research. For example, 
with respect to obesity, inflammatory bowel disease, liver cancer, 
and diabetes, quinoa has been found to have beneficial effects on 
the body, mediated via its regulatory effects on the intestinal flora, 
which further highlights the central role of these microbes in host 
regulatory processes, including those associated with the gut–
brain–liver and intestinal microbiota–brain routes. In addition, 
there is evidence to indicate that the constituents of different 
varieties of quinoa have slightly differing effects, which could 
be  associated with the different growth environments of 
these varieties.

The research of quinoa in intestinal flora, on the one hand, the 
observation of intestinal flora in the biological activity function of 
quinoa, it is found that quinoa can promote the growth of beneficial 
bacteria and inhibit the growth of harmful bacteria, regulate some 
enzymes of intestinal flora, and then create an environment conducive 
to the growth of beneficial bacteria, reverse the environment of 
intestinal flora. For example, bioactive peptides or polyphenolic 
compounds of quinoa affect the expression of certain enzymes 
through signaling pathways, which in turn affect the intestinal flora or 
other diseases. The mechanisms by which quinoa improves the 
structure of intestinal flora need to be further explored, which may 
be multi-faceted, and the achievements in molecular mechanisms may 
give us some hints.

Based on the research conducted to date, quinoa has now reached 
a certain stage of therapeutic development. However, despite the 
significant progress in this regard, there is still a lack of relevant 
experimental data for the therapeutic efficacy of quinoa as a human 
drug. As indicated by the animal study findings, intestinal flora can 
be considered an important switch that quinoa can contribute to 
operating by regulating the constituent microbial populations. It is 
confidently predicted that with more in-depth research on quinoa, 
the utilization of this grain for medicinal purposes can be enhanced, 
and effective approaches will be  developed for beneficially 
manipulating the intestinal flora. However, there are still many 
problems about the actual application of quinoa, such as the taste of 
quinoa and the control of quinoa saponin. We should not only tap 
the positive factors of quinoa, but also should not ignore the 
difficulties encountered in the reality of quinoa. Although the current 
market development of quinoa is not very good, with the in-depth 
research on the improvement mechanism of quinoa on intestinal 
flora, it is believed that the quinoa market will also have a new round 
of development in the near future, and what we need to do is to 
deeply explore the role of quinoa in the “homology of medicine 
and food”.
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TABLE 3 Research progress on quinoa in regulating intestinal flora of diseases.

Disease Experimental 
procedure

Mechanisms Changes in 
intestinal flora

Conclusion Ref.

Obesity Obese and normal mice were 

supplemented with whole 

quinoa, and the changes of 

intestinal flora were 

compared between the two 

groups.

1. Supplementation with the 

whole quinoa diet protected 

the body weight of mice.

3. Quinoa upregulated the 

expression of G protein bile 

acid-coupled receptor 5 

(TGR5) and GLP-1 in the 

colon, brain, and 

downregulated the expression 

of TLR4 in the colon and 

liverandmarkers of ER stress 

and oxidative stress in the liver 

and serum.

4. The whole extract of 

Quinoa has a prebiotic effect, 

regulating intestinal flora.

5. The effect of quinoa whole 

extract on SCFAs production 

was mediated by intestinal 

flora.

1. Changes occurred in 

microbial abundance and 

metabolic profiles.

2. The number of 

Bacteroides, 

Actinomycetes and 

desulfurizing Vibrio were 

regulated.

3. The imbalance of 

intestinal flora was 

reversed.

1. The whole quinoa 

supplement diet may 

be associated with the delay 

of age-related metabolic 

diseases of obesity.

2. Quinoa can reduce the 

body weight, body fat, and 

fasting blood glucose of HFD 

obese mice, significantly 

improve obesity induced by 

high-fat diet, alleviate 

abnormal glucose and lipid 

metabolism, and reverse 

intestinal flora imbalance.

(76–78)

Liver cancer Liver cancer was induced in 

mice and treated with 

protease inhibitor (pi)-rich 

salt solution obtained from 

quinoa.

1. Animals treated with pi 

showed higher hepatic MPO 

activity

2. Immune agonists promote 

hepatocarcinogenesis under 

pro-tumoral inflammation, 

reflecting to varying degrees 

an increase in the proportion 

of F4/80+ cells in the injured 

liver and a positive trend in 

the accumulation of immune 

mediators (CD68/CD206 

ratio) in the intestinal tissue.

Appears to promote the 

positive impact of gut 

innate immune 

modulation on the 

functional outcome of the 

microbiome.

1. Potential effects of quinoa 

extract protease inhibitors on 

alleviating liver injury

2. Provides new insights into 

the immunomodulatory 

activity

(79)

Diabetes Diabetic model mice were 

treated with a whole quinoa 

diet

1. Quinoa diet intervention 

reduced fasting blood glucose, 

body weight, blood lipid 

concentration, and insulin 

level; reduced HOMA-IR 

level; improved insulin 

tolerance and glucose 

tolerance; and significantly 

improved IR in db/db mice.

2. The effect of quinoa on 

T2DM is caused by the 

changes of intestinal flora and 

metabolism of the body.

The proportions of 

Faecalibaculum and 

Lactobacillus reuteri were 

increased.

1. Quinoa dietary 

intervention may ameliorate 

the diabetic process at the 

protein level.

2. Quinoa can effectively 

improve long-term 

hyperglycemia in diabetic 

mice, improve glucose 

tolerance, and enhance 

insulin sensitivity with few 

toxic side effects.

(80, 81)

Inflammatory bowel 

disease

Colitis was induced in a 

subset of mice from the 

groups fed AIN-93 M or 

whole quinoa diets.

1. Reduction in overgrowth of 

pathogenic bacteria.

2. Increase in gut species 

richness and diversity.

1. Reduced overgrowth of 

Escherichia/Shigella and 

Clostridium difficile.

2. Promote the growth of 

two genera of 

Lachnospiraceae.

1. Inhibit the imbalance of 

intestinal flora.

2. Quinoa has the potential to 

improve gut health.

3. Compared with DSS 

treatment, quinoa diet 

changed the intestinal flora 

more toward healthy 

intestinal flora.

(58, 82)
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