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Effect of five hours of mixed 
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Introduction: Carbohydrates and fats are the primary energy substrates during 
exercise, but proteins can also contribute. When proteins are degraded in the 
body, the amino groups are mainly converted to urea and excreted. Therefore, 
nitrogen excretion has been used as a marker of protein degradation, but a 
clear conclusion has yet to be reached on the effect of exercise on nitrogen 
excretion. Thus, we tested whether exercise increases nitrogen excretion.

Methods: Fifteen young, healthy, moderate-to-well-trained participants 
(4 females, 11 males, VO2max 54.4  ±  1.7  mL·kg−1·min−1; mean ± SEM) participated 
in a randomized, balanced cross-over design investigation consisting of 1 day 
with 5 h of exercise (exercise day, EX) and 1 day with no exercise (control day, 
CON). The participants recorded their dietary intake the day before from 16:00 
and throughout the intervention day. They then repeated these dietary intakes 
on the second trial day. A standardized lunch was provided on both days. In 
addition, participants were allowed to consume almost protein-free snacks 
in EX to ensure the same energy balance during both trial days. Urine was 
collected throughout the whole testing period, and urinary 3-methylhistidine 
(3-MH) excretion was measured to examine muscular catabolism. The sweat 
rate was calculated during the exercise period.

Results and discussion: The urinary nitrogen and 3-MH excretions did not differ 
significantly between EX and CON (p = 0.764 and p = 0.953). The sweat rate was 
2.55 ± 0.25 L in EX and 0.14 ± 0.15 L in CON (p < 0.001), and by estimating sweat 
nitrogen excretion, total nitrogen excretion was shown to differ with exercise. Our 
results showed that 5 hours of mixed exercise did not significantly impact urinary 
nitrogen and 3-MH excretions in healthy moderate-to-well-trained young adults.
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1 Introduction

The view of proteins as an energy substrate has changed over time. In 1842, Justus von 
Liebig suggested that protein was the “only true nutrient, providing both the machinery of the 
body and the fuel for its work” (1). Not long after Liebig’s claim, several studies proved this 
conclusion wrong (2). Nevertheless, von Liebig’s claim led to many studies combining exercise 
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and the measurement of nitrogen excretion via urine collection during 
the late 19th century. Many of these studies showed rises in nitrogen 
excretion after physical work or exercise (see Supplementary Table S1). 
However, nitrogen excretion was seldom quantified reliably, nor was 
the data collection accompanied by a standardized diet or a control 
trial within the same subjects (3–12). This makes the comparison of 
studies challenging, as nitrogen excretion is highly correlated with 
protein (nitrogen) intake from food (13). It is important to note that 
dietary proteins are the only exogenous nitrogen source that can 
regulate the body’s nitrogen metabolism. In addition, nitrogen 
excretion decreases as energy intake increases at a fixed nitrogen 
intake (13). Furthermore, few participants were included in the studies 
and no specific energy expenditures were calculated during the work/
exercise periods. Consequently, no clear conclusion has been reached 
on the effect of exercise on urinary nitrogen excretion.

Since then, some newer studies have investigated the effect of 
exercise on urinary nitrogen excretion in more reliable designs. Urine 
was collected on an exercise day, including a running or cycling 
exercise, and compared to urine collected on a resting day (14–17). 
Urinary nitrogen excretion was either significantly higher or tended 
to be higher during the exercise day versus the control day. However, 
another study with a similar cycling exercise did not measure any 
difference in urinary nitrogen excretion between the exercise and the 
control day (18). Thus, a clear conclusion remains to be reached on 
the effect of exercise on urinary nitrogen excretion. As nitrogen 
excretion provides a reasonable estimate of whole-body protein 
degradation, arriving at a conclusion would allow several 
practical applications.

During exercise, nitrogen can also be excreted in sweat. However, 
the amount of sweat nitrogen excreted varies greatly. Some studies 
have shown as low as ≈50 mg·h−1 of nitrogen excreted in sweat (19), 
some ≈250 mg·h−1 (17, 20), some ≈500 mg·h−1 (21), and others 
reported ≈600 mg·h−1 (22, 23), and up to ≈1700 mg·h−1 (24). Despite 
the large disparity, most values fall within the same concentration 
range of approximately 0.4 to 1.2 mg/mL. Differences in temperature 
and dietary nitrogen intake are the main factors explaining the 
variance within this range (19, 25). A significant linear relationship 
exists between nitrogen intake and sweat nitrogen loss at a fixed 
temperature (20, 25). Therefore, it is possible to estimate sweat 
nitrogen loss if both factors are known, and the sweat rate is measured.

A further in-vivo non-invasive method for quantifying skeletal 
myofibrillar protein catabolism is the measurement of urinary 
3-methylhistidine (3-MH) excretion (26, 27). The amino acid 3-MH 
is formed by adding a methyl group to specific histidine residues in 
the peptide chains of actin in all muscles and myosin in white muscle 
fibers (28–30). About 80% of the excreted 3-MH in adults is derived 
from actin and 20% from myosin (31). When muscle protein is 
degraded, 3-MH is neither reused for protein synthesis (32) nor 
metabolized (33) and is excreted in the urine (34). Because plasma 
levels of 3-MH are low and renal clearance is high, urinary excretion 
reliably reflects myofibrillar degradation rates.

Previous studies have shown that when participants cycle to 
exhaustion, they need to ingest a large quantity of protein to be in 
nitrogen balance (35–37). This indicates increased nitrogen excretion, 
but it remains to be  proven. Therefore, in this study, participants 
completed a randomized, balanced cross-over design of two trial days. 
One day consisted of 5 h of exercise (EX), and the other comprised 5 h 
of rest and no exercise of any form (CON). Urine samples were 

collected during the entire testing period. Based on this, 
we hypothesized that the exercise day would increase urinary nitrogen 
and 3-MH excretions.

2 Materials and methods

2.1 Participants

Fifteen young, healthy, moderate-to-well-trained adults (4 women 
and 11 men) were recruited for the study. Their characteristics are 
described in Table 1. Participants were informed about the study before 
providing their written informed consent. In addition, all participants 
completed a health questionnaire to rule out potential risk factors. The 
Norwegian School of Sport Sciences’ Ethics Committee (Application 
190–170,621) and the Norwegian Centre for Research Data (Reference 
number 473323) approved the study, which conformed to the standards 
set by the latest revision of the Declaration of Helsinki.

2.2 Study design

This study was performed in a randomized, balanced cross-over 
design (Figure 1). The study consisted of two trial days: one exercise 
(EX) and one control day without physical activity (CON), preceded 
by a screening day to determine physiological parameters and measure 
body composition. The same samples were collected in EX and 
CON. Dietary intakes were identical, except participants were allowed 
to consume almost protein-free snacks during EX to ensure the same 
energy balance during the two trial days.

2.3 Screening day

2.3.1 Incremental test
Participants performed an incremental test on a cycle ergometer 

(Lode Excalibur, Lode, Groningen; The Netherlands), during which 
the relationship between oxygen uptake and heart rate was 
established. This test was performed in a controlled environment 

TABLE 1 Age, anthropometric data, and VO2max in pretests.

Parameter
Women and 
men (n =  15)

Women 
(n =  4)

Men 
(n =  11)

Age (years) 24.4 ± 0.7 23.1 ± 1.2 24.8 ± 0.8

Body weight (kg) 73.6 ± 1.8 69.9 ± 4.7 74.9 ± 1.8

Height (m) 1.78 ± 0.02 1.71 ± 0.03 1.80 ± 0.02*

BMI (kg·m−2) 23.2 ± 0.4 23.7 ± 0.9 23.0 ± 0.4

Lean mass (kg) 57.1 ± 1.6 48.7 ± 2.0 60.2 ± 1.0*

Fat mass (kg) 14.9 ± 1.3 19.8 ± 2.4 13.1 ± 1.2*

Fat mass (%) 20.2 ± 1.7 28.0 ± 2.2 17.3 ± 1.3*

VO2max (L·min−1) 4.0 ± 0.1 3.3 ± 0.3 4.3 ± 0.1*

VO2max (mL·kg−1·min−1) 54.4 ± 1.7 47.5 ± 3.1 57.0 ± 1.4*

HRmax (beat·min−1) 195.1 ± 1.9 197.8 ± 5.2 194.2 ± 1.9

Data are given as average ± SEM. *p < 0.05 compared to women. BMI body mass index; 
HRmax maximum heart rate; VO2max maximum oxygen uptake.
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under similar ambient conditions (18–19°C). The saddle and 
handlebar positions were individually adjusted. The test consisted 
of 3 to 5 steps of 5 min, with the load increasing by 25 W for each 
step. The starting load was selected based on the height and body 
weight of the participant, expected VO2max, and previous cycling 
experience. The pedaling frequency was 75 rpm, which had to 
be maintained throughout the test. Oxygen uptake was measured 
online (Oxycon Pro; Jager Instruments, Hoechberg, Germany) over 
150 s (from ~2.5–5 min at each intensity level), and capillary blood 
samples were taken for lactate analysis (Biosen C-Line Lactate 
analyzer, EKF Diagnostics, United  Kingdom). Heart rate (Polar 
RS800CX, Kempele, Finland) was measured continuously 
throughout the incremental test. The incremental test was 
terminated after 5 steps or when the blood lactate concentration 
exceeded 4 mM. Linear regression analysis from this incremental 
test was used to establish a relationship between oxygen uptake and 
heart rate.

2.3.2 Maximum oxygen uptake test
After 10 min of rest following the previous incremental test, 

maximal oxygen uptake (VO2max) was measured using the same 
equipment. Participants started the VO2max test at the second to last 
step of the incremental test, and intensity was increased by 25 W steps 
every 60 s until voluntary exhaustion. The pedaling frequency was 
75 rpm. Oxygen uptake was measured continuously, and the mean of 
the two highest measurements was defined as maximal oxygen uptake 
(VO2max). Heart rate (Polar RS800CX, Kempele, Finland) was 
measured continuously throughout the maximum oxygen uptake test. 
The maximum heart rate (HRmax) was the highest heart rate reached 
during this test.

2.3.3 Body composition
Body composition was measured using a whole body Dual-

Energy-X-ray Absorptiometry (Scanex Medical Systems AS, GE 
Lunar iDXA, GE Healthcare, program ENCORE 18). Fat, lean, 
bone (bone mineral content), and total body mass 
were determined.

2.4 Trial days

Participants recorded their dietary intake from 16:00 to bedtime 
the day before the first trial day and were asked to follow the same diet 
before the second trial day. No exercise was allowed within the last 
24 h before the trial days. Participants were randomly assigned to 
either EX or CON first. When conducting EX first, a minimum 
interval of 7 days was set before completing CON to ensure proper 
recovery. When conducting CON first, a minimum interval of 2 days 
was set before completing EX.

2.4.1 Exercise day (EX)
During EX, participants performed 5 h of endurance-based 

exercise: 1 h of running, 2 h of body weight strength circuit training, 
1 h of cardio endurance workout, and 1 h of cycling to exhaustion on 
a stationary spinning bike. The exercise intensity for these exercises 
was selected by the participants in a certain intensity range to ensure 
participants could successfully adhere to the prescribed exercise 
protocol. Monitoring of the intensity was conducted through both the 
percentage of maximum heart rate (%HRmax) and the participants’ 
rating of perceived exertion (RPE).

Participants reported to the laboratory at 8:00. Each participant’s 
body weight was measured as well as resting blood glucose 
concentration (HemoCue Glucose 201 RT Analyzer; HemoCue AB, 
Ängelholm, Sweden). The resting heart rate was measured after 5 min 
of sitting quietly. Participants then prepared for the exercise.

At 9:00, the participants performed 1 h of outdoor running. 
Throughout the whole EX, heart rate (Polar RS400, Kempele, Finland) 
was measured continuously, and the Rate of Perceived Exertion (RPE) 
(38) was reported at regular intervals. The running exercise was 
performed at 80–90% HRmax, with an RPE of 11–16. Capillary blood 
glucose concentration was measured directly after running.

At 10:00, participants began 2 h of body weight strength circuit 
training consisting of 6 circuits of four exercises (4 rounds of 30 s 
intervals, 30 s break; 16 min per circuit) with a 4 min break between 
each circuit. Circuit 1 consisted of push-ups, crunches, squats, and 
paddles. Circuit 2 consisted of lunges, sit-ups diagonal, dips, and 

FIGURE 1

Design of the interventions. The protocol was completed in a randomized, balanced crossover experimental design. The study consisted of two trial 
days: one exercise (EX) and one control day (CON). During CON, no physical activity was performed during the trial day. The same diet was consumed 
the day before and during the two trial days, apart from snacks in EX. The urine collection periods are indicated in the figure.
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planks. Circuit 3 involved squat jumps, abs-bug, mountain climber, 
and shoulder push-ups. Circuit 4 consisted of drop jumps, shoulder 
press with small weights, Russian twist, and rowing bent forward with 
small weights. Circuit 5 comprised side lunges, curls with small 
weights, scissor abs, and swimming abs. Circuit 6 consisted of 
skipping, step jumps alternating, burpees, and side planks. The body 
weight strength circuit training was performed at 60–75% HRmax, with 
an RPE of 11–16. Capillary blood glucose concentration was measured 
directly after completion.

At 12:00, participants were served a standardized low-protein 
lunch. They could eat as much as they wanted from the food items 
provided: white bread (Loff; First Price, Norway), apple, jam 
(Bringebærsyltetøy; First Price, Norway), and vegan cheese (Go’Vegan 
Original; Synnøve, Norway). The calculated macronutrient content of 
this meal was carbohydrate 1.31 ± 0.10 g·kg−1, protein 0.21 ± 0.01 g·kg−1, 
fat 0.51 ± 0.06 g·kg−1, calorie intake 807.1 ± 52.1 kcal.

At 14:00, capillary blood glucose concentration was measured. 
Participants started 1 h of cardio endurance training. They could 
choose to distribute their time between cycling, running, and rowing 
on a rowing machine. The 1 h of cardio endurance training was 
performed at 60–80% HRmax, with an RPE of 9–14. Capillary blood 
glucose concentration was measured directly after the cardio 
endurance training.

At 15:00, participants started 1 hour of cycling to exhaustion on a 
stationary spinning bike (M3i Indoor Bike, Keiser, California, 
United  States). The cycling protocol consisted of 10 min warm-up 
(50–60% HRmax); 3×3 min at 80% HRmax interspersed with 3 min at 
60–70% HRmax; 3×30 s at 90% HRmax interspersed with 30 s at 70% 
HRmax; 3×2 min at 90% HRmax interspersed with 2 min at 70% HRmax; 
3×30 s at 90–95% HRmax interspersed with 30 s at 70–80% HRmax; 5 min 
cool-down at 50–60% HRmax. The final exercise block of cycling was 
performed to exhaustion, with a target heart rate of 90–95% HRmax and 
RPE of 18–20. Capillary blood glucose concentration was measured at 
the end of the cycling to exhaustion. The participants’ body weight was 
measured directly at the end of the cycling to exhaustion.

2.4.2 Dietary intervention
Participants were asked to record their breakfast, lunch, snacks, 

dinner, and evening meal, as well as all drinks of the trial day and 
breakfast the next day. A dietary registration form was distributed to 
the participants for this purpose, and participants were encouraged to 
take photos of their food intake to improve the reproducibility of intake 

quantities. They were then asked to consume the same food and drinks 
on the second trial day. They had to check off on the dietary registration 
form the items ingested. Any differences in nutritional intake during 
the second visit had to be reported and accurately described on the 
dietary registration form. No participant reported a difference in 
dietary intake. The total calorie intake, carbohydrate, protein, and fat 
intakes were calculated using the Kostholdsplanleggeren program 
(Norwegian Directorate of Health, Norwegian Food Safety Authority, 
Norway). Table 2 presents the dietary intake during the trial days.

Water intake was ad libitum during both trial days, and the 
volume was recorded.

During EX, participants were allowed to eat the high-carbohydrate 
snacks provided: banana, cereal bar (Mellombar; Eldorado, Norway), 
and milk chocolate (Kokesjokolade; Eldorado, Norway). They could 
also drink as much of a carbohydrate drink as they wanted. The drink 
was prepared as a 10% solution containing 50% glucose (GPR 
RECTAPUR®, VWR Chemicals, Radnor, Pennsylvania, USA) and 
50% maltodextrin (Dextri-maltose®, MP Biomedicals, Santa Ana, 
California, USA), and flavored with 100 g·L−1 of drink flavoring (Fun 
light, Stabburet, Norway). These snacks and drinks were given to 
participants to ensure the same energy balance during the two trial 
days. The calculated macronutrient content of the snacks was 
carbohydrate 1.09 ± 0.14 g·kg−1, protein 0.07 ± 0.01 g·kg−1, fat 
0.10 ± 0.01 g·kg−1, calorie intake 421.9 ± 51.8 kcal.

Nitrogen intake was calculated assuming a nitrogen-protein 
constant of 6.25 (39).

2.4.3 Individual energy expenditure
The individual energy expenditure during exercise in EX was 

calculated from the heart rate data measured during the exercise. The 
oxygen uptake was then calculated from the heart rate data using the 
linear regression between the heart rate and the oxygen uptake 
established during the incremental test on the screening day. The 
energy expenditure was then calculated as oxygen uptake (L·min−1) × 
time exercise (min) × 20.15 (kJ·L−1) (40).

The resting energy expenditure in CON was calculated as (41):

 

Resting energy expenditure × body weight × height

 

= +
−
9 99 6 25

4

. .

..92 166

1 0 161

× age ×sex

males, ; females,  

+
( ) −

TABLE 2 Energy intake and content of macronutrients for the different standardized meals and supplements during the protocol.

Energy intake  
(kcal)

Carbohydrate intake 
(g⋅kg−1)

Protein intake  
(g⋅kg−1)

Fat intake  
(g⋅kg−1)

Breakfast 570.3 ± 81.3 1.18 ± 0.20 0.23 ± 0.02 0.22 ± 0.04

Lunch 807.1 ± 52.1 1.31 ± 0.10 0.21 ± 0.01 0.51 ± 0.06

Snacks (during EX) 421.9 ± 51.8 1.09 ± 0.14 0.07 ± 0.01 0.10 ± 0.01

Dinner 776.7 ± 117.6 0.81 ± 0.11 0.62 ± 0.11 0.48 ± 0.13

Evening meal 626.7 ± 138.7 1.06 ± 0.21 0.32 ± 0.10 0.31 ± 0.08

Breakfast the next day 531.4 ± 73.7 1.03 ± 0.14 0.22 ± 0.02 0.23 ± 0.05

Total CON 3312.2 ± 284.2 5.39 ± 0.44 1.60 ± 0.13 1.75 ± 0.22

Total EX 3734.1 ± 301.6 6.48 ± 0.48 1.67 ± 0.14 1.85 ± 0.22

The total macronutrient amount in CON and EX is calculated from all food intake during the urine collection period.
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2.5 Urinary nitrogen

All urine was collected in plastic containers in three consecutive 
batches: morning urine on the trial day (0:00 to 8:00; 8 h), the rest of 
the day on the trial day (8:00 to 24:00; 16 h), and the morning urine 
on the next day (0:00 to 8:00; 8 h). The urine volume was measured 
for each period, and one 15-mL sample and two 2-mL samples were 
frozen at −20°C for analysis. Urinary nitrogen was measured using 
the Kjeldahl method (42) and corrected by urine density.

2.6 Sweat rate

The sweat rate during the exercise period was calculated using a 
modified equation (24, 43):

 

Sweat rate L BWi BWf WatIn ARW at Loss

UrVol + WFoodIn  

( ) = − + −

− − ((EE)/7700

With BWi the initial body weight (kg), BWf the final body weight 
(kg), WatIn the water intake (L), ARW at Loss the assumed respiratory 
water loss (L), UrVol the urine volume (L), WFoodIn the weight of 
food intake (kg) and EE the energy expenditure during the exercise 
period (kcal).

Sweat volume and mass were considered equivalent (i.e., 
1 mL = 1 g) and expressed as a total and hourly rate.

2.7 3-Methylhistidine in urine

The urine from the day of the trial day (8:00 to 24:00; 16 h) and the 
morning urine from the next day (0:00 to 8:00; 8 h) were mixed in 
proportions relative to the volume of urine during these periods. The 
concentration of urinary 3-MH was then quantified in these pooled 
urine samples using an ELISA kit (BioSite ELISA, Nordic BioSite, 
Norway). The quantity of 3-MH excreted during these 24 h was then 
calculated by multiplying the measured 3-MH concentration by the 
urine volume.

2.8 Statistics

The results were analyzed using Prism 9 (GraphPad Software, 
LLC, San Diego, California, United States). Two-way ANOVA (time 
x condition) with repeated measurements was conducted to analyze 
the data. After identifying a significant effect, post hoc analyses were 
performed with Bonferroni corrections. When some data were 
missing, mixed-effect analyses were used. The significance level was 
set to p ≤ 0.05. Statistical trends are defined as p-values between 0.05 
and 0.10. Data are presented as mean ± SEM in text, figures, and tables.

3 Results

3.1 Energy expenditure

A description of the energy intake during the study is shown in 
Table 2. The total energy intake in CON was 2780.8 ± 242.1 kcal during 

the intervention day and 3312.2 ± 284.2 kcal during the urine 
collection period (including breakfast the next day). Therefore, the 
participants had a positive energy balance in CON during the 
intervention day of 1092.6 ± 228.2 kcal.

In EX, the total energy expenditure during the 5-h exercise 
period was 3289.9 ± 188.8 kcal or 44.6 ± 2.2 kcal·kg−1, meaning 
that during EX, participants had an additional energy expenditure 
of 2938.2 ± 182.5 kcal compared to the resting energy expenditure 
measured in CON. The participants were allowed to eat 
additional almost protein-free snacks during EX to compensate 
for this additional energy expenditure. They consumed 
421.9 ± 51.8 kcal extra, thus, participants had a negative energy 
balance during EX of −1423.6 ± 219.5 kcal.

3.2 Urinary nitrogen excretion

Urinary nitrogen excretion during the 24-h study period was 
12.45 ± 0.88 g (168.5 ± 10.1 mg·kg−1) in CON and 12.61 ± 0.98 g 
(170.0 ± 11.0 mg·kg−1) in EX (Figure  2A) and did not differ 
significantly between trial days (p = 0.764). Urinary nitrogen 
excretion was also not significantly different when normalized by 
fat-free mass (Figure 2B).

3.3 Sweat rate

The sweat rate was 2.55 ± 0.25  L during EX (Table  3). This 
represents an hourly sweating rate of 0.32 ± 0.03 L·h−1. During 
CON, the sweat rate was 0.14 ± 0.15 L, representing an hourly 
sweating rate of 0.02 ± 0.02 L·h−1.

3.4 Urinary 3-methylhistidine excretion

Urinary 3-MH excretion during the 24-h study period was 
508.7 ± 33.8 μmol (6.91 ± 0.40 μmol·kg−1) in CON and 
513.0 ± 80.2 μmol (6.91 ± 1.05 μmol·kg−1) in EX (Figure 3A) and 
was not significantly different (p = 0.953). When normalized by 
fat-free mass, urinary 3-MH excretion did still not differ between 
trial days: 8.87 ± 0.47 μmol·kg−1 FFM in CON and 8.89 ±  
1.27 μmol·kg−1 FFM in EX (p = 0.991) (Figure 3B).

FIGURE 2

Urinary nitrogen excretion. (A) Urinary nitrogen excretion normalized 
by body weight. (B) Urinary nitrogen excretion normalized by fat-free 
mass. Values are means ± SEM.
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3.5 Correlations

Urinary nitrogen excretion was significantly correlated with 
urinary 3-MH excretion but higher in CON (r2 = 0.697; p < 0.001) than 
in EX (r2 = 0.338; p  = 0,023) (Figure  4). The two slopes were not 
significantly different (p = 0.343).

Urinary nitrogen excretion was also correlated with total protein 
intake over the study period in CON (r2 = 0.249; p = 0.058) and in EX 
(r2 = 0.328; p = 0.026) (Figure 5). The two slopes were not significantly 
different (p = 0.752).

3.6 Blood glucose concentration

The blood glucose concentration decreased during EX and CON 
with no difference up to the lunch break at 12:00 (Figure 6). However, 
at 14:00, 90 min after lunch completion, the glucose concentration was 
significantly elevated in CON compared to EX (p = 0.001). After that, 
the blood glucose concentration decreased with no difference between 
the conditions.

4 Discussion

Urinary nitrogen excretion during the 24-h study period did not 
significantly differ between EX and CON.

4.1 Reasons for the lack of difference 
observed in urinary nitrogen excretion in 
the present study

Disparities in urinary nitrogen excretion have been reported 
during exercise compared to a control condition. Most of the cited 
studies in Supplementary Table S1 reported increased urinary 
nitrogen excretion during or after exercise (3, 5–12, 14–17, 44–51), 
not always being significant (18, 52–56). However, because of the 

TABLE 3 Sweat rate during the two conditions.

Condition EX CON

From 8:00 to 16:00

Initial body weight (kg) 73.8 ± 1.9 74.1 ± 2.0

Final body weight (kg) 73.3 ± 2.0 74.2 ± 2.0

Energy expenditure (kcal) 3,501 ± 193 563 ± 13

Intake Loss Intake Loss

Water intake (L) 3.69 ± 0.39 1.45 ± 0.17

Urine (L) 0.79 ± 0.17 1.13 ± 0.13

Respiratory water loss (L) 0.36 ± 0.02 0.05 ± 0.00

Sweat (L) 2.55 ± 0.25 0.14 ± 0.15

FIGURE 3

Urinary 3-MH excretion. (A) Urinary 3-MH excretion normalized by 
body weight. (B) Urinary 3-MH excretion normalized by fat-free 
mass. Values are means ± SEM.

FIGURE 4

Correlation between urinary nitrogen and 3-MH excretions. Square 
dots are female participants; circular dots are male participants.

FIGURE 5

Correlation between urinary nitrogen excretion and total protein 
intake during the urine collection period. Square dots are female 
participants; circular dots are male participants.
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limitations, which included the nitrogen excretion quantification 
method, no standardized diet, no control trial in the same subjects, 
small sample sizes, and no specific energy expenditure calculation 
during the work/exercise periods, no clear conclusion has been 
reached on the effect of exercise on urinary nitrogen excretion. Newer 
studies have also tended to indicate that exercise increases urinary 
nitrogen excretion, but the absence of standardized conditions still 
limits the conclusions reached.

4.1.1 The effect of energy balance
In similar conditions to the present study, when participants were 

in negative energy balance with exercise, Todd et  al. (57) and 
Butterfield and Calloway (58) found that urinary nitrogen excretion 
increased with exercise but non-significantly: there was an average 4% 
increase, ranging from −3 to 9%. This is in the order of magnitude of 
the 1% increase in the present study. However, at a fixed energy 
balance (when the extra energy expenditure of training was 
compensated by additional energy intake), exercise decreased urinary 
nitrogen excretion by 7% on average, ranging from −11 to 2% (57, 58). 
It is well established that increasing energy intake decreases nitrogen 
excretion at fixed nitrogen intake (13, 59). This shows that the effect 
of exercise on urinary nitrogen excretion can be caused by a decreased 
energy balance with exercise. This agrees with studies reporting 
increased excretion with exercise when energy intake was insufficient 
(3, 47, 55, 56). In the present study, participants were allowed to ingest 
almost protein-free snacks in EX in an attempt to have a fixed energy 
balance between the conditions, although the energy balance was still 
negative in EX. However, the ingestion of snacks in EX could have 
reduced the effect of exercise on urinary nitrogen excretion, leading 
to the non-significant difference between conditions.

To our knowledge, the mechanism for decreased urinary nitrogen 
excretion with exercise while the participants are in energy balance 
has not yet been established. However, some studies showed that low 
glycogen levels and low carbohydrate availability can increase nitrogen 
excretion (24, 35).

4.2 Sweat nitrogen excretion

Urine is not the only way for the body to excrete nitrogen. 
Nitrogen can also be excreted in sweat, feces, or other miscellaneous 

routes [nails, hair, tooth brushing (21)]. Nitrogen excretion through 
these different compartments is connected. Some studies have 
previously reported a link between urinary and sweat nitrogen 
excretion: urinary nitrogen excretion decreased in proportion when 
sweat nitrogen losses increased (19, 20), as in the studies commented 
on previously (57, 58). This could also explain why the urinary 
nitrogen excretion was not significantly different between EX and 
CON. In similar conditions to the present study, sweat nitrogen 
excretion increased by 22% on average, ranging from −20 to 58% 
when the participants exercised while in energy balance (57, 58).

In the present study, we calculated the sweat rate and reported an 
hourly sweating rate of 0.32 ± 0.03 L·h−1 during EX. This agrees with 
sweat rates during exercise reported in similar ambient conditions 
(43). However, we did not measure the sweat nitrogen concentration. 
Using previously published data, we can estimate this concentration. 
For this purpose, we used the relationship between sweat nitrogen 
concentration and nitrogen intake established during exercise 
performed mid-day under similar thermal conditions (20, 25). 
We used this estimation because sweat nitrogen concentration has 
been shown to differ with time of day, temperature, and dietary 
nitrogen intake, with this last factor having the most significant 
impact on sweat nitrogen concentration. Based on the regression 
between sweat nitrogen concentration and protein intake established 
during exercise conditions (20), estimated nitrogen excretion through 
sweating during exercise was ≈1.3 g in EX. The estimated average 
sweat nitrogen concentration was 0.5 mg/mL, consistent with previous 
studies (19, 21, 23, 24).

In addition, resting sweat nitrogen excretion can be estimated 
from the relationship between resting sweat nitrogen excretion and 
nitrogen intake (21): resting sweat nitrogen excretion (mg·d−1) = 4.8022 
x nitrogen intake (g·d−1) + 104. This led to a resting sweat nitrogen 
excretion of ≈0.2 g in CON and EX, with no significant difference 
between conditions. Finally, fecal nitrogen loss can be estimated from 
previous studies at 12.41 mg·kg−1·d−1 and miscellaneous nitrogen 
losses at 1.77 mg·kg−1·d−1 (25). The total nitrogen excretion can then 
be calculated as the sum of the urinary, sweat, fecal, and miscellaneous 
nitrogen excretions.

4.3 Sweat nitrogen excretion should 
be included in future studies

Including or excluding sweat nitrogen excretion can dramatically 
change a study’s conclusions. For example, the nitrogen balance 
technique calculates the difference between nitrogen intake and loss. 
A positive nitrogen balance shows that the human body stores more 
nitrogen than it loses: it is in an anabolic state. Similarly, a negative 
nitrogen balance indicates a catabolic state. Thus, the sign of the 
nitrogen balance is crucial for any interpretation.

Gontzea et al. (19) conducted a study in which six males cycled 
for 2 h daily in laboratory conditions, and all nitrogen excretion 
pathways were measured. In these well-controlled conditions, with all 
food intake provided, the authors studied the effect of including 
nitrogen loss through sweat on nitrogen balance. If sweat nitrogen 
losses were neglected, 1  in 6 participants had a positive nitrogen 
balance (average − 0.827 g·d−1) when exercising with protein intakes 
between 65 and 75 g. When sweat nitrogen losses were considered, all 
6 participants had a negative nitrogen balance (average − 1.721 g·d−1). 

FIGURE 6

Blood glucose concentration during the test days. Values are means 
± SEM.
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Similarly, when exercising with a protein intake of between 105 and 
115 g, if sweat nitrogen losses were neglected, 4 in 6 participants had 
a positive nitrogen balance (average 0.676 g·d−1). When sweat nitrogen 
losses were considered, only 2 in 6 participants had a positive nitrogen 
balance (average − 0.371 g·d−1). Based on these results, it could 
be concluded that the protein intake was enough to induce a positive 
nitrogen balance in the last case if sweat nitrogen losses were 
neglected. Nevertheless, this conclusion would have been erroneous. 
Similarly, in another study, ignoring sweat nitrogen losses resulted in 
a positive nitrogen balance (average 0.62 g·d−1) (60). When sweat 
nitrogen losses were included, the nitrogen balance was negative 
(average − 2.01 g·d−1), changing the conclusion of this intervention.

In the present study, the nitrogen balance was positive in the two 
conditions both when sweat nitrogen losses were considered (CON, 
70.8 ± 18.3 mg·kg−1; EX, 63.0 ± 16.8 mg·kg−1) and when they were 
ignored and only urinary nitrogen losses were considered (CON, 
73.4 ± 18.4 mg·kg−1; EX, 83.2 ± 17.8 mg·kg−1). Thus, including sweat 
nitrogen losses would not have changed the interpretation. However, 
including them would have considerably increased the total nitrogen 
excretion in EX. Total nitrogen excretion during the 24-h study period 
would have been 13.69 ± 0.90 g (185.3 ± 10.2 mg·kg−1) in CON and 
15.15 ± 1.14 g (204.3 ± 12.6 mg·kg−1) in EX, leading to a significant 
effect of exercise (p = 0.033). It means that proteins contributed to 
1.3% of energy expenditure during exercise. It is, therefore, crucial to 
include sweat nitrogen losses when quantifying nitrogen excretion. 
Studies without direct measurements should estimate these losses.

The magnitude of the effect of exercise on total nitrogen excretion 
can be  compared to results from previous studies 
(Supplementary Table S2) (19, 57, 58, 61–63). Exercise was reported 
to increase total nitrogen excretion in four of these six studies, with an 
average increase of 0.23 g·d−1. Of these six studies, the two reporting 
decreased total nitrogen excretion with exercise also showed an 
inappropriate nitrogen intake before the intervention days, leading to 
negative nitrogen balance at baseline (62, 63). It is well-established 
that nitrogen excretion increases with nitrogen intake (13), which is 
consistent with our data. Therefore, it is expected that some differences 
in the amount of nitrogen excretion should arise. However, our 
estimation of 1.5 g·d−1 was in the range of variation of previously 
published studies, which showed levels between −1.8 and 2.6 g·d−1 (19, 
57, 58, 61–63). Such an increase in total nitrogen excretion during EX 
would mean that exercise increased protein catabolism. However, this 
does not indicate the location of this degradation.

4.4 Urinary 3-methylhistidine excretion

Urinary 3-MH excretion during the 24-h study period was not 
significantly different between EX and CON. This would mean no 
significant increase in skeletal myofibrillar protein catabolism with 
exercise. Previous studies measuring urinary 3-MH excretion 
during exercise have reported conflicting results. Most of these 
studies did not note any significant difference in urinary 3-MH 
excretion with exercise (17, 64–71), while some reported an 
increase (72) and other a decrease (73, 74). These studies consisted 
of acute endurance exercises, mostly of shorter duration than this 
study. Studies similar in duration to the present study did not find 
a difference in urinary 3-MH excretion (64, 65, 67), apart from one 
showing a decrease (74). This latter study included urinary 3-MH 

excretion measured at different periods on the day of exercise. In 
this study, urinary 3-MH excretion was not different from the 
control day, before and after exercise. However, the drop in 
excretion during exercise meant that the total excretion on the 
exercise day was significantly lower than on the control day. All 
this indicates that exercise does not increase urinary 3-MH 
excretion and therefore, does not affect the catabolism of skeletal 
myofibrillar proteins.

4.5 Practical considerations

4.5.1 Daily variations of the urinary nitrogen 
excretion

The day-to-day variation in urinary nitrogen excretion in resting 
conditions varies from ≈4% (75) to ≈14% (76), with most studies 
reporting around 10% (77, 78). In exercise conditions, the day-to-day 
variation in urinary nitrogen excretion seems similar, with Gontzea 
et al. reporting ≈9% (19).

One strength of the present study is that it used a randomized, 
balanced, cross-over design. This design, combined with the same diet 
before and during both trial days, except for snacks in EX, should have 
reduced variation. Including 15 participants further reduced the 
influence of daily variations on the conclusion about the effect of 
exercise on urinary nitrogen excretion.

4.5.2 Participants’ habitual protein intake
A potential weakness of the present study was that not all food 

was supplied during the intervention days. Participants received a 
standardized lunch. However, they were free to ingest the food of their 
choice during the rest of the intervention and only had to replicate this 
intake on the second trial day. This intentionally allowed participants 
to consume their habitual protein intake during the trial days. It has 
previously been established that, when changing from high to low 
protein intake, or vice versa, a few days are necessary before a nitrogen 
balance is regained: the amino acid oxidative capacity of the organism 
is determined by the habitual protein intake (79).

4.5.3 Nitrogen excretion the day after an exercise 
period

Some studies suggest that increased nitrogen output continues 
after the exercise stops (53–55). Consequently, the increase in output 
may be more significant on the succeeding day (49). Similarly, urinary 
urea excretion decreased immediately after a 100-km run but 
increased the day after (67). In the present study, urinary nitrogen 
excretion was measured up to 8:00 the day after EX and CON, yet no 
significant difference was observable within this period. In addition, 
total production (excretion + retention) increased immediately after 
a 100-km run and decreased the day after (67). It is therefore unlikely 
that some differences appeared the day after that could have 
compensated for the effects of exercise.

5 Conclusion

Our findings suggest that exercise did not significantly impact 
urinary nitrogen excretion. It is possible that the effect of exercise 
on urinary nitrogen excretion was reduced due to the reduction of 
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the energy deficit, which was achieved by consuming almost 
protein-free snacks during exercise. As the sweat rate was measured 
in the present study, the sweat nitrogen excretion could be estimated 
based on previously published sweat nitrogen concentrations. This 
enabled us to estimate that exercise led to a significant increase in 
total nitrogen excretion. However, the urinary 3-MH excretion, 
which is an indicator of myofibrillar protein breakdown, did not 
change significantly with exercise. We  recommend that future 
studies include measurements of sweat nitrogen excretion or at least 
an estimate to determine the effect of exercise on nitrogen 
excretion accurately.
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