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Introduction: Monosodium glutamate (MSG), an umami substance, stimulates 
the gut-brain axis communication via gut umami receptors and the subsequent 
vagus nerves. However, the brain mechanism underlying the effect of MSG 
ingestion during the developmental period on aggression has not yet been 
clarified. We  first tried to establish new experimental conditions to be  more 
appropriate for detailed analysis of the brain, and then investigated the effects 
of MSG ingestion on aggressive behavior during the developmental stage of an 
ADHD rat model.

Methods: Long-Evans, WKY/Izm, SHR/Izm, and SHR-SP/Ezo were individually 
housed from postnatal day 25 for 5  weeks. Post-weaning social isolation 
(PWSI) was given to escalate aggressive behavior. The resident-intruder test, 
that is conducted during the subjective night, was used for a detailed analysis 
of aggression, including the frequency, duration, and latency of anogenital 
sniffing, aggressive grooming, and attack behavior. Immunohistochemistry of 
c-Fos expression was conducted in all strains to predict potential aggression-
related brain areas. Finally, the most aggressive strain, SHR/Izm, a known model 
of attention-deficit hyperactivity disorder (ADHD), was used to investigate the 
effect of MSG ingestion (60  mM solution) on aggression, followed by c-Fos 
immunostaining in aggression-related areas. Bilateral subdiaphragmatic 
vagotomy was performed to verify the importance of gut-brain interactions in 
the effect of MSG.

Results: The resident intruder test revealed that SHR/Izm rats were the most 
aggressive among the four strains for all aggression parameters tested. SHR/
Izm rats also showed the highest number of c-Fos  +  cells in aggression-
related brain areas, including the central amygdala (CeA). MSG ingestion 
significantly decreased the frequency and duration of aggressive grooming 
and attack behavior and increased the latency of attack behavior. Furthermore, 
MSG administration successfully increased c-Fos positive cell number in the 
intermediate nucleus of the solitary tract (iNTS), a terminal of the gastrointestinal 
sensory afferent fiber of the vagus nerve, and modulated c-Fos positive cells in 
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the CeA. Interestingly, vagotomy diminished the MSG effects on aggression and 
c-Fos expression in the iNTS and CeA.

Conclusion: MSG ingestion decreased PWSI-induced aggression in SHR/Izm, 
which was mediated by the vagus nerve related to the stimulation of iNTS and 
modulation of CeA activity.

KEYWORDS

umami, c-Fos, aggression, resident-intruder test, gut-brain axis, vagus nerve, social 
isolation

1 Introduction

Developmental events, including the interplay of genetic, 
biological, environmental, and individual factors, can profoundly 
impact long-term emotional and behavioral responses (1–4). The 
long-term consequences of early life experiences play a crucial role in 
the onset of psychopathologies later in life (5–7). External 
environmental stimuli during development can affect the formation 
of emotions such as anxiety, antisocial behavior, and aggression (3, 8, 
9). Aggression, a key symptom in various psychological disorders like 
mood disorders, personality disorders, substance abuse, schizophrenia, 
and autism, is often linked to early life environmental stressors such 
as social rejection or isolation in humans and other species (6, 10, 11). 
The impact of social isolation on aggressive behavior is contingent on 
the stage of development in rodents (10). Aggression levels increased 
in adult animals that underwent post-weaning social isolation (PWSI) 
(12, 13). PWSI disrupts the preference for social stimulus in adulthood 
and promotes the escalation of aggressive behaviors (7, 13–17).

The effect of social isolation stress during development on 
aggressive behavior largely depends on the strain, sex, and species of 
the animal model (10, 18, 19). The inbred juvenile spontaneously 
hypertensive rats (SHR) that exhibit hyperactivity, inattention, 
impulsivity, and learning deficits in various behavioral paradigms have 
been widely used as behavioral models of attention-deficit 
hyperactivity disorder (ADHD) (20, 21). Although stroke-prone SHR 
(SHR-SP) have been extensively studied as an ADHD model, no 
studies have reported which strain exhibits more aggressive behavior 
(22, 23). Impulsive aggression is a clinically distinct and common 
behavior in ADHD and autism, with 54% of ADHD patients showing 
clinical aggression (24). Individuals with ADHD tend to be more 
vulnerable to the impact of social deprivation (25, 26). Due to 
impulsivity and emotional dysregulation, aggression can be  a 
challenging and complex issue for individuals with ADHD (25–29).

Food and nutrition are potential environmental modifications 
that may have an impact on behavior (29–32). The phenomenon by 
which dietary components stimulate the gastrointestinal tract, impact 
the brain, and ultimately determine behavior has recently gained 
scientific attention (33, 34). The gut-brain axis is known to play an 
important role in regulating brain function, and as a result, influences 
psychological and emotional stability (35, 36). L-glutamate, a savory 
umami taste substance, has the potential to play a role in gut-brain 
axis communication via activation of taste receptors and subsequent 
vagus nerve (37–40). Our previous data in SHR showed that 
monosodium glutamate (MSG) ingestion successfully decreased 
strong aggressive behavior in a social interaction test (41). This effect 

was mediated via the vagus nerve, as proven by diminishing the effect 
of decreasing aggression by MSG after vagotomy (41). However, the 
data appeared to vary depending on the experimental conditions, 
despite showing a significant difference between groups.

Therefore, in this study, we initially aimed to establish improved 
experimental conditions to investigate the detailed brain mechanism 
of reducing aggression due to MSG ingestion. Specifically, 
we substituted the social interaction test with the resident-intruder 
test and observed aggressive behavior under dim red light during 
subjective nights to align with the behaviors of nocturnal animals. 
Prior to this, we compared aggression levels in different rat strains, 
including SHR/Izm, SHR-SP/Ezo, WKY/Izm, a genetic control rat, 
and Long-Evans, a strain commonly used for studying aggression 
(20–22, 42, 43), to confirm the proper model of aggression with a 
neuropathological background of ADHD. Furthermore, we analyzed 
aggression-related brain areas in these strains by comparing neuronal 
activation based on c-Fos expression (44, 45).

Finally, the effect of MSG on aggression was investigated using the 
resident-intruder test in the most aggressive strain SHR/Izm. 
We  validated the role of vagus nerve activation following MSG 
ingestion by conducting vagotomy and assessing neuronal activity in 
the nucleus of the solitary tract (NTS), which is the terminus of the 
vagus nerve’s gastrointestinal sensory afferent fibers (46). Since the 
brain mechanism underlying the effect of MSG ingestion has not been 
clarified yet, we  focused on the alteration of neural activity in 
aggression-related areas of the brain, including the amygdala. The 
amygdala has been known to play a role in aggressive behavior and 
emotional instability in ADHD (47–50). The direct and indirect 
neuronal projections between the NTS and central amygdala (CeA) 
could lead to the hypothesis that NTS activation by MSG via the vagus 
nerve may potentially modulate neuronal activity in the CeA, 
ultimately affecting aggression (51–54).

2 Materials and methods

2.1 Animals

For experiments in strain-difference, male rats of four different 
strains (SHR/Izm, and SHR-SP/Ezo, WKY/Izm, and Long-Evans; 
n = 6/each strain) were purchased from Japan SLC Inc. (Hamamatsu, 
Japan). SHR/Izm represents an animal model of ADHD characterized 
by hyperactivity and inattention without anxiety-related impulsive 
behavior when compared to WKY (Wistar-Kyoto) rats as a genetic 
control (55, 56). SHR-SP is a sub-strain of SHR that exhibits more 
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inattention and impulsivity than SHR (22, 57). Long-Evans was 
included for comparison, as it is a commonly used laboratory rat in 
studies aggression related to social isolation and intermale aggression 
(42, 43, 58, 59).

The most aggressive strain, SHR/Izm, was used to investigate the 
effects of MSG ingestion (60 mM solution) on aggression. A total of 
24 male SHR/Izm were assigned to two groups: MSG group (n = 12) 
and control group (n = 12). Male Wistar rats (n = 12) were obtained 
from Japan SLC Inc. and used as intruders to induce aggression.

The rats were housed under temperature-controlled conditions 
(23-25°C, average humidity 50%) with free access to standard chow 
(MFG; Oriental Yeast Co. Ltd.) and water on a 12-h light/dark cycle 
(lights on at 22:00 and off at 10:00). To escalate aggression, animals 
were housed individually from P25 to P60 for 5 weeks in standard 
cages (40 × 23 × 18 cm) under conditions of low wood shaving bedding 
and relatively high illumination in the light phase. After 5 weeks of 
isolation, behavioral assessments, including the open-field test and 
resident-intruder test, were conducted in the dark phase at 13:00–
16:00 to get more stable results. Intruder rats were group-housed (2–3 
males per cage) in standard cages on a 12 h light/dark cycle (lights on 
at 08.00 and off at 20:00). MSG 60 mM solution (MP Biomedicals, 
United  States, 101800) or distilled water was administered via 
drinking bottles ad libitum until behavioral tests were completed and 
the brains were obtained for c-Fos immunostaining. The drinking 
bottle was changed three times per week. Body weight and drinking 
volume were measured three times weekly.

To confirm the MSG action on c-Fos expression in the brain 
without behavioral effect of the resident intruder test, 18 male SHR/
Izm at 8 weeks-old that were group-housed (2–3 males per cage) in 
standard cages on a 12 h light/dark cycle (lights on at 08.00 and off at 
20:00) were assigned to three groups (60 mM MSG group, n  = 6; 
180 mM MSG group, n = 6; and control group, n = 6) and then MSG 
was administered by gavage one shot.

Additional experiments were conducted for 5 weeks to confirm 
the effect of MSG ingestion without behavioral effects and to clarify 
the effects of PWSI. Twelve male SHR/Izm rats were assigned to three 
groups: control group-housed group (n  = 4), control PWSI group 
(n  = 4), and MSG PWSI group (n  = 4). MSG 60 mM solution or 
distilled water was administered ad libitum via drinking bottles.

Every effort was made to minimize suffering and the number of 
animals used. All experimental procedures were approved by the 
Committee on Animal Experimentation of Nagoya City University 
Medical School, and were in accordance with the animal care 
guidelines of Nagoya City University.

2.2 Behavioral test

2.2.1 Open field test
The rat at P60 was allowed to move freely for 10 min in a black 

circular arena (60 cm diameter × 50 cm height) in the dark phase 
(13:00–16:00) under red dim light (~2 lux) and recorded using an 
overhead camera for the following analysis (60). The recorded 
behavior was analyzed using an automated tracking system Smart 
software (Bio Research Center Inc., Nagoya, Japan) with the following 
parameters: (1) total distance moved, (2) duration of inactivity, (3) 
frequency of entrance into the center area, and (4) time spent in the 
center area (61, 62).

2.2.2 Resident-intruder test
Aggressive behavior in several strains of rats, including Long-

Evans, WKY/Izm, SHR/Izm, and SHR-SP/Ezo, was induced in the 
resident’s home cage by the intruder. The intruder is a male Wistar rat 
with a slightly smaller body weight (approximately 20 grams) compared 
to resident. Wood shaving bedding in the resident cage was kept for 
1 week before the resident-intruder test. This test was performed three 
times in three consecutive days in the dark phase (13:00–16:00) under 
red dim light using the same resident and intruder pair.

Animal behavior was video-recorded using an overhead camera 
for 10 min and analyzed by measuring the frequency, duration, and 
latency of anogenital sniffing (weak aggression), aggressive grooming 
(moderate aggression), and attack behavior (strong aggression). 
Aggressive grooming is characterized by a lateral threat, upright 
posture, rearing or pouncing, and chasing. Attack behavior is defined 
as biting, clinch attack, and keeping down (63). Manual behavioral 
annotation and tracking were performed using Smart software (Bio 
Research Center Inc., Nagoya, Japan).

2.3 Immunohistochemistry of c-Fos

To determine the areas of the brain that are related to aggression 
and those that are affected by the administration of MSG, IHC of 
c-Fos was conducted to assess neuronal activity in the brain. Ninety 
minutes after the resident intruder test, the rats were deeply 
anesthetized with pentobarbital sodium (100 mg/kg, i.p.; Tokyo 
Kasei, Tokyo, Japan) and perfused transcardially with 0.1 M 
phosphate-buffered saline (PBS, pH 7.4) followed by 4% (w/v) 
paraformaldehyde (PFA, Sigma-Aldrich., St. Louis, United States) in 
PBS. The brains were post-fixed in 4% PFA overnight at 4°C, followed 
by 30% (w/v) sucrose until submerged. The brains were embedded in 
O.C.T. compound (Tissue-Tek, Sakura Finetek Japan Co., Ltd.) and 
frozen. Serial coronal sections (40 μm) were prepared using a cryostat 
(Leica CM 1520, Japan) and collected in a cryoprotectant (anti-frozen 
solution) containing 25% Ethylene Glycol and 25% Glycerol in PB 
before histological analysis.

For immunohistochemistry, the sections were first washed with 
PBS for 5 min three times and incubated with 0.6% (v/v) H2O2 (Wako., 
Tokyo Japan) dissolved in PBS + 0.1% (v/v) Triton X-100 (Nacalai 
Tesque, Inc., Kyoto, Japan) for 30 min to inactivate endogenous 
peroxidase, and then incubated in a blocking solution (10% horse 
serum in PBS containing 0.3% Triton X-100) for 60 min following 
washing (PBS-T: PBS + 0.3% Triton X-100) for 5 min three times.

The sections were incubated with mouse monoclonal anti-c-Fos 
antibody (1:1000; EnCor Biotechnology Inc., Florida, MCA 2H2, 
lot.030123). After washing with 1% horse serum in PBS-T three times, 
the sections were incubated for 120 min in 4.5 μL/mL of biotinylated 
anti-mouse IgG antibody (Vector Laboratories, Inc., California, 
BA-2000, lot.2B0622) diluted with 1% horse serum in PBS-T at room 
temperature. The sections were then washed three times in PBS-T, 
followed by incubation in 9 μL/mL of avidin-biotin complex 
(Vectastain ABC kit; Vector Laboratory, Inc., United States, PK4000, 
lot. 2 J1116) in PBS-T for 60 min. The sections were visualized with 
0.25 mg/mL diaminobenzidine dissolved in PBS containing 0.009% 
H2O2 for 5–10 min at room temperature. The sections were mounted 
on gelatin-coated slides, air-dried, and gradually dehydrated using 50 
to 100% ethanol. The brain sections were embedded in a cover slide.
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Microscopic images were obtained using an Olympus AX70 
microscope integrated with the U-PHOTO Universal Photo System. 
C-Fos positive cells (appearing as round shape and dark brown color) 
were manually counted in each region of interest (Paxinos and Watson 
Brain Map) using ImageJ software. The number of positive c-Fos cells 
was counted on both the left and right sides from four sections for 
each brain area in each rat.

2.4 Subdiaphragmatic vagotomy

Vagotomy was carried out at the sub-diaphragmatic level using SHR/
Izm at P24, according to our previous report with some modifications 
(41). Briefly, after overnight food restrictions, the rats were anesthetized 
with an intraperitoneal injection of a 2 mL/kg mixture of medetomidine 
(0.185 mg/mL; Fujita Pharmaceutical Co., Ltd., Tokyo Japan), midazolam 
(1 mg/mL; Sando Co., Ltd., Tokyo Japan), and vetorphale (1.25 mg/mL: 
Meiji Animal Health Co. Ltd., Tokyo Japan). After a midline incision of 
the abdomen, the left lobes of the liver were moved aside and covered 
with saline gauze, and the stomach and lower esophagus were 
exteriorized from the peritoneal cavity and kept wet with saline. The 
dorsal and ventral trunks of the vagus nerve on the lower esophagus were 
cut at the subdiaphragmatic level using electrocauterization under a 
microscope. Subsequently, the organs were placed in the appropriate 
position, and the muscle and skin were tightly sutured. After the surgery, 
atipamezole hydrochloride (Orion Pharma, Expoo, Finland) was 
administered after completion of all surgical procedures at a dose rate of 
0.4 mg/kg (i.p.). The rats were then returned to their home cages. Five 
weeks of individual housing and MSG administration via drinking 
bottles were performed before the behavioral test.

2.5 Statistical analysis

GraphPad Prism 9.0.0 software (GraphPad Software Inc.) was 
used for the statistical analysis. The resident-intruder test was analyzed 
using non-parametric analysis by Mann–Whitney or multiple 
comparisons Kruskal-Wallis followed by Dunn’s test. The open field 
test and immunohistochemistry data were analyzed using parametric 
analysis by unpaired t-test or one-way ANOVA, followed by Tukey’s 
multiple comparison test as a post-hoc test. A non-parametric analysis 
was conducted if the dataset did not follow a normal distribution. 
Differences were considered statistically significant at p < 0.05.

3 Results

3.1 Isolation-induced aggressive behavior 
in strain-dependent rats

We previously reported that MSG ingestion, mediated by the 
vagus nerve, reduced aggressive behavior in the social interaction test 
(41). However, the data obtained from the social interaction test 
showed large variability, although significant behavioral differences 
were observed between the groups. Therefore, we first attempted to 
establish new experimental conditions that are more appropriate for 
a detailed analysis of the effect of MSG on the brain. Specifically, 
we substituted a social interaction test with a resident-intruder test 

conducted over three consecutive days, and observed aggressive 
behavior under dim red light during the subjective night, mimicking 
the conditions of nocturnal animals. We  found that by providing 
relatively high illumination during the subjective day and conducting 
the resident-intruder test under dim red light during the subjective 
night, PWSI for 5 weeks from P25-P60 consistently and stably induced 
weak, moderate, and strong aggressive behavior (Figure 1).

After setting more appropriate conditions, we  next compared 
aggressive behaviors across four different rat strains using the resident-
intruder test: Long-Evans, WKY/Izm, SHR/Izm, and SHR-SP/Ezo 
(Figure 1). Although all strains exhibited anogenital sniffing (weak 
aggression) on the first day of the resident-intruder test (Figures 1A–C), 
we  noticed an apparent enhancement in aggressive grooming 
(moderate aggression; Figures 1D–F) and attack (strong aggression; 
Figures 1G–I) day by day, with no difference between the second and 
third days. Among the four strains, Long-Evans was the calmest, 
exhibiting mild aggressive grooming with the lowest frequency, 
shortest duration, and longest latency (Figures 1D–F), without any 
attack behavior (Figures 1G–I). Conversely, SHR/Izm was the most 
aggressive strain, showing the highest frequency, longest duration, and 
shortest latency of attacks, especially on the second day (Figures 1G–I).

Thus, we revealed that only SHR/Izm showed significant differences 
from Long-Evans in all aggression parameters, including the frequency 
and duration of weak, moderate, and strong aggressive behavior.

3.2 Increasing c-Fos positive cells in the 
brain area associated with aggressive 
behavior

Some brain areas are known to be related to aggressive behavior 
(18, 19, 64, 65). To investigate which brain areas are associated with 
strain differences in escalated aggression, IHC of c-Fos was performed 
in three different rat strains: Long-Evans, WKY/Izm, and SHR/Izm. 
The focus was on aggression-related brain areas such as the prefrontal 
cortex (PFC), central amygdala (CeA), lateral hypothalamus (LH), 
locus coeruleus (LC), periaqueductal gray (PAG), and dorsal raphe 
nucleus (DRN; Figure 2).

A higher number of c-Fos-positive cells was observed in the 
brains of WKY/Izm and SHR/Izm compared to the less aggressive 
strain rat, Long-Evans, especially in the PFC (Figures 2A,C), CeA 
(Figures 2B,D), LH (Figure 2E), and LC (Figure 2F). It is noted that 
the difference in c-Fos positive cells between Long-Evans and SHR/
Izm was considerably large in the PFC (p = 0.0042), CeA (p = 0.0074), 
and LH (p = 0.0032; Figures 2C–E). However, no significant difference 
in c-Fos positive cells was detected in the PAG (Figure 2G) or DRN 
(Figure 2H) across the three rat strains.

3.3 Oral ingestion of MSG decreased 
isolation-induced aggression in SHR/Izm 
rats

To confirm the effect of MSG in reducing aggression using our 
new experimental conditions, SHR/Izm rats were chosen based on 
previous data indicating that this strain is the most aggressive 
(Figure 1). Since the aggression on the second day of the resident-
intruder test was obvious and consistent, we  used data from the 
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second day to compare the effect of MSG on aggression (Figure 3). 
MSG ingestion significantly decreased the frequency and duration of 
aggressive grooming (moderate aggression) and attack behavior 

(strong aggression; Figures 3A,B), and increased the latency of attack 
behavior (Figure 3C) compared to the control group that received 
drinking water without MSG.

FIGURE 1

Isolation-induced aggressive behavior in strain-dependent rats was shown using a resident intruder test. The resident-intruder test was conducted to 
compare aggressive behavior among four different strains of rats: Long-Evans (n  =  6), WKY/Izm (n  =  6), SHR/Izm (n  =  6), and SHR-SP/Ezo (n  =  6) over 
three consecutive days. (A–C) SHR/Izm rats showed the highest frequency (A) and duration (B) of anogenital-sniffing (mild aggression) compared to 
other strains on days 2 and 3, even though there was no significant difference in the latency of anogenital-sniffing (C). (D–F) High frequency (D) and 
long duration (E) of aggressive grooming (moderate aggression) were demonstrated by WKY/Izm, SHR/Izm, and SHR-SP/Ezo, whereas no difference in 
the latency of aggressive grooming was observed (F). (G,H) SHR/Izm rats were the most aggressive strains, with the highest frequency (G), longest 
duration (H), and shortest attack behavior (strong aggression) (I), showing a consistent significant difference compared with Long-Evans rats on three 
consecutive days of the resident-intruder test. Each bar represents the mean  ±  SEM (n  =  6/each group); *p < 0.05, **p < 0.01, statistical analysis was 
performed using multiple comparisons (non-parametric test) using the Kruskal-Wallis test followed by Dunn’s test.
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To confirm the effect of MSG on anxiety-like behavior under our 
new experimental conditions, an open field test was performed after 
5 weeks of PWSI. No significant differences in the total distance 
traveled (Figure 4A), total number of entrances into the center area 
(Figure  4B), time spent in the center area (Figure  4C), and total 
duration of inactivity (Figure 4D) were observed between the MSG 
and control groups.

3.4 MSG administration increase c-Fos 
positive cells in the intermediate nucleus of 
solitary tract

Our previous data showed that reduced aggression in the social 
interaction test was mediated by the vagus nerve (41). To confirm that the 
effect of MSG is related to the activation of the vagus nerve, which is 
connected to umami receptor stimulation in the gut, we performed c-Fos 
immunostaining in the nucleus of the solitary tract (NTS; Figure 5). 
We focused on both the intermediate part of the NTS (iNTS) as a terminal 
of the gastrointestinal sensory afferent fiber of the vagus nerve, and the 

rostral part of the NTS (rNTS) as a terminal of the tongue sensory afferent 
fiber of the glossopharyngeal nerve (46, 66).

Even though IHC staining was conducted after performing the 
resident intruder test without long-term fasting (Figure 5A), MSG 
ingestion significantly increased the number of c-Fos + cells in the 
iNTS (p = 0.0094; Figures  5B,D–F), whereas no difference was 
observed in the rNTS between both groups (Figure 5C).

3.5 The effect of MSG ingestion on c-Fos 
positive cells in the brain area associated 
with aggressive behavior

We further investigated c-Fos expression patterns in aggression-
related brain areas, such as the PFC, CeA, and LH, after MSG ingestion 
(Figure  6). The number of c-Fos + cells in the PFC and LH was 
comparable between the MSG-treated (n = 4) and control groups 
(n = 4; Figures 6A,B). However, the number of c-Fos + cells in the CeA 
was significantly lower in the MSG group than that in the control 
group (p = 0.0084; Figures 6C,D).

FIGURE 2

Increasing the number of c-Fos + cells in the brain areas associated with aggressive behavior. (A,B) Overview of c-Fos immunoreactivity in coronal 
sections of Pre-Frontal Cortex (A) and Central Amygdala (B) from Long-Evans rats and SHR/Izm rats as a result of IHC using anti c-Fos antibody. (C–H) 
Number of c-Fos + cells were counted from several areas of the brain related to aggression, including Pre-Frontal Cortex (PFC) (C), Central Amygdala 
(CeA) (D), Lateral Hypothalamus (LH) (E) Locus Coeruleus (LC) (F), Peri-aquaductal Grey (PAG) (G), and Dorso-Raphe Nuclei (DRN) (H) of Long-Evans (n 
= 3), WKY/Izm (n = 3) and SHR/Izm rats (n = 3). Increased c-Fos + cells were shown by SHR/Izm, especially significantly different compared with Long-
Evans in the PFC, CeA, LH, and LC. Each bar represents the mean  ±  SEM (n  =  6); *p < 0.05, **p < 0.01, statistical analysis was performed using one-way 
ANOVA followed by Tukey’s multiple comparison test.
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3.6 Intragastric administration of MSG 
increase c-Fos positive cells in the 
intermediate nucleus of solitary tract and 
central amygdala

To confirm the direct action of MSG on c-Fos expression (without 
the effects of the resident intruder test and PWSI), we conducted 
another experiment without prior individual housing and resident 
intruder tests using male SHR/Izm at 8 weeks-old (Figure 7A). In this 
protocol, rats were directly administered MSG into the stomach after 
overnight fasting. Ninety minutes after MSG administration, c-Fos 
expression in the iNTS and rNTS was investigated.

We found that intragastric administration of 180 mM MSG 
resulted in a significant increase in c-Fos positive cells in the iNTS 

(Figures 7B,D). However, no positive cells were detected in the rNTS 
of the MSG-treated groups (Figure 7C), as in the control group.

Interestingly, in contrast to long-term MSG ingestion, acute direct 
administration of 180 mM MSG induced a significant increase in the 
number of c-Fos positive cells in the CeA compared with controls and 
60 mM MSG-administration (Figure 7E). However, the total number 
of c-Fos + cells was considerably lower than in rats with prior 
behavioral tests and PWSI (Figure 6C).

To consider the possibility that PWSI affects c-Fos + cells, the 
number of positive cells in SHR/Izm rats grown in PWSI was 
investigated without behavioral tests (Figure 7F). We found that MSG 
ingestion increased the number of c-Fos + cells in the iNTS 
(Figure  7G). In addition, a significant increase in the number of 
c-Fos + cells was observed in the CeA of rats grown in the PWSI 

FIGURE 3

Oral ingestion of MSG decreased isolation-induced aggressive behavior in SHR/Izm rats was shown by the resident intruder test. The results of the 
resident intruder test showed that MSG ingestion significantly decreased the frequency of aggressive grooming and attack behavior (A), decreased the 
duration of aggressive grooming and attack behavior (B), and increased the latency of attack behavior (C) compared with the control group. Each bar 
represents the mean  ±  SEM (n  =  12); *p < 0.05, **p < 0.01, statistical analysis was performed using Mann–Whitney test.

FIGURE 4

Oral ingestion of MSG did not affect the anxiety-like behaviors analyzed by open field test. The results of the open field test showed no difference 
between the MSG and control groups in the total distance traveled (A), number of entrances into the center area (B), time spent in the center area (C), 
and total duration of inactivity (D). Each bar represents the mean  ±  SEM (n  =  8); statistical analysis was performed using unpaired t-test.
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(Figure 7H). Interestingly, this enhanced expression in the CeA by 
PSWI was significantly reduced by ingestion of 60 mM MSG 
(Figure 7H), indicating that PWSI is a major factor that increases 
c-Fos + cells in the CeA, whereas MSG reduces the PWSI effect.

3.7 MSG effect on aggression and c-Fos 
expression in the iNTS and CeA was 
diminished by vagotomy

Bilateral subdiaphragmatic vagotomy was performed at P23 to 
verify the importance of gut-brain interactions in the MSG effect 
(Figure 8A). Vagotomy blocked the effect of MSG on aggression in 
the resident intruder test; even with MSG ingestion, the duration of 

attack (Figure 8B), the frequency of aggressive grooming and attack 
(Figure 8C), and the latency of attack (Figure 8D) were similar to the 
control level. Vagotomy also diminished the effect of MSG on c-Fos 
expression in the iNTS (Figure 8E) and CeA (Figure 8F), indicating 
that the vagus nerve plays an important role in the effect of MSG on 
aggression and modulation of neuronal activity, not only in the iNTS 
but also in the CeA.

4 Discussion

In this study, after confirming that SHR/Izm is an appropriate 
model for aggression and identifying aggression-related brain areas, 
our hypothesis regarding how gut-brain stimulation by MSG 

FIGURE 5

The effect of MSG ingestion on the number of c-Fos  +  cells in the nucleus of the solitary tract. (A) Schematic illustration of the experimental timeline. 
(B,C) Significantly increased c-Fos  +  cells were counted in the iNTS from the MSG group compared with the control group (n  =  6/group) (B), while no 
difference was observed in the rostral part of the NTS (rNTS) between both groups (n =  5/group) (C). (D–F) Overview of c-Fos immunoreactivity in the 
coronal section of the intermediate part of the NTS (iNTS) (D) in the control (E) and MSG groups (F). Each bar represents the mean  ±  SEM; statistical 
analysis was performed using unpaired t-test.

FIGURE 6

The effect of MSG ingestion on the number of c-Fos  +  cells in the PFC, LH, and CeA. (A,B) The number of c-Fos  +  cells was comparable in the PFC 
(A) and LH (B) between the MSG-ingested group (n  =  4) and the control group (n  =  4). (C) The number of c-Fos  +  cells decreased significantly in the 
CeA of MSG ingested group (n  =  6) compared to that in the control group (n  =  6). (D) Overview of c-Fos immunoreactivity in the coronal section of the 
CeA in the control and MSG groups. Each bar represents the mean  ±  SEM; statistical analysis was performed using Mann–Whitney Test.
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potentially influences aggressive behavior was reaffirmed through the 
resident-intruder test and c-Fos immunostaining.

The level of aggression could vary depending on the rat strain, 
even though PWSI in SHR/Izm heightens aggression, as reported in 
Wistar rats and Sprague–Dawley rats (10, 13, 67, 68). SHR/Izm rats 
are often used as the animal model of ADHD although those lack 
impulsivity in several paradigms (22, 55, 69). SHR-SP/Ezo rats that 
were isolated as a SHR substrain, are known to have more impulsivity 
compared with SHR/Izm rats (70). As aggression is related to 
impulsivity in ADHD, we assumed that the SHR-SP/Ezo rats are 
potentially more aggressive. However, our data showed that SHR/Izm 
rats were more aggressive than the SHR-SP/Ezo rats. Higher motor 
activity in SHR/SP would be related to less aggression in the resident 
intruder test, since contact between the resident and intruder is 
relatively sorter due to the high movement of SHR-SP/Ezo (70). In 
contrast, Long-Evans rats displayed mild behavior without any attack 
behavior, despite undergoing the same PWSI conditions.

It is reported that PWSI affect the medial prefrontal cortex 
(mPFC) by decreasing dendritic density and glial cell number, 
inducing hyperactivity of glutamatergic and GABAergic neurons, and 
resulting impairment of excitatory/inhibitory balance (10, 12, 71). In 
optogenetic studies, the projection from the mPFC to the mediobasal 
hypothalamus contributes to the quantitative aspects of aggressive 
biting behavior, whereas the projection from the mPFC to the LH is 
linked to the qualitative aspects of abnormal aggressive behaviors 

(72). Therefore, the higher number of c-Fos positive cells in the PFC 
and LH of SHR/Izm compared to Long-Evans could explain the 
different aggression levels between these strains. Further studies are 
needed to understand the underlying mechanisms of PWSI-induced 
increased neuronal activity in the PFC and LH in aggressive rats, 
whereas less aggressive rats such as Long-Evans seem insusceptible 
to PWSI. Factors such as gene interactions and genetic background 
seem to play a role in the strain and individual differences in 
aggression (18, 73–75).

Another brain area that appears to play a significant role in 
aggressive behavior is the CeA, since impulsive aggression occurs 
when the amygdala (Amy) is overactivated with inadequate regulation 
from the PFC (47). The CeA, with its complex structure and extensive 
connections to other areas of the brain, plays a significant role in 
behavior (47, 49, 54). CeA has previously been reported to be more 
closely associated with predatory aggression than with territorial or 
hyperarousal aggression related to PWSI (49). Our data, demonstrating 
an increased number of c-Fos positive cells in the Amy and PFC of 
SHR/Izm rats, affirms that this rat strain is a suitable model for 
aggression in ADHD. The heightened neuronal activity in the Amy 
and PFC of SHR/Izm rats is consistent with a study that used 
functional magnetic resonance imaging in children with ADHD. The 
study found that higher emotional instability ratings correlated with 
stronger positive intrinsic functional connectivity between the 
amygdala and rostral anterior cingulate cortex (48).

FIGURE 7

Intragastric administration of MSG increased the number of c-Fos  +  cells in the iNTS and CeA. (A) Schematic illustration of the experimental timeline for 
intragastric administration of MSG. (B,C) Overview of c-Fos immunoreactivity in the coronal sections of the iNTS (B) and rNTS (C). (D,E) Intragastric 
administration of 180  mM MSG to SHR/Izm rats significantly increased the number of c-Fos  +  cells in the iNTS (D) and CeA (E). (F) Schematic illustration 
of the experimental timeline for MSG administration via a drinking bottle. (G) The number of c-Fos  +  cells in the iNTS increased in the MSG drinking 
group compared to the control group. (H) The number of c-Fos  +  cells in the CeA was higher in the rats that experienced PWSI than in the rats in 
group housing, while MSG drinking reduced the number of c-Fos  +  cells elevated by PWSI. Each bar represents the mean  ±  SD (n  =  4–6) and statistical 
analysis was performed using one-way ANOVA followed by Tukey’s multiple comparisons.
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Since aggressive behavior is related to Amy hyperactivity, a 
strategy to reduce this hyperactivity might decrease aggressive 
behavior. Interestingly, the effect of MSG on reducing attack behavior 

coincided with a decrease in c-Fos positive number of CeA. However, 
it should be  noted that the reduction of CeA activity after MSG 
ingestion is detected under PWSI conditions where the CeA is in a 

FIGURE 8

Vagotomy diminished the effect of MSG ingestion on aggressive behavior and c-Fos  +  cells in the iNTS and CeA. (A) Schematic illustration of the 
experimental timeline. (B–D) Vagotomy successfully diminished the effect of MSG on the duration of attack behavior (B), frequency of aggressive 
grooming and attack behavior (C), and latency of attack behavior (D). (E,F) MSG ingestion significantly blocked the effect of MSG ingestion on the 
number of c-Fos  +  cells in the iNTS (E) and CeA (F). Each bar represents the mean  ±  SEM; *p<0.05, **p<0.01, statistical analysis was performed using 
Kruskal-Wallis test followed by Dunn’s test for resident intruder test (n  =  8) and one-way ANOVA followed by Tuckey’s multiple comparisons test for 
c-Fos  +  cells (n  =  4).
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hyperactive specific state. Since modulation of the CeA could be one 
of the potential mechanisms for reducing aggression levels in an 
ADHD rat model, it would be  interesting to know which type of 
neuron or neurotransmitter in the CeA is affected by MSG ingestion. 
It was reported that social isolation-induced aggression increases 
glutamatergic activity by increasing AMPAR expression in the CeA 
(76, 77). Since the CeA mainly consists of inhibitory GABAergic cells, 
we hypothesized that MSG ingestion possibly stimulates the activity 
of inhibitory neurons in the CeA, thereby decreasing its total activity, 
especially excitatory neurons, under conditions that induce aggression 
(78). Further studies are required to understand how MSG ingestion 
modulates neuronal activity in the CeA and ultimately leads to 
behavioral changes.

It has been previously reported that MSG administration 
evoked c-Fos activity in the NTS (79, 80). Our results also showed 
that oral and intragastric administration of MSG increased c-Fos 
positive cells in the intermediate NTS (iNTS), confirming 
ascending viscero-sensory stimulation by MSG via the vagus 
nerve. In contrast, we found no c-Fos-positive cells in the rNTS 
(terminal of the tongue sensory afferent fiber of the 
glossopharyngeal nerve) after intragastric MSG administration. 
As glutamate receptors such as T1R1/T1R3, mGluR4, and 
mGluR1, are expressed on the epithelial mucosa in the stomach 
and intestine (81, 82), MSG can activate gut-brain signaling 
mediated by the vagus nerve that terminates in the iNTS, a part 
of the caudal NTS (cNTS) at the level of the area postrema (52). 
The important role of the vagus nerve in the effect of MSG was 
confirmed by vagotomy, which successfully diminished 
decreasing aggression and modulation of c-Fos activity in the 
iNTS and CeA. The gut-brain interaction in nutrient sensory 
transduction is mediated by two systems: one through an 
electrically excitable cell known as the enteroendocrine cell, and 
the other via an indirect system utilizing slow endocrine action 
of hormones such as CCK. Thus, the brain can perceive gut 
sensory cues through faster neuronal signaling mediated by the 
‘Neuropod Cell,’ which connects the intestinal lumen to the brain 
stem in a single synapse (83). As the sugar stimulus from 
enteroendocrine cells in the intestinal lumen is transduced to 
vagal neurons using glutamate as a neurotransmitter, it raises an 
intriguing question: whether the MSG stimulus is also transmitted 
via Neuropod Cells, and which neurotransmitter facilitates the 
rapid transfer of sensory signals to vagal neurons upon MSG 
ingestion (84).

Interestingly, a bidirectional connection between the caudal 
NTS and the CeA has been reported (51, 54). The presence of CeA 
projection neurons from the cNTS in bregma levels −14.86 to 
−13.60, including at the level of AP (iNTS), has been identified in 
rats, suggesting an ascending efferent system from the cNTS to the 
CeA (53, 54). Consequently, iNTS activation by MSG via the vagus 
nerve potentially influences the activity of various brain regions 
involved in the control of both behavior and physiology (46). 
Moreover, our data showed that vagotomy successfully inhibited 
the effect of MSG in decreasing CeA hyperactivity in PWSI. Under 
normal conditions without inducing aggression (Figures 7A–E), 
our data showed that MSG increased c-Fos-positive cells in both 
the iNTS and CeA. Therefore, one possible pathway for the MSG 

effect based on our data is the projection of neuronal activation 
from the iNTS inhibiting hyperactivity in the CeA, possibly by the 
stimulation of inhibitory neurons in the CeA (46). However, 
we cannot exclude the possibility of indirect mechanisms through 
other areas of the brain associated with aggression, as the cNTS 
establishes a broad network involving multiple brain regions, not 
only the CeA, but also the PBL, PAG, PVH, LC, and BNST (53). A 
previous study showed that the administration of umami-rich 
dried bonito broth reduced aggressiveness, correlating with the 
densities of parvalbumin-immunoreactive neurons in the mPFC, 
amygdala, and hippocampus. This correlation indicates a potential 
indirect mechanism that is not mediated by the vagus nerve (85).

In this study, although MSG ingestion did not completely 
eliminate aggression, the significant decrease in strong aggressive 
behavior shows the possibility for a promising adjunctive therapy 
along with other strategies to manage aggression. It has been reported 
that daily intake of MSG in Europe and United States is 0.3–0.5 g/day 
while in Asia is 1.2–1.7 g/day (86). In this study, the human equivalent 
dose (HED) was estimated from the daily intake per kilogram body 
weight (kgBW/d) of rats, involving allometric scaling by multiplying 
with the Km ratio of 0.162 and adjusting for the high sensitivity of the 
taste receptor T1R1/T1R3 in humans by dividing by 20 (82, 87, 88). 
Based on these data, the MSG daily intake in this experiment is 
estimated to be  equal to 22.55–26.98 mg/kgBW/d in humans 
(Supplementary Figure S1). This estimation is considered safe 
according to the population-acceptable daily intake (ADI) of MSG, 
which is proposed as 32 mg/kg BW/day by the European Food Safety 
Authority (EFSA), and the “No Observed Adverse Effect Level” dose 
is 3,200 mg/kg BW/day (89).

5 Conclusion

This study established improved experimental conditions to 
investigate the detailed brain mechanisms involved in reducing 
aggression induced by MSG. The resident-intruder test was used to 
observe aggressive behavior instead of the social-interaction test, 
and aggression was observed under red dim light during the 
subjective night. A comparison of isolation-induced aggression was 
performed in different rat strains, revealing that the ADHD rat 
model, SHR/Izm, is the most aggressive strain compared to Long-
Evans, WKY/Izm, and SHR/Ezo. Immunostaining of c-Fos in 
aggression-related brain areas indicated that strong c-Fos expression 
in the mPFC, CeA, and LH may be linked to heightened aggression 
in SHR/Izm. Interestingly, the effect of MSG on decreasing 
aggression was confirmed by the resident-intruder test in SHR/Izm, 
possibly related to iNTS activation via the vagus nerve and 
modulation of CeA hyperactivity under conditions of PWSI-induced 
aggression. The effects of MSG on aggression and c-Fos  
expression in the iNTS and CeA were diminished by vagotomy. The 
effects of MSG stimulation on iNTS and CeA were also detected by 
direct single intragastric administration of MSG. The modulation of 
CeA activity is potentially linked to iNTS activation. Therefore,  
the iNTS-CeA projection, whether direct or indirect, could  
be  a key mechanism in the effect of MSG on reducing 
aggressive behavior.
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SUPPLEMENTARY FIGURE 1

Daily intake of MSG in experimental rats and estimation of the human 
equivalent dose of MSG. (A) The volume of drinking consumed by SHR/Izm 
in the MSG group (MSG; n =  12) and control group (dH2O; n =  12) was 
measured during five-week PWSI and MSG administration from P25 until 
P60. (B) Daily intake of MSG in the MSG group was calculated from the 
volume of drinking water containing 60 mM MSG consumed per day. 
(C) Body weight was measured during five-week PWSI and MSG 
administration period from P25 until P60. (D) The dose of MSG administered 
was calculated based on the daily intake of MSG per rat body weight. (E) The 
human equivalent dose (HED) was calculated from the daily intake per 
kilogram body weight of rats, involving allometric scaling by multiplying with 
the Km ratio of 0.162, and the adjusted HED was estimated by dividing 20 
regarding the high sensitivity of the taste receptor T1R1/T1R3 in humans.
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