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The correlation between iodine 
and metabolism: a review
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Iodine is involved in the synthesis of thyroid hormones and plays a crucial role 
in human life. Both iodine deficiency and excess are common issues in certain 
populations. Iodine also has extrathyroidal effects on organs that can uptake 
it independently of thyroid hormones. Recently, multiple clinical studies have 
shown a connection between iodine intake and metabolic disorders, such as 
metabolic syndrome, obesity, diabetes, hypertension, and dyslipidemia. However, 
the results of these studies have been inconsistent, and the mechanisms behind 
these associations are still not well understood. Therefore, in this review, we aim 
to examine the recent research progress regarding the relationship between 
iodine and metabolic disorders, along with the relevant mechanisms.
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1 Introduction

Iodine is an elementary micronutrient for human life. It exist in various forms in human 
body, such as iodide atom (I−), molecular iodine (I2), triiodide (I3), iodine anion (HI2O−), and 
iodine-binding molecules (such as iodolipids) (1). I− is a kind of reducing agent that can 
be oxidized by peroxidase enzymes to generate thyroid hormones (THs). Tri-iodothyronine 
(T3) and thyroxine (T4) are essential regulators of energetic metabolism (1). Recent studies 
have indicated that iodine, aside from its role in the thyroid, also functions as an antioxidant, 
immunomodulator, and differentiator in various organs and tissues (2).

Metabolic syndrome (MetS) is defined as the combination of metabolic disorders 
including abdominal obesity, hypertension (HBP), dyslipidemia, and hyperglycemia (3). MetS 
is widely prevalent worldwide and poses serious issues such as cardiovascular disease (CVD), 
tumors, and total mortality (4). The development of MetS involves multiple factors, with 
research indicating that oxidative stress and chronic inflammatory conditions play a vital role 
(5). Changes in dietary habits are another contributing aspect to the prevalence of 
MetS. Consequently, factors associated with MetS, such as iodine nutritional status, may 
partially explain its occurrence of MetS.

In this review, we focus on iodine and its connection to metabolic disorders, as well as the 
associated mechanisms. The findings will aid us in acquiring a comprehensive understanding 
of iodine’s role and provide supporting evidence for an appropriate and secure iodine 
nutrition standard.
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2 The molecular basis of 
extrathyroidal effects of iodine

Sodium iodide symporter (NIS) is the most effective and specific 
transporter of I− expressed on thyroid follicular epithelial cells. Many 
other organs can also actively accumulate iodine, including the salivary 
glands, stomach, lactating mammary gland, ovary, prostate, and pancreas. 
In addition to NIS and Pendrin, new iodine transporters, including cystic 
fibrosis transmembrane conductance regulator (CFTR), anoctamin 1 
(ANO1), and sodium multivitamin transporter (SMVT), have recently 
been discovered to be expressed in these organs (2). Therefore, iodine 
itself has extrathyroidal effects on organs that can take it up.

3 Sources and safety concentration of 
iodine

In order to eliminate iodine deficiency diseases, most countries have 
implemented universal salt iodization (USI). However, excess iodine 
intakes can occur due to the consumption of iodized salt, drinking water, 
animal milk rich in iodine, specific types of seaweeds, iodine-containing 
dietary supplements, and from a combination of these sources. Some 
pharmaceuticals (like Amiodarone), disinfectants, and iodine-containing 
contrast media, can also be common sources of iodine (6). Over 90 
percent of dietary iodine is absorbed under normal conditions (7). The 
recommended dietary intake of iodine is 150–299 μg/day (8, 9). The 
appropriate range of median urinary iodine concentration (mUIC) 
should be 100–299 μg/L. Japanese average iodine consumption is 1,200 μg/
day, which is 7.2 times higher than that of the British and 5.7 times higher 
than that of Americans (10). Iodine excess can increase the risk of 
hyperthyroidism and subclinical hypothyroidism (11). However, 
euthyroid individuals are usually tolerant to iodine-induced thyroid 
diseases as their thyroid function rapidly normalizes upon discontinuation 
of excessive iodine consumption (8, 12). A moderately high iodine intake 
has been shown to be beneficial in reducing the incidence of breast and 
prostate cancer in some epidemiological studies (13–15).

4 Clinical research on the correlation 
between iodine status and metabolic 
disorders

Recent research has examined the impact of iodine itself on the 
prevalence of metabolic disorders. The majority of clinical studies were 
published within the past 5 years. Various indicators were used to evaluate 
iodine nutritional status, including urinary iodine concentration (UIC), 
water iodine concentration (WIC), and daily iodine consumption. 
However, due to the use of different indicators for assessing iodine 
nutrition, varying diagnostic criteria for metabolic disorders, and 
differences in the age and gender of the subjects, the studies did not yield 
consistent findings. The representative studies on the relationship between 
iodine and metabolic disorders have been summarized in Table 1.

4.1 Iodine and metabolic syndrome

In cross-sectional studies, the relationship between UIC and MetS 
prevalence was found to be  inversely associated or exhibited a 

U-shaped curve, with the lowest point observed at a UIC of 
300–499 μg/L (24, 26). A prospective study indicated that dietary 
iodine and seaweed consumption was inversely associated with MetS 
incidence in Korean postmenopausal women (19). Furthermore, high 
seaweed intake was negatively associated with the incidence of MetS 
in men with the TG and TT genotypes of lipoprotein lipase gene (LPL) 
rs17482735 (31), However, another cross-sectional study conducted 
on school-age children and their parents revealed that high UIC was 
associated with MetS (30).

4.2 Iodine and obesity

In a large epidemiological study (TIDE) conducted in China, 
the prevalence of central obesity significantly decreased when the 
UIC was 300 μg/L or higher. The odds ratio (OR) for central 
obesity with an UIC of ≥800 μg/L was 0.797 (p < 0.05) (24). 
Among school-age children in China, overweight children 
exhibited a lower UIC compared to children with normal weight 
(32). Women with obesity also demonstrated a significantly lower 
UIC in comparison to both themselves after undergoing bariatric 
surgery and women with normal weight (33). In a randomized 
controlled trial (RCT), the body fat percentage of the participants 
who consumed tablets containing iodine-reduced kelp powder 
showed a significant decrease in comparison to those who took 
the placebo (34). In a 4-week placebo-controlled study, seaweed 
fucoxanthin supplementation (1 mg/day) decreased waist 
circumference (WC) and fat mass in obese Japanese individuals. 
In addition, fucoxanthin supplementation (3 mg/day) decreased 
visceral fat, body mass index (BMI), and weight (35). However, 
mUIC was positively associated with obesity among Colombian 
women of reproductive age (36).

4.3 Iodine and hyperglycemia

The association between UIC and the prevalence of diabetes 
exhibited a U-shaped curve in the TIDE study (24). In a cohort study 
involving 71,264 women, individuals with higher levels of iodine 
intake were found to be at a higher risk of developing type 2 diabetes 
mellitus (T2DM) in comparison to those with inadequate iodine 
intake (18). Adults in iodine-sufficient (IS, mUIC 200–299.99 μg/L) 
and iodine-excess (IE, mUIC ≥300 μg/L) areas exhibited higher blood 
glucose levels compared to those in iodine-adequate area (IA, mUIC 
100–199.99 μg/L) (23). Low UIC was also reported to be associated 
with an increased risk of elevated fasting plasma glucose (FPG) in 
females (27). A study revealed that patients with T2DM had lower 
UIC levels compared to healthy individuals. Furthermore, UIC 
showed a negative correlation with insulin resistance in subjects with 
T2DM (37). However, in a 4-week clinical trial, seaweed 
supplementation (48 g/day) decreased blood glucose levels in Korean 
patients with T2DM (38).

Higher iodine status may potentially protect against hyperglycemia 
during pregnancy. A study indicated that pregnant and lactating 
women in the IE area (mWIC >300 μg/L) had lower blood glucose 
levels and a lower prevalence of hyperglycemia (29). Furthermore, a 
higher concentration of iodine in the placenta was associated with a 
reduced incidence of gestational diabetes mellitus (GDM) among 471 
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TABLE 1 Summary of the correlation between iodine status and metabolic diseases.

No. Region, study Author, year Study 
design

Iodine status groups Subjects The characteristics 
of thyroid function

Main finding(s)

1 America, NHANES 

III

Inoue K, et al., 2018 

(16)

Longitudinal UIC (<50, 50–99, 100–299 [Ref], 300–

399, and ≥ 400 μg/L)

12,264 adults Undescribed Excessive iodine (UIC ≥400 μg/L) increased the risk 

of all-cause mortality (HR =1.19, 95% CI 1.04–1.37).

2 Spain, Di@bet.es Maldonado-Araque C, 

et al., 2021 (17)

Longitudinal UIC (<50, 50–100, 100–300 [Ref], 

and ≥ 300 μg/L)

4,370 adults With difference Iodine deficiency (UIC <50 μg/L) increased the risk 

of all-cause mortality (HR =1.71, 95% CI 1.18–2.48).

3 France, E3N-EPIC Mancini FR, et al., 2019 

(18)

Longitudinal Dietary iodine intake (29.3–116.9 [Ref], 

117.0–138.9, 139.0–160.7, 160.7–190.5, 

and 190.6–596.8 μg/d)

71,264 women With difference High iodine intakes (160.7–190.5 and 190.6–

596.8 μg/d) were associated with a higher risk of 

developing T2DM (HR =1.27, 95% CI 1.10–1.47 and 

HR =1.28, 95% CI 1.07–1.53).

4 Korea, MRCohort Park JK, et al., 2021 

(19)

Longitudinal Dietary iodine intake and seaweed 

consumption

2,588 postmenopausal 

women

Undescribed Average iodine and seaweed consumption was 

inversely associated with MetS incidence and its 

individual abnormalities.

5 Belgium, 

ENVIRONAGE birth 

cohort

Neven KY, et al., 2021 

(20)

Longitudinal Placental iodine 471 mother-neonate 

pairs

Undescribed A higher concentration of iodine in the placenta was 

associated with a reduced incidence of GDM 

(OR = 0.82; 95%CI 0.72–0.93).

6 America, NHANES 

2007–12

LEE K W, et al., 2016 

(21)

Cross-sectional UIC (UIC below vs. above the 10th 

percentile)

2,495 adults Undescribed Low UIC was associated with higher TC (OR = 1.51, 

95% CI = 1.03–2.23) and LDL-C (OR = 1.58, 95% 

CI = 1.11–2.23), and lower HDL/LDL ratio (<0.4) 

(OR = 1.66, 95% CI = 1.18–2.33).

7 America, NHANES 

2001–12

Wang X, et al., 2019 

(22)

Cross-sectional UIC (low = UIC < 49 μg/L and 

normal = UIC ≥ 49 μg/L)

1,692 adolescents Undescribed Low UIC was associated with elevated TC (95% CI 

1.37–2.81), elevated non-HDL (95% CI 1.33–2.76) 

and elevated LDL (95% CI 1.83–4.19).

8 China Liu J, et al., 2019 (23) Cross-sectional Iodine-adequate area (mUIC 

126.6 μg/L); Iodine-sufficient area 

(mUIC 221.2 μg/L); Iodine-excess area 

(mUIC 421.3 μg/L)

825 adults With difference Blood glucose, as well as systolic and diastolic 

pressure of adults in both iodine-sufficient and 

iodine-excess areas were higher (all p < 0.001).

9 China, TIDE Jin M, et al., 2020 (24) Cross-sectional UIC (<100, 100–299 [Ref], 300–499, 

500–799, and ≥ 800 μg/L)

51,795 adults Without difference The association between UIC and the prevalence of 

various metabolic disorders was U-shaped.

10 China, TIDE Lu X, et al., 2020 (25) Cross-sectional UIC (<100, 100–199 [Ref], 200–299, 

and ≥ 300 μg/L)

75,653 adults Undescribed Subjects in the IS and IE groups had a lower 

probability of having hyperuricemia and gout in 

comparison to those in the IA group

11 China Zhao J, et al., 2021 (26) Cross-sectional UIC (<100, 100–199 [Ref], 

and ≥ 200 μg/L)

2,691 adults Without difference UIC was inversely associated with the prevalence of 

MetS.

12 America, NHANES 

2011–12

Ezemaduka Okoli CB, 

et al., 2021 (27)

Cross-sectional UIC (low = UIC < 100 μg/L and 

normal = UIC ≥ 100 μg/L)

1,286 adults Undescribed Low UIC was associated with higher FPG (OR = 1.73, 

95% CI = 1.09–2.72) in females.

(Continued)
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pregnant women (20). However, Bell et al. did not find any correlation 
between UIC and the prevalence of GDM (39).

4.4 Iodine and hypertension

In the TIDE study, researchers observed a U-shaped curve in the 
relationship between UIC and the prevalence of hypertension. The 
lowest point was found at a UIC range of 300–499 μg/L (24). Two 
studies conducted in China revealed that adults in IS and IE areas 
exhibited higher blood pressure levels compared to those in IA area 
(23, 29). Meanwhile, iodine deficiency was identified as a risk factor 
for preeclampsia and hypertensive disease of pregnancy (HPD) (40). 
However, a randomized case–control study revealed that wakame 
(Undaria pinnatifida) intake (5 g/day) in brown algae significantly 
decreased blood pressure in 36 older Japanese individuals with 
hypertension (41).

4.5 Iodine and dyslipidemia

The National Health and Nutrition Examination Survey 
(NHANES) 2007–2012 reported that subjects with the lowest decile 
of UIC were more likely to be at risk for elevated total cholesterol (TC) 
(adjusted odds ratio (aOR) = 1.51) and elevated low-density 
lipoprotein (LDL) cholesterol (aOR = 1.58), compared to those with 
the highest decile of UIC (21). US adolescents with low UIC had a 
significantly higher risk of hypercholesterolemia, elevated non-high-
density lipoprotein (HDL), and elevated LDL compared to those with 
normal UIC (22). RCTs have reported that iodine supplementation 
reduces hypercholesterolemia incidence in overweight women (42) 
and also decreased serum LDL-C levels in overweight Japanese adults 
(34). Seaweed supplementation increased HDL-C levels and decreased 
TG levels in Korean patients with T2DM (38). A meta-analysis found 
that brown seaweed intake significantly decreased the levels of TC 
(mean difference (MD): −3.001; 95% CI: −5.770, −0.232) and LDL-C 
(MD: −6.519; 95% CI: −12.884, −0.154) (43). However, there is a 
observational study that propose the opposite conclusion (23). Two 
studies have found that the relationship between iodine status and 
dyslipidemia is either a U-shaped (24) or inverted U-shaped 
curve (28).

4.6 Iodine and hyperuricemia and gout

So far, the relationship has only been reported in one 
epidemiological study, which found an inverse association between 
UIC and the prevalence of hyperuricemia and gout. Subjects in the IS 
and IE groups had a lower probability of having hyperuricemia and 
gout in comparison to those in the IA group (25).

4.7 Iodine and mortality risk

Longitudinal data indicated an excess mortality in individuals 
with ID (UIC <100 μg/L) after adjusting for confounding factors. The 
HRs for all-cause mortality were 1.29  in individuals with UIC of 
50–99 μg/L, and 1.71  in individuals with UIC of less than T
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50 μg/L. Iodine excess did not increase the risk of mortality (17). 
However, the NHANES III reported contradictory outcomes. In a 
median follow-up period lasting 19.2 years, having a UIC higher than 
400 μg/L indicated an increased risk (HR = 1.19) for all-cause 
mortality. There was no observed correlation between low UIC and an 
increased risk of mortality (16).

5 Basic research on the correlation 
between iodine and metabolism

Clinical studies have demonstrated that iodine nutrition has an 
impact on metabolism. However, the mechanism involved in these 
effects is still poorly understood and requires further investigation. 
Due to varying dosages of iodine administration, durations of 
intervention, experimental animals, and thyroid hormone values, 
different in vivo studies have failed to reach a consensus. Kroupova 
et al. discovered that iodine intake could result in a dose-dependent 
elevation in blood cholesterol levels among hens (44). A study 
demonstrated that iodine excess (2.4 and 4.8 mg/L) could induce 
hepatic steatosis in BaLB/c mice, in a dose-dependent manner (45). 
However, higher iodine intake was found to benefit lipid metabolism 
in mice without significant differences observed in thyroid hormone 
levels and body weights among different groups (46). Iodine deficiency 
increased fat contribution to energy expenditure through elevated 
thyrotropin (TSH) in male mice (47). The metabolomics study of the 
repeated intervention of potassium iodide (KI) on adult male rats 
indicated a metabolic shift in the thyroid. This shift was also observed 
in the plasma and urine, and the metabolites were involved in 
pathways of metabolic regulators, branched-chain amino acids, 
oxidant stress, and inflammation-associated response (48).

6 The extrathyroidal mechanisms of 
iodine

Iodine is a micronutrient that possesses antimicrobial properties. 
Iodine treatment in obese mice showed a weight-reducing effect and 
modified the gut microbiota, leading to an increase in pathogenic 
bacteria and a decrease in beneficial bacteria. Conversely, contrasting 
response patterns were observed in mice with normal weight (49). 
Another study found a significant relationship between the use of 
vulvar povidone iodine disinfection and the colonization of neonatal 
oral microbiota (50). Additionally, the intestinal microbiota also 
contributed to iodine absorption (51). Therefore, it is feasible that 
iodine has an impact on metabolism by altering the microbiota.

There is considerable evidence indicating that iodine has 
extrathyroidal effects as an antioxidant, especially in breast diseases 
and certain tumors (14). Iodide has been found to be highly efficient 
in scavenging reactive oxygen species (ROS), thus reducing damage 
caused by free oxygen radicals (52). In lactating women, the iodine 
content in breast milk exhibits a negative correlation with the activity 
of catalase, superoxide dismutase (SOD), and glutathione peroxidase 
(GSH-Px), as well as adiponectin levels (53). As an obesity-related 
hormone, adiponectin also plays a crucial role in regulating insulin 
sensitivity. Seaweed supplementation increased antioxidant enzyme 
activities in a clinical trial of Korean patients with T2DM (38). 

Administering an iodide supplement between 100 and 300 μg/d 
increased the total antioxidant status in human serum (54). However, 
a recently published study showed that excessive iodine levels lead to 
cell growth inhibition, oxidative stress, and cellular apoptosis in 
pancreatic beta cells (55). By regulating oxidative status, iodine is 
associated with changes in insulin sensitivity or metabolism.

Chronic inflammatory condition paves the way for the 
development of metabolic disorders. Iodine also has well-known anti-
inflammatory and immunomodulatory effects. Both PENDRIN and 
NIS were expressed on the surface of human leukocytes. The 
application of sodium iodide (NaI) to leukocytes resulted in a 
significant rise in the production of both pro- and anti-inflammatory 
cytokines (56). Administering an iodide supplement had a slight effect 
on the plasma concentration of inflammation markers and acute-
phase proteins (54). Orally administered potassium iodide (15 mg/kg/
day for 3 days) significantly inhibited the neutrophil chemotaxis in 
peripheral blood (57). Fernando et al. provided a summary of the 
current understanding regarding the potential anti-inflammatory 
properties of marine algae derivatives (58). They have been shown to 
reduce inflammation by targeting various cellular mechanisms, such 
as inhibiting pro-inflammatory enzymes like cyclooxygenase-2 
(COX-2) and inducible nitric oxide synthase (iNOS), modulating 
mitogen-activated protein kinase (MAPK) pathways, and blocking 
nuclear factor kappa B (NF-κB) activation (59). MAPK pathway 
controls cellular growth processes and mitoses. Additionally, it is 
crucial for insulin resistance (60). NF-κB signaling is particularly 
relevant in inflammation-related diseases, including metabolic 
disorders. Therefore, it is plausible that iodine could have an impact 
on metabolism by modulating chronic inflammation.

I2 exhibited antiproliferative and apoptotic effects in mammary 
cancer models (61) through generating iodine-containing lipids (6-IL) 
and increasing peroxisome proliferator activated receptor-γ (PPARγ) 
expression (62, 63). PPARγ, expressed primarily in adipose tissue, 
promotes the differentiation of adipocytes, uptake of fatty acids, 
storage of triglycerides in lipid droplets. It increases insulin sensitivity 
and glucose metabolism (64). PPARα, PPARβ/δ and PPARγ are the 
three identified isoforms of PPARs. Table 2 presents the summarized 
relevant studies on the connection between iodine and PPARs. 
Additionally, excess iodine administration considerably hindered the 
activity of type 2 deiodinase (D2) in various organs, such as the 
pituitary, liver, and kidney (71–73). D2 is responsible for converting 
T4 to bioactive T3, which in turn promotes adaptive thermogenesis 
and is involved in weight maintenance (74). Figure 1 provides an 
overview of the potential mechanisms of iodine on metabolism.

7 Summary

This review validates that iodine has effects on glucose 
metabolism, lipid metabolism, and obesity. The influence of iodine 
may be  attributed to its antioxidant and immunomodulatory 
properties. Although the connections between iodine and metabolism 
are inconsistent, both iodine deficiency and prolonged iodine excess 
may pose a risk to thyroid disorders. It is important to maintain 
population iodine status within an optimal range. Further prospective 
studies and research on mechanisms are needed to establish an 
evidence-based and safe standard for iodine nutrition.

https://doi.org/10.3389/fnut.2024.1346452
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Zhang et al. 10.3389/fnut.2024.1346452

Frontiers in Nutrition 06 frontiersin.org

Author contributions

LZ: Writing – original draft. FS: Writing – original draft. CL: 
Writing – review & editing. XZ: Writing – review & editing.

Funding

The author(s) declare that no financial support was received for 
the research, authorship, and/or publication of this article.

FIGURE 1

Summary of the mechanisms of iodine on metabolism. KEAP1, Kelch-like ECH-associated protein 1; NRF2, NF-E2-related factor 2; SOD, superoxide 
dismutase; Cat, catalase; GSH-Px, glutathione peroxidase; ROS, reactive oxygen species; COX-2, cyclooxygenase-2; iNOS, inducible nitric oxide 
synthase; MAPK, modulating mitogen-activated protein kinase; NF-κB, nuclear factor kappa B; PPARγ, peroxisome proliferator activated receptor-γ; 
D2, type 2 deiodinase; T4, thyroxine; T3, tri-iodothyronine.

TABLE 2 The correlation between iodine and PPARs.

Iodine and PPARs Object Mechanisms Year, references

PPARγ agonist 

(rosiglitazone) → RAI uptake↑

Thyroid carcinoma patients PPARγ expression increased in thyroid 

tissue

2008, (65)

I2↑ → PPARγ↑

I2↑ → PPARα↓

Human breast cancer cell line MCF-7 I2 treatment generates 6-IL derivative of 

AA, 6-IL binds specifically and with 

high affinity to PPARs

2009, (62)

I2↑ → PPARγ↑

I2↑ → PPARα↓

MUN induced mammary tumors in rats The presence of AA and formation of its 

6-IL derivative in tumoral mammary 

gland

2009, (66)

I2↑or I−↑ → PPARγ↑ DMBA induced mammary cancer in rats Prevent estrogen-induced DNA adducts 

through PPARγ/caspases pathways

2011, (67)

Iodine deprivation→PPARγ↑ Trophoblastic Cells Snail↑; MMP-9↑;

GCM-1↓; hGC↓; PAPP-A↓; 

E-cadherin↓;

2016, (68)

I2↑ → PPARγ↑ HeLa and SiHa cervical cancer cells; NOD/SCID 

mice

CD49f, CK17, OCT-4, NANOG, SOX2 

and KLF4↓

2018, (69)

I2↑ → PPARγ↑ Women with early (stage II) and advanced (stage 

III) breast cancer

2019, (70)

PPARs, peroxisome proliferator-activated receptors; AA, arachidonic acid; 6-IL, 6-iodo-5-hydroxy-eicosatrienoic acid and the 6-iodolactone; RXRs, retinoic X receptors; RAI, radioiodine; 
MNU, methyl-nitrosourea; DMBA, dimethylbenz [a] anthracene; ROS, reactive oxygen species; MMP-9, matrix metalloproteinase-9; GCM-1, glial cell missing-1; PAPP-A, pregnancy-
associated plasma protein-A.
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