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Soup, including dried bonito broth, is customarily consumed as an umami 
taste during meals in Japan. Previous functional magnetic resonance imaging 
(fMRI) studies have investigated neuronal activation following human exposure 
to carbohydrates and umami substances. However, neuronal activity following 
ingestion of dried bonito soup has not been investigated. Additionally, recent 
progress in fMRI has enabled us to investigate the functional connectivity between 
two anatomically separated regions, such as the default mode network. In this 
study, we  first investigated the altered functional connectivity after ingesting 
dried bonito soup in healthy volunteers. Functional connectivity in several brain 
regions, including the connection between the vermis, part of the cerebellum, 
and bilateral central opercular cortex, was markedly increased after ingesting 
dried bonito soup, compared to the ingestion of hot water. Physiological scaling 
showed that satiety was substantially increased by ingesting hot water rather than 
dried bonito soup. These results indicate that increased functional connectivity 
reflects the post-ingestive information pathway of dried bonito soup.
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1 Introduction

Soup that includes dried bonito broth provides an umami taste to Japanese foods (1). 
Dried bonito soup contains umami ingredients such as L-glutamate, inosine monophosphate 
(IMP), and amino acids, which exert anti-depressive (2) and anti-sympathetic nervous system 
effects (3). The ingestion of dried bonito soup ameliorates the aggressive behavior associated 
with perinatal dioxin exposure in children (4). In addition to behavioral and physiological 
studies, previous studies have investigated Fos expression in the rat brain after intragastric 
administration of dried bonito (5). Intragastric infusion of dried bonito increased Fos 
expression in the medial preoptic area, hypothalamus, and central nucleus of the amygdala, 
indicating that information regarding the ingested dried bonito was processed in the forebrain. 
Another study investigated the activity of the hypothalamus following infusion with amino 
acids, glucose, or lipid emulsions. The lateral hypothalamus was activated under amino acid 
and glucose conditions, but not under lipid emulsion condition (6).

Functional magnetic resonance imaging (fMRI) is a promising tool for noninvasive 
investigation of brain function. Previous studies have reported that blood oxygenation level 
dependent (BOLD) signal changes, which are closely linked to neuronal activation, are observed 
during taste (7, 8), smell (9), and food intake (10, 11). BOLD signals change in the hypothalamus 
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after glucose intake in humans (11, 12) and rodents (13, 14). Additionally, 
the insular and opercular cortices are key regions for processing ingested 
food information (15). In contrast to glucose intake, few studies have 
investigated the brain response to umami substances such as L-glutamate 
and IMP in humans (16) and rodent models (10, 17).

Recent progress in fMRI has enabled the optimization of 
functional connectivity in the whole brain, which is derived from the 
synchronization of neuronal oscillations between anatomically-
separated regions (18). Compared to local activation detected by task-
based fMRI, functional connectivity includes more information on the 
composition of the wide brain network and complex information 
processing in the brain (19). Previous studies have shown that 
functional connectivity is related to food information processing (20) 
and cognitive function (21, 22). However, previous studies have 
focused on local activation after food intake (11) and no study has 
investigated the altered functional connectivity following the intake of 
dried bonito soup. In this study, we hypothesized that ingestion of the 
dried bonito soup changes the functional connectivity in the brain 
regions related to the processing of the information of ingested umami 
substance. We  compared functional connectivity following the 
ingestion of dried bonito soup and hot water.

2 Materials and methods

2.1 Participants

Sixteen healthy volunteers (8 males and 8 females, mean age 
35.9 ± 8.96 years) were recruited. All experimental procedures and 
protocols were approved by the Institutional Review Board of the National 
Institute of Advanced Industrial Science and Technology (AIST).

2.2 Visual analogue scale evaluation

The visual analogue scale (VAS) was used before each fMRI 
measurement according to the following three questions on hunger, 
satiety, and sleepiness (23). All the questions were asked in Japanese. 
(For example, if the hungriest state in your life is 100, how strong are 
your feelings of hunger now?) The participants answered the questions 
by placing a marker on the 140 mm line to indicate the score they felt 
was most appropriate for their current condition. The VAS responses 
were converted into hundredths of a percent and evaluated.

2.3 fMRI experiment

The experimental setup is shown in Figure 1. The VAS evaluation 
was performed before MRI scanning. The MRI data were acquired 
using a 3 T MRI system with a 32-channel brain coil (Philips 
Healthcare, Best, Netherlands). Structural images were acquired using 
a magnetization-prepared rapid gradient echo (MPRAGE): TE/
TR = 5.1/11 ms, flip angle = 8°, matrix = 368 × 315 × 44, resolution 
= 0.70 × 0.76 × 0.70 mm3/voxel. The fMRI was acquired to assess 
functional connectivity during the resting state with T2*-weighted 
gradient echo-planar imaging (EPI) with the following parameters: 
TE/TR = 30/1,500 ms, flip angle = 80°, matrix = 76 × 76 × 44, 
resolution = 2.5 × 2.5 × 2.5 mm3/voxel, 420 scans (in total 10 min and 

30 s). The participants were instructed to watch a cross-mark on the 
screen. Resting-state functional MRI and structural imaging were 
performed before and after ingestion.

HONDASHI® was used to create a dried bonito soup. 
HONDASHI® soup is one of the products of the Ajinomoto Group 
(Ajinomoto Co., Inc., Kawasaki, Japan) and is made with monosodium 
L-glutamate (32.50%), disodium 5′inosinate (2.60%), disodium 
succinate (0.36%), non-iodized salt, lactose, sugar, dried bonito tuna 
powder, bonito extract, and yeast extract.1 The participants were asked 
to drink dried bonito soup, in which 3 g of dried bonito soup powder 
dissolved in 100 mL of hot water (approximately 40°C) or 100 mL hot 
water (~40°C) on a different day. Following the intake of dried bonito 
soup or hot water, the participants rested calmly for approximately 
5 min, and the acquisition was started. The participants participated 
in the experiments on two separate days: one for dried bonito soup 
and the other for hot water. The sequence of dried bonito soup and 
hot water was randomly ordered for the counterbalanced design; that 
is, eight participants consumed dried bonito soup on the first day and 
eight participants consumed hot water on the first day. The gap 
between the first and second days was 160 ± 48 days.

2.4 fMRI analysis

2.4.1 Preprocessing of fMRI data
All MRI data were preprocessed using statistical parametric 

mapping software SPM12 (Welfare Trust Center for Neuroimaging, 
United Kingdom) to perform preprocessing steps. Preprocessing 
included slice timing, motion correction by realignment, and 
normalization of structural and functional data into a standard MNI 
space. Subsequently, the functional images were smoothed with an 
FWHM kernel of 8 × 8 × 8 mm3.

2.4.2 Functional connectivity analysis
The head motion was checked with Artifact Detection Tools 

(ART).2 The framewise displacement (FD), which is effective on the 
fMRI signals (24), was calculated using this tool. The outliers were 
detected when maximum FD >1.5 mm or 1.5° in all participants (25). 
Functional connectivity was then analyzed using the CONN toolbox.3 
The preprocessed fMRI data were then detrended. The mean signals 
in the ventricles and white matter, and six motion parameters of the 
head (translational and rotational motions) were regressed from the 
time series of each voxel to reduce the contribution of physiological 
noise, such as respiration and head movement. Slow periodic 
fluctuations were extracted using a bandpass filter (0.008–0.08 Hz). 
The regions of interest (ROI) were defined using the 132 anatomical 
regions provided by default in the CONN toolbox. The change in 
functional connectivity was generated for each condition (pre- and 
post-intake) as the product of the ROI time series multiplied by intake, 
and the beta weight was calculated for all ROIs. At the group level, 
random effects analysis was used across participants, and a t-test was 
conducted to compare ROI-based connectivity in each condition (hot 
water and dried bonito soup). The statistical significance of ROI–ROI 

1 https://www.ajinomoto.co.th/en/our-product/food-service/hon-dashi

2 https://www.nitrc.org/projects/artifact_detect/

3 www.conn-toolbox.org
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connectivity was assessed using an uncorrected threshold of p < 0.001. 
Seed-based functional connectivity analysis was performed based on 
the results of the ROI–ROI functional connectivity, and the seeds were 
determined to be  the vermis 6 (Ver 6), cerebellum, and bilateral 
central operculum (CO). The significance of seed-based functional 
connectivity was thresholded at p < 0.05, using family-wise 
error correction.

2.5 Statistics of VAS score

A paired t-test between the pre- and post-ingestion in each 
question and condition (dried bonito or hot water) was performed on 
the VAS scores following a two-way repeated measures analysis of 
variance. We conducted a paired t-test to analyze the change in the 
VAS ratio between pre- and post-ingestion for each condition.

3 Results

3.1 Physiological parameters

We conducted a two-factor repeated-measures analysis of variance 
on the conditions, and pre- and post-ingestion values were different 
(F (1,15) = 9.525, p = 0.008). We did not find any differences in the hot 
water and dried bonito soup conditions (F (1,15) > 0.000, p = 0.998) or 
interaction effects (F (1,15) = 2.145, p = 0.164).

After ingesting the dried bonito soup or hot water, hunger, 
satiety, and sleepiness were assessed (Figure 2). Hunger was not 
substantially altered by the ingestion of hot water or dried bonito 
soup (Figures  2A,B). The VAS scores for satiety and sleepiness 
increased following hot water ingestion (p < 0.05) (Figures 2C,E). 
However, ingestion of dried bonito did not markedly alter satiety or 
sleepiness (Figures 2D,F). Sleepiness was similar for both hot water 
and dried bonito soup and increased after ingestion (Figures 2E,F). 
A t-test was conducted to examine whether there was a difference in 
the changes in VAS before and after ingestion between the groups. 
The results of a paired t-test showed that the change was marked 
only in satiety (p = 0.01), with a greater increase in satiety for hot 
water than for dried bonito soup (Figure 3).

The averaged FDs were 0.119 ± 0.006 mm for dried bonito 
pre-ingestion, 0.117 ± 0.006 mm for dried bonito post-ingestion, 
0.116 ± 0.007 mm for hot water pre-ingestion, and 0.113 ± 0.007 mm 
for hot water post-ingestion. There was no significant difference in 
FDs among the conditions (p > 0.05 by two-way repeated ANOVA). 

These results indicate that ingestion of dried bonito soup or hot water 
did not affect the head motion during fMRI scanning.

3.2 Increased functional connectivity 
following ingestion of dried bonito soup

Substantial changes in functional connectivity following the 
ingestion of dried bonito soup were compared with those following hot 
water ingestion (Figure 4A). Overall, functional connectivity with Ver 6 
was increased in many brain regions, such as the motor cortex [right 
precentral gyrus (PreCG) and lateral sensorimotor network], temporal 
lobe [right Heschl’s gyrus (HG), right planum temporale (PT), and 
bilateral central opercular cortex (CO)]. Functional connectivity between 
the vermis 10 and the right rostral prefrontal cortex (RPFC), which is 
part of the salience network, increased. Functional connectivity in the 
left posterior parietal cortex (PPC), which is part of the frontoparietal 
network, with the right hippocampus and right lingual gyrus increased. 
Functional connectivity increased between the left posterior part of the 
superior temporal gyrus (pSTG) and the right temporal occipital 
fusiform cortex (TOFusC). The spatial distribution of functional 
connectivity showed that bilateral increases were induced by Ver 6 
(Figure 4B).

3.3 Seed-based functional connectivity 
following ingestion of dried bonito soup

We then investigated the changes in seed-based functional 
connectivity following the ingestion of dried bonito soup compared 
to the ingestion of hot water (Figure  5). Functional connectivity 
between Ver 6 and the bilateral CO, PreCG, TP, and middle temporal 
gyrus (MTG) increased substantially (Figure  5A). When the 
cerebellum was selected as the seed, functional connectivity with the 
left TOFusC and left occipital pole (OP) increased (Figure  4B). 
Increased functional connectivity with the bilateral CO was also 
observed (Figure 4C). Functional connectivity with the CO, superior 
frontal gyrus (SFG), cerebellum, and Ver 6 increased following the 
ingestion of dried bonito soup.

4 Discussion

In this study, we aimed to investigate the altered functional 
connectivity following the ingestion of dried bonito soup. Increased 

FIGURE 1

Schematic of the resting-state functional magnetic resonance imaging (fMRI). Schematic of resting-state fMRI and hot water or dried bonito soup 
ingestion. First, the participants answered the visual analogue scale (VAS) before first resting state fMRI. After ingestion of hot water or dried bonito 
soup, the participants answered the VAS again. The 2nd resting state fMRI was performed. Resting-state fMRI was performed for 10  min. The “+” mark 
was presented during the resting period.
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functional connectivity after ingesting dried bonito soup compared 
to hot water intake was successfully demonstrated. Functional 
connectivity between the vermis and several regions of the temporal 
lobe increased substantially. Additionally, the functional 
connectivity with parts of the sensorimotor and salience networks 
increased. Previous studies have focused on the local activation of 
BOLD signaling changes after ingesting nutrients such as 
carbohydrates and amino acids. This approach enabled the 

investigation of the altered neuronal activation after nutrient 
ingestion. However, it is impossible to investigate altered functional 
connectivity, which is defined as the synchronization of BOLD 
signal fluctuations between separate regions and is related to the 
processing of ingested information. This study clearly demonstrates 
that functional connectivity changes after the ingestion of dried 
bonito soup. Brain regions are key to processing ingested food 
information through the afferent vagus nerve.

FIGURE 2

Results of the visual analogue scale (VAS) method. (A,B) The VAS of hunger before and after ingesting (A) hot water and (B) dried bonito soup. (C,D) 
The VAS of satiety before and after ingesting (C) hot water and (D) dried bonito soup. (E,F) The VAS of sleepiness before and after ingesting (E) hot 
water and (F) dried bonito soup. The red straight line shows the average change, and the black dashed line shows the change from pre-ingestion to 
post-ingestion of hot water or dried bonito soup in each participant. Statistical results are indicated using significant difference (*p  <  0.05 between 
pre- and post- by paired t-test).
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4.1 Role of the vermis-temporal lobe 
network

Functional connectivity between Ver 6 and the temporal lobes, 
including the bilateral CO, right HG, and right PT, was markedly 
increased. The operculum and vermis are involved in processing 
information regarding food-induced odors, such as chocolate (26). 

The vermis, a part of the cerebellum, is involved in the bottom-up 
appetitive network and plays a prominent role in feeding behavior, 
particularly in the drive to approach appetizing stimuli. Women with 
anorexia nervosa have reduced appetite and reduced responses to food 
images when explicitly thinking about eating food, as shown in the 
images. These subtypes are differentiated by increased or reduced 
activation in regions associated with appetitive and somatosensory 
impulsive responses, such as the dorsal striatum, insular cortex, and 
cerebellar vermis (27).

The vermis is essential for connecting the visceral organs and 
brain through the vagus nerve (28). Vagus nerve stimulation activates 
the vermis and CO (29). Rebollo et al. showed marked phase coupling 
between the electrogastrogram and resting-state BOLD time series in 
12 nodes, called the “gastric network”; CO and Ver 6 are included in 
the “gastric network” (30). Ingested umami substances such as 
L-glutamate and IMP increase vagal nerve activity (31). These results 
indicate that increased functional connectivity between Ver 6 and the 
bilateral CO may be related to gut–brain interactions. The insular - 
opercular cortex is associated with spatiotemporal information 
regarding food intake. During meal consumption, time-locked high-
frequency broadband activity at the time of food intake depends on 
the food types and is associated with cue-specific activity (32). The 
consumption of palatable foods results in greater activation of the 
frontal cortex and operculum/insula than the consumption of 
unpalatable foods (33). These results support the increased functional 
connectivity between the bilateral CO and the superior frontal gyrus 
due to seed-based functional connectivity.

4.2 Comparison between the local signal 
change and connectivity

Previous studies have investigated the changes in BOLD signals 
following the ingestion of nutrients. In contrast, the present study 
investigated altered functional connectivity. BOLD signal changes 
reflect changes in neuronal activity in local regions (34). The BOLD 
signal in the hypothalamus decreases substantially after ingestion of 
glucose (11, 35). However, compared with glucose studies, there is 
insufficient evidence for the neuronal imaging of umami substance 
ingestion. Several studies have reported that the intragastric infusion 
of nutrients such as umami substances and carbohydrates induces 
BOLD signal changes (10, 13, 14, 36). These results showed that the 
increased BOLD signal changes were prolonged for more than 10 min, 
indicating that ingested nutrients affect resting-state fMRI 5–20 min 
after ingestion. In contrast to BOLD signal changes, functional 
connectivity reflects the synchronicity of BOLD signal fluctuations 
between anatomically separated regions. This BOLD fluctuation is 
related to cognitive function (37); psychiatric diseases induce 
abnormal functional connectivity (38). However, no study has 
investigated functional connectivity after food intake.

In this study, we clearly showed altered functional connectivity 
related to the gut-brain axis and food intake. To our knowledge, this 
is the first study to demonstrate the relationship between functional 
connectivity and food intake in humans. A rat study revealed that 
functional connectivity is decreased by sucrose intake (39). The ad 
libitum-fed rats showed a trend toward higher functional connectivity 
than food-restricted rats. Functional connectivity is affected by the 
nutritional status of the body. Functional connectivity from the 

FIGURE 3

Result of the visual analogue scale (VAS) method in pre- and post-
ingestion changes. (A) The change in VAS on hunger pre- and post-
ingestion. (B) The change in VAS on satiety pre- and post-ingestion. 
(C) The change in VAS on sleepiness pre- and post-ingestion. The 
boxplots illustrate the comparison between hot water and dried 
bonito soup. The blue boxplot represents hot water and the orange 
boxplot represents dried bonito soup. The results indicate a statistical 
significance (*p  <  0.05 between pre and post using paired t-test).
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posterior to the anterior insula is strengthened by hunger compared 
to satiety, and glucose intake alters functional connectivity (40). In a 
mouse study, food deprivation increased the functional connectivity 
between the audiovisual cortex, hippocampus, and retrosplenial 
cortex (41). These studies indicate that functional connectivity is 
influenced by the nutrient state and ingested food. Therefore, the 
altered functional connectivity due to dried bonito soup intake is 
reasonable and provides insights into the physiological significance of 
dried bonito soup in Japanese cuisine. However, dried bonito soup 
contains several food ingredients, such as salt, and more precise 
studies using L-glutamate or IMP should be performed in the future. 
The objective of this study was to investigate the altered functional 
connectivity following the ingestion of dried bonito soup. This may 
have been caused by taste, ingestion, and post-ingestive effects. In the 

future, the effects of taste, smell, and post-ingestion of dried bonito 
soup should be investigated separately to understand the mechanisms 
of altered functional connectivity.

4.3 The limitations of this study

We investigated the functional MRI (fMRI) data of 16 participants. 
Although previous studies showed good quality results and the results 
of increased BOLD areas were replicable with less than 20 participants 
(15, 42, 43), there was limited statistical power in this study due to the 
small sample size (44). Marek et al. (44) used the big data (50,000 
individuals) to estimate the sample size for improving replication rates 
and decreasing effect size inflation. Other studies estimate the sample 

FIGURE 4

Connectivity matrix and glass brain. (A) Represents the functional connectivity of the regions of interest. The elements indicate the strength of 
connectivity between regions. In (B), regions with strong connectivity are spatially represented by a glass brain. PreCG, the precentral gyrus; SM lateral, 
lateral sensorimotor network; HG, Heschl’s gyrus; PT, planum temporale; CO, central opercular cortex; pSTG, posterior part of the superior temporal 
gyrus; RPFC, right rostral prefrontal cortex; PPC, posterior parietal cortex; Ver 6, vermis 6; Ver 10, vermis 10; Cereb 10, cerebellum 10; pTFusC, posterior 
part of temporal fusiform cortex; TOFusC, temporal occipital fusiform cortex; LG, lingual gyrus.
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size for reliable reproducibility and 40–300 individuals are required 
(45, 46). Future studies should use larger sample sizes to assess the 
reproducibility of results.

In the present study, we selected the VAS method to measure the 
participants’ feelings of hunger, and sleepiness because it has been 
used in the previous fMRI study (45, 47, 48). Although there is no 
difference in the resolving power between VAS and general labeled 
magnitude scale (gLMS) (49), previous studies have used the gLMS to 
measure the perceptual intensity, such as taste, smell, and hunger 
(50–52). We  will compare the VAS and gLMS to measure the 
physiological state.

In the present study, we did not calculate the brain response to the 
intake of dried bonito soup because the intake of dried bonito soup or 

hot water was performed outside of the MRI bore to avoid the motion 
artifacts in ingestion. Therefore, we could not directly compare the 
relationship between local neuronal activation and altered functional 
connectivity with dried bonito soup. Future studies should attempt to 
compare them using fMRI by conducting ingestion in the MRI bore.

5 Conclusion

In conclusion, our study showed that dried bonito soup ingestion 
increased the functional connectivity in the regions involved in the 
information processing of ingested food, such as the vermis, central 
opercular cortex, a part of sensorimotor and temporal lobes. These 

FIGURE 5

Seed-based functional connectivity. This represents the functional connectivity of each of the three regions as seeds. (A) Functional connectivity of 
vermis 6 as a seed, (B) cerebellum, and (C) central opercular cortex. The color bar indicates the t-value.

https://doi.org/10.3389/fnut.2024.1354245
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Satake et al. 10.3389/fnut.2024.1354245

Frontiers in Nutrition 08 frontiersin.org

results indicate that functional connectivity can be  a marker of 
ingested food information in the brain.
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