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Background: Oxidative Balance Score (OBS) is a tool for assessing the oxidative 
stress-related exposures of diet and lifestyle. The study aimed to investigate the 
association between OBS and low muscle mass.

Methods: Overall, 6,307 individuals over the age of 18 were assessed using 
data from the 2011 to 2018 National Health and Nutrition Examination Survey 
(NHANES). Weighted logistic regression and models were used, together with 
adjusted models.

Results: There was a negative relationship between OBS and low muscle mass 
[odds ratio (OR): 0.96, 95% confidence interval (CI): 0.94–0.97, p < 0.0001] using 
the first OBS level as reference. The values (all 95% CI) were 0.745 (0.527–1.054) 
for the second level, 0.650 (0.456–0.927) for the third level, and 0.326 (0.206–
0.514) for the fourth level (P for trend <0.0001). Independent links with low 
muscle mass were found for diet and lifestyle factors. A restricted cubic spline 
model indicated a non-linear association between OBS and low muscle mass 
risk (P for non-linearity<0.05). In addition, the inflection points of the nonlinear 
curves for the relationship between OBS and risk of low muscle mass were 20.

Conclusion: OBS and low muscle mass were found to be significantly negatively 
correlated. By modulating oxidative balance, a healthy lifestyle and antioxidant 
rich diet could be a preventive strategy for low muscle mass.
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1 Introduction

Sarcopenia is a common muscle disease associated with aging and is defined as low levels 
of both muscle mass and strength (1). Sarcopenia is linked with various adverse outcomes 
including increased risks of falls and fractures (2, 3), resulting in reduced mobility and quality 
of life. Associations between sarcopenia and various diseases and disorders have been reported, 
including cardiovascular and respiratory disease, liver cirrhosis, and cognitive impairment 
(4–8). Additionally, sarcopenia patients have higher risks of hospitalization and higher costs 
of hospital care, which impose a heavy economic burden on individuals, healthcare systems, 
and society. Low muscle mass is a major feature of sarcopenia and is also associated with 
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age-related disorders (9). The muscular system is important in 
maintaining human function. Therefore the early prevention or even 
reversal of low muscle mass is essential to prevent the progression of 
sarcopenia and its negative consequences.

Oxidative stress occurs when the balance between oxidants and 
antioxidants is disrupted, which results from the excessive 
accumulation of free radicals such as reactive oxygen species (ROS) 
and reactive nitrogen species (RNS) (10). Oxygen derived free 
radicals and their derivatives are collectively referred to as ROS, 
which have oxidative properties. Although the mechanism of skeletal 
muscle damage has not yet been elucidated, the recent research have 
explained that the increased production of reactive oxygen species 
causes a decrease in myoblasts and trigger muscle atrophy apoptosis 
of muscle cells and may also induce a decrease in muscle 
strength (11).

Evidence indicates that consumption of nutrients such as vitamin 
C (12) and vitamin E (13), can prevent oxidative stress, while 
prooxidants such as smoking (14) and higher iron (15) intake can 
increase ROS levels and induce oxidative stress-related cell damage. 
As factors influencing the oxidative balance in individuals may 
be  small but significant, possibly involving multiple interactions 
between prooxidant and antioxidants (16), a comprehensive 
assessment of exposure to these factors may more accurately indicate 
the overall oxidative stress burden in individuals.

The Oxidative Balance Score (OBS) is a composite measure of 
oxidative stress-related exposures that assesses the oxidative balance 
of an individual (17). OBS reflects the overall oxidative stress burden 
by determining both pro- and antioxidant factors in the lifestyle and 
diet. Lower OBS values reflect higher exposure to oxidants (18). 
Previous studies have reported associations between OBS and diseases 
linked to inflammation, such as cardiovascular and chronic kidney 
disease, type 2 diabetes, and cancer (19–23). However, there has been 
no previous research on the relationship between OBS and low muscle 
mass. Therefore, based on the National Health and Nutrition Survey 
(NHANES) from 2011 to 2018, we  performed a cross-sectional 
analysis to assess the relationship between diet- and lifestyle-
associated factors in OBS and low muscle mass.

2 Methods

2.1 Data and participants

This research used data from the NHANES conducted between 
2011 and 2018. NHANES is a survey program by the Centers for 
Disease Control and Prevention (CDC) aimed at assessing the health 
and nutritional statuses of individuals in the United States. These were 
assessed in NHANES using stratification, multiple stages, and 
probability clusters. The protocols were approved by the Institutional 
Review Board of the National Center for Health Statistics, with 
participants providing written informed consent.

Individuals <18 years were not included, nor were those with 
missing data. Data on age, sex, race, education information, marital 
status, income, dual-energy x-ray (DXA) absorptiometry, diet, body 
mass index (BMI), blood biochemistry, blood cell counts, physical 
activity, smoking, alcohol consumption, and cotinine were included. 
Finally, 6,307 eligible samples were included in the analysis (Figure 1).

2.2 Assessment of body compositions, 
DXA, and low muscle mass

The measurements included height in cm, weight in kg, and waist 
circumference in cm. Pregnant women and those with positive urine 
test for pregnancy were not included in the study. Additionally, 
individuals weighing over 136 kg or standing taller than 195.6 cm were 
not eligible for DXA scanning.

BMI was determined as weight/height2. DXA scans were 
conducted on participants up to the age of 59 using a Hologic 
Discovery model A densitometer (Hologic, Bedford, MA, 
United States). Skeletal muscle was defined as mass that was neither 
fat nor bone, and appendicular skeletal muscle mass (ASM) was 
determined as the total mass of the lean soft tissue of the extremities. 
Muscle mass was assessed by the ASM index (ASMI) which was 
determined as the total ASM in kg divided by the BMI in kg/m2 (24). 
Low muscle mass was assessed using the ASMI with the cut-off values 
of ASMI <0.512 for women and < 0.789 for men (5).

2.3 Exposure definitions

The OBS was classified into dietary and lifestyle OBS. OBS was 
determined as described (25) by combining 5 prooxidant and 15 
antioxidant exposure factors.

The NHANES assessed nutritional intake using a 24-h dietary 
recall interview. In-person interviews of all participants were 
conducted by individuals trained in dietary assessment. In addition, 
the analysis of lifestyle OBS included factors such as BMI, smoking 
and drinking, and physical activity.

In previous literatures, most OBS used both the population-
dependent and predefined components (26–30). The relationship 
between the outcome variable and OBS can be analyzed using various 
methods based on the study size and OBS distribution. For example, 
by dividing OBS into ordinal categories or by using OBS as a 
continuous variable (31). Regarding to the population-dependent 
components, they were mostly divided into quantiles or tertiles (26, 
27, 32, 33). Consumption of alcohol (predefined components) was 
assessed by the number of alcoholic drinks taken each day over the 
previous year. The categories used were non-drinkers and light 
drinkers, defined as 0–5 g/d for females and 0–30 g/d for males and 
heavy drinkers (≥15 g/d for females and ≥ 30 g/d for males), which 
were allocated 2, 1, and 0 points, respectively (25). All continuous 
score variables were divided into tertiles on the basis of the distribution 
of these variables in the participants. Then, other components were 
divided into three groups by their sex-specific tertiles. For dietary 
antioxidants, the first to third tertile were assigned score of 0–2, while 
prooxidants were given scores of 0 for the top tertile and 2 for the 
bottom tertile, as summarized in Table 1. We chose plasma cotinine, 
the main metabolite of nicotine, for quantitative exposure assessment 
studies. This was used as cotinine not only has a longer half-life than 
nicotine in the blood but can also assess “passive smoking,” i.e., 
exposure to environmental tobacco smoke (ETS). Physical activity was 
assessed by the metabolic equivalent task (MET), using the formula: 
physical activity (met·min/week) = recommended MET × exercise 
time for corresponding activities (min/day) × the number of exercise 
days per week (day) (34).
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In summary, the overall OBS was determined by summing the 
points for the individual components, with higher OBS values 
indicating higher antioxidant levels and low pro-oxidant levels.

The OBS had combined the contributions of both diet and 
lifestyle. To study whether diet or lifestyle factors would have a 
significant impact on the association between OBS and low muscle 
mass, respectively, we calculated a dietary OBS by excluding four 
lifestyle variables: BMI, cotinine, alcohol consumption, and physical 
activity from the OBS measures that have been described above and 
calculated a lifestyle OBS that only included these four 
variables OBS.

2.4 Covariates

The demographic variables assessed were age (years), race (Black/
White/other race), sex (female/male), marital status (widowed/
married/never married/divorced or separated), educational level (high 
school or above and below high school), and the family income to 
poverty ratio (PIR) (0–1.0, ≥1 to 2.0, ≥2.0 to 4.0, and ≥ 4.0) (The 
higher the ratio, the more affluent). Hypertension, diabetes mellitus 
(DM) and cerebrovascular disease (CVD), asthma, chronic obstructive 
pulmonary disease (COPD), and chronic kidney disease (CKD) were 
self-reported after diagnosis by physicians. Hypertension was recorded 
if the participant was taking antihypertensives or had systolic blood 
pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg. Based 
on previous literatures, variables such as glycated hemoglobin A1c 
(HbA1c), alanine aminotransferase (ALT), aspartate aminotransferase 
(AST), lymphocytes, neutrophils, hemoglobin, and platelets could 
be  confounding factors, so they were also included in the model 
(35–39).

2.5 Statistical analyses

All data were analyzed using the nhanesR package with the 
NHANES complex weighted sampling design. Treating OBS as 
continuous in logistic regression may lead to weak odds ratios (OR), 
we divided participants into four groups based on their total OBS 
scores and the OBS was converted to a categorical variable by quartile 
and computed p for trend (17, 40) (Q1 ≤ 14; 14 < Q2 ≤ 20; 20 < Q3 ≤ 26; 
Q4 > 26). Weighted chi-squared tests and linear regression models 
were used for inter-group comparisons and analysis of variables, 
categorical and continuous, respectively. Associations between OBS 
and low muscle mass were assessed by multiple logistic regression 
models, using unadjusted (Model 1) and age- and sex-adjusted (Model 
2) models, as well as Model 3 which was constructed using age, marital 
status, race, gender, DM, hypertension, CVD, CKD, COPD, asthma, 
educational status, creatinine, HbA1c, ALT, AST, lymphocytes, 
neutrophils, hemoglobin, platelets, and PIR. We investigated whether 
the shape of the relationship between OBS and low muscle mass was 
non-linear using the restricted cubic spline regression model, and 
OBS was included in the model as a continuous variable. Finally, 
stratified and sensitivity analyses were performed to test the 
consistency of the findings across subgroups and the stability of the 
results. p-values less than 0.05 were considered statistically significant.

3 Results

3.1 Participant characteristics

The baseline features of the 6,307 participants are shown in 
Table 2. All participants were Americans aged 20–59 years (average, 

FIGURE 1

Flowchart portraying the sample selection.
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39.33 ± 0.35) and included 2,434 (38.59%) White and 3,197 (50.69%) 
male participants.

Table 2 provides the weighted characteristics of the participants 
according to the OBS quartiles (Q1 ≤ 14; 14 < Q2 ≤ 20; 20 < Q3 ≤ 26; 
Q4 > 26). Significant differences in confounders were observed 
between the different quartiles with participants in the top quartile 
more likely to be married and to have high PIR. The frequencies of low 
muscle mass, hypertension, diabetes, CKD, and COPD tended to 
increase with reduced OBS. Furthermore, in terms of OBS, individuals 
in the top quartile (Q4 > 26) tended to have higher levels of education.

3.2 Relationship between OBS and low 
muscle mass

As seen in Table 3, in adjusted model 3, higher OBS values were 
linked with a lower risk of lower muscle mass, with an OR of 0.96 
(95% confidence interval [CI] 0.94–0.97, p < 0.0001).

In this model, using the first OBS level as the reference, it was 
found that the OR of the second OBS level was 0.745 (95%CI, 0.527–
1.054), while that of the third OBS level was 0.650 (95%CI, 0.456–
0.927), and that of the fourth OBS level was 0.326 (95%CI, 

0.206–0.514) with P for trend<0.0001. Thus at an OBS value >26, the 
likelihood of low muscle mass was reduced by 67%.

The non-linear relationship between the OBS and risk of low 
muscle mass was assessed using a restricted cubic spline model (P for 
non-linearity <0.05; Figure 2). In addition, the inflection points of the 
nonlinear curves for the relationship between OBS and risk of low 
muscle mass were 20. After the inflection point, OBS was more 
significantly associated with a reduced odd of low muscle mass, 
suggesting that OBS were associated with a more significant reduction 
in odd of low muscle mass after exceeding 20 points.

3.3 Relationship between the dietary/
lifestyle OBS and low muscle mass

The OBS was classified into dietary- and lifestyle-associated OBS 
for further evaluation of the associations between these and low 
muscle mass (Table 4).

Adjusted Model 3 indicated that both dietary- and lifestyle-
associated OBS were negatively linked with low muscle mass (OR: 
0.967; 95% CI: 0.949–0.986; p = 0.001, OR: 0.746; 95% CI: 0.676–0.823; 
p < 0.0001, respectively).

TABLE 1 Components that make up the oxidative balance score.

OBS components Property Male Female

0 1 2 0 1 2

Dietary OBS components

Dietary fiber (g/d) A <13.55 13.55–22 ≥22 <11.45 11.45–18 ≥18

Carotene (RE/d) A <50.708 50.708–171.91 ≥171.91 <55.84 55.84–196 ≥196

Riboflavin (mg/d) A <1.766 1.766–2.63 ≥2.63 <1.378 1.378–1.976 ≥1.976

Niacin (mg/d) A <24.874 24.874–34.812 ≥34.812 <17.095 17.095–24.147 ≥24.147

Vitamin B6 (mg/d) A <1.841 1.841–2.74 ≥2.74 <1.322 1.322–1.962 ≥1.962

Total folate (mcg/d) A <340.667
340.667–

517.833
≥517.833 <260.5 260.5–392.5 ≥392.5

Vitamin B12 (mcg/d) A <3.61 3.61–6.288 ≥6.288 <2.485 2.485–4.335 ≥4.335

Vitamin C (mg/d) A <39.467 39.467–99.467 ≥99.467 <38.317 38.317–87.983 ≥87.983

Vitamin E (ATE) (mg/d) A <6.687 6.687–10.597 ≥10.597 <5.685 5.685–8.79 ≥8.79

Calcium (mg/d) A <799.167 799.167–1,215 ≥11,215 <634 634–956.667 ≥956.667

Magnesium (mg/d) A <270.5 270.5–384.833 ≥384.833 <216 216–297.5 ≥297.5

Zinc (mg/d) A <10.127 10.127–14.69 ≥14.69 <7.282 7.282–10.398 ≥10.398

Copper (mg/d) A <1.044 1.044–1.516 ≥1.516 <0.852 0.852–1.219 ≥1.219

Selenium (mcg/d) A <110.317
110.317–

154.817
≥154.817 <79.017 79.017–112 ≥112

Total fat (g/d) P ≥105.92 73.578–105.92 <73.578 ≥79.18 54.952–79.18 <54.952

Iron (mg/d) P ≥18.407 12.758–18.407 <12.758 ≥13.855 9.608–13.855 <9.608

Lifestyle OBS components

Physical activity (MET-

minute/week)
A <1800 1800–6,480 ≥6,480 <1106.667 1106.667–3,360 ≥3,360

Alcohol (g/d) P ≥30 0–30 None ≥15 0–15 None

Body mass index (kg/m2) P ≥29.8 25.4–29.8 <25.4 ≥31.4 24.9–31.4 <24.9

Cotinine (ng/mL) P ≥0.038 0.022–5.183 <1.13 ≥0.096 0.011–0.096 <0.011

A stood in for the antioxidant, P for the pro-oxidant. RE for the retinal equivalent, ATE for the alpha-tocopherol equivalent, and MET for the metabolic equivalent.
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TABLE 2 Characteristics of the study population based on oxidative balance score quartiles.

Variable Total Q1 Q2 Q3 Q4 p value

Age (years) 39.325(0.352) 38.588(0.423) 39.564(0.441) 39.703(0.536) 39.398(0.494) 0.243

Race/ethnicity, n (%) < 0.0001

Black 1,287(20.406) 494(16.098) 343(11.092) 251(7.238) 199(6.798)

Other 2,586(41.002) 575(22.181) 638(24.420) 740(25.075) 633(25.857)

White 2,434(38.592) 636(61.721) 587(64.488) 674(67.686) 537(67.345)

Education, n (%) < 0.0001

Less than high school 903(14.317) 308(14.086) 240(11.245) 192(7.307) 163(7.484)

High school 1,316(20.866) 460(28.773) 313(21.033) 331(19.445) 212(12.855)

More than high school 4,088(64.817) 937(57.141) 1,015(67.723) 1,142(73.248) 994(79.661)

Sex, n (%) 0.747

Female 3,110(49.31) 847(48.769) 750(47.233) 824(48.742) 689(49.956)

Male 3,197(50.69) 858(51.231) 818(52.767) 841(51.258) 680(50.044)

PIR, n (%) < 0.0001

0–1.0 1,284(20.358) 439(19.989) 307(13.444) 305(11.951) 233(11.158)

1.0 ≤ PIR <2.0 1,528(24.227) 492(24.742) 372(17.969) 372(17.347) 292(15.778)

2.0 ≤ PIR <4.0 1717(27.224) 436(26.973) 444(31.549) 463(30.865) 374(26.437)

≥4.0 1778(28.191) 338(28.296) 445(37.038) 525(39.837) 470(46.627)

Marital status, n (%) < 0.0001

Divorced 571(9.053) 193(11.210) 124(8.210) 148(9.460) 106(7.767)

Living with partner 678(10.75) 191(10.743) 177(11.353) 182(10.647) 128(7.555)

Married 3,107(49.263) 722(45.142) 802(55.532) 830(52.773) 753(60.062)

Never married 1,667(26.431) 497(27.101) 404(21.613) 429(23.893) 337(22.579)

Separated 203(3.219) 72(4.122) 45(2.424) 53(2.243) 33(1.366)

Widowed 81(1.284) 30(1.681) 16(0.868) 23(0.984) 12(0.672)

Low muscle mass, n (%) < 0.0001

No 5,850(92.754) 1,531(91.176) 1,453(93.986) 1,555(94.691) 1,311(97.358)

Yes 457(7.246) 174(8.824) 115(6.014) 110(5.309) 58(2.642)

HbA1c (mmol/L) 5.479(0.015) 5.542(0.028) 5.485(0.029) 5.489(0.024) 5.392(0.024) < 0.001

Alt (IU/L) 25.775(0.292) 25.255(0.622) 27.176(0.763) 25.607(0.546) 25.034(0.545) 0.156

Ast (IU/L) 25.223(0.264) 24.707(0.664) 26.124(0.678) 24.753(0.398) 25.382(0.505) 0.28

Creatinine (mg/dl) 0.862(0.004) 0.876(0.009) 0.874(0.009) 0.847(0.007) 0.851(0.006) 0.026

Lymphocytes (k/μL) 2.198(0.017) 2.271(0.026) 2.238(0.030) 2.148(0.024) 2.137(0.027) < 0.001

Neutrophils (k/μL) 4.268(0.038) 4.535(0.067) 4.257(0.056) 4.179(0.047) 4.104(0.057) < 0.0001

Hemoglobin (g/dl) 14.321(0.033) 14.339(0.061) 14.427(0.051) 14.248(0.044) 14.279(0.043) 0.032

Platelets (k/μL) 240.589(1.250) 245.586(2.184) 238.290(1.816) 242.183(1.993) 235.757(1.866) 0.003

CKD, n (%) 0.001

No 5,786(91.739) 1,533(90.328) 1,435(93.113) 1,548(94.494) 1,270(93.501)

Yes 521(8.261) 172(9.672) 133(6.887) 117(5.506) 99(6.499)

COPD, n (%) 0.005

No 6,193(98.192) 1,652(96.612) 1,551(99.096) 1,638(97.989) 1,352(98.348)

Yes 114(1.808) 53(3.388) 17(0.904) 27(2.011) 17(1.652)

Hypertension, n (%) 0.006

No 4,595(72.856) 1,162(70.702) 1,140(73.962) 1,241(75.759) 1,052(77.463)

Yes 1712(27.144) 543(29.298) 428(26.038) 424(24.241) 317(22.537)

Asthma, n (%) 0.209

No 5,337(84.62) 1,397(83.172) 1,341(85.980) 1,435(85.923) 1,164(83.840)

Yes 970(15.38) 308(16.828) 227(14.020) 230(14.077) 205(16.160)

Diabetes mellitus, n (%) < 0.001

DM 646(10.243) 219(9.983) 176(8.705) 151(7.881) 100(4.660)

IFG 260(4.122) 76(4.052) 70(4.868) 73(4.105) 41(2.481)

IGT 159(2.521) 39(1.807) 48(3.137) 39(1.979) 33(1.680)

No 5,242(83.114) 1,371(84.158) 1,274(83.290) 1,402(86.035) 1,195(91.179)

Cardiovascular disease, n 

(%)

0.055

No 6,108(96.845) 1,628(96.438) 1,518(97.133) 1,621(97.710) 1,341(98.348)

Yes 199(3.155) 77(3.562) 50(2.867) 44(2.290) 28(1.652)

PIR, the ratio of family income to poverty; COPD, chronic obstructive pulmonary disease; CKD, chronic kidney disease; DM, diabetes mellitus; IFG, impaired fasting glucose; IGT, impaired 
glucose tolerance; HbA1c, glycated hemoglobin A1c; ALT, alanine aminotransferase; AST, aspartate aminotransferase. Q1:OBS ≤ 14; Q2:14 < OBS ≤ 20; Q3:20 < OBS ≤ 26; Q4: OBS > 26.
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3.4 Sensitivity analysis

Adjustment of the full model indicated relationships between 
OBS and low muscle mass in terms of PIR (p = 0.022), with higher 
OBS predicted to reduce the risk of low muscle mass in people with 
PIR of 0–1, 1–2, and greater than 4 (OR: 0.954, 95% CI: 

0.925–0.984; OR: 0.965, 95% CI: 0.941–0.991; OR: 0.908, 95% CI: 
0.866–0.953, respectively), while OBS was less likely to influence the 
risk of low muscle mass in individuals with PIR of 2.0–4.0 (OR: 
0.969, 95% CI: 0.937–1.001) (Table 5). OBS and low muscle mass 
were observed to be  significantly associated in people with 
educational levels of high school and above (P for interaction was 

TABLE 4 Association of dietary/lifestyle oxidative balance score (OBS) with low muscle mass.

Dietary OBS OR (95% CI) P-value Lifestyle OBS, OR (95% CI) P-value

Model I 0.960(0.944,0.976) <0.0001 0.695(0.645,0.749) <0.0001

Model II 0.957(0.942,0.973) <0.0001 0.698(0.648,0.752) <0.0001

Model III 0.967(0.949,0.986) 0.001 0.746(0.676,0.823) <0.0001

PIR, the ratio of family income to poverty; COPD, chronic obstructive pulmonary disease; CI, confidence interval; CKD, chronic kidney disease; DM, diabetes mellitus; IFG, impaired fasting 
glucose; IGT, impaired glucose tolerance; HbA1c, glycated hemoglobin A1c; ALT, alanine aminotransferase; AST, aspartate aminotransferase. Model 1: unadjusted. Model 2: adjusted for age 
and gender. Model 3: Adjusted for age, gender, race, marital status, hypertension, DM, CVD, CKD, COPD, asthma, education status, HbA1c, creatinine, ALT, AST, lymphocytes, neutrophils, 
hemoglobin, platelets, and PIR.

TABLE 3 Association of oxidative balance score (OBS) with low muscle mass.

OBS Q1 Q2 Q3 Q4 P for trend

OR (95% CI)

Model I Ref 0.661(0.486,0.899) 0.579(0.434,0.773) 0.280(0.184,0.426) <0.0001

Model II Ref 0.638(0.464,0.877) 0.559(0.419,0.745) 0.273(0.177,0.419) <0.0001

Model III Ref 0.745(0.527,1.054) 0.650(0.456,0.927) 0.326(0.206,0.514) <0.0001

PIR, the ratio of family income to poverty; COPD, chronic obstructive pulmonary disease; CI, confidence interval; CKD, chronic kidney disease; DM, diabetes mellitus; IFG, impaired fasting 
glucose; IGT, impaired glucose tolerance; HbA1c, glycated hemoglobin A1c; ALT, alanine aminotransferase; AST, aspartate aminotransferase. Model 1: unadjusted. Model 2: adjusted for age 
and gender. Model 3: Adjusted for age, gender, race, marital status, hypertension, DM, CVD, CKD, COPD, asthma, education status, HbA1c, creatinine, ALT, AST, lymphocytes, neutrophils, 
hemoglobin, platelets, and PIR. Q1:OBS ≤ 14; Q2:14 < OBS ≤ 20; Q3:20 < OBS ≤ 26; Q4: OBS > 26.

FIGURE 2

Multivariable-adjusted restricted cubic spline curve for the association between oxidative balance score and the risk of low muscle mass. The solid red 
line represents the fitted curve; the light red area represents the confidence interval.

https://doi.org/10.3389/fnut.2024.1358231
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Chen et al. 10.3389/fnut.2024.1358231

Frontiers in Nutrition 07 frontiersin.org

TABLE 5 Association between oxidative balance score and low muscle mass in subgroups.

Variable Adjust OR (95% CI) P P for interaction

Age (years) 0.394

<40 0.964(0.935, 0.993) 0.016

≥40 0.951(0.927, 0.976) <0.001

Race/ethnicity 0.072

Black 0.903(0.846, 0.964) 0.004

Other 0.961(0.936, 0.986) 0.003

White 0.949(0.925,0.975) <0.001

Education 0.018

Less than high school 0.968(0.930, 1.008) 0.110

High school 0.970(0.941, 0.999) 0.044

More than high school 0.939(0.913, 0.967) <0.0001

Sex 0.893

Female 0.953(0.924,0.983) 0.003

Male 0.960(0.940, 0.980) <0.001

PIR 0.022

0–1.0 0.954(0.925, 0.984) 0.004

1.0 ≤ PIR <2.0 0.965(0.941,0.991) 0.009

2.0 ≤ PIR <4.0 0.969(0.937, 1.001) 0.060

≥4.0 0.908(0.866, 0.953) <0.001

Marital status, n (%) 0.303

Divorced 0.986(0.940, 1.033) 0.532

Living with partner 0.963(0.920, 1.009) 0.111

Married 0.950(0.926, 0.976) <0.001

Never married 0.927(0.890, 0.965) <0.001

Separated 0.941(0.877, 1.009) 0.084

Widowed 0.998(0.834,1.194) 0.983

CKD 0.843

No 0.955(0.937,0.972) <0.0001

Yes 0.959(0.910, 1.010) 0.109

COPD 0.119

No 0.959(0.942,0.976) <0.0001

Yes 0.754 (0.601,0.946) 0.018

Hypertension 0.105

No 0.967(0.946, 0.987) 0.002

Yes 0.939(0.912, 0.966) <0.0001

Asthma 0.186

No 0.960(0.943, 0.977) <0.0001

Yes 0.938(0.888, 0.990) 0.021

Diabetes mellitus 0.639

No 0.952(0.934,0.972) <0.0001

IGT 0.856 (0.672,1.090) 0.176

DM 0.966(0.916, 1.018) 0.188

IFG 0.974(0.902, 1.052) 0.484

Cardiovascular disease 0.123

No 0.960(0.942,0.979) <0.001

Yes 0.840(0.754, 0.935) 0.004

PIR, the ratio of family income to poverty; COPD, chronic obstructive pulmonary disease; CI, confidence interval; CKD, chronic kidney disease; DM, diabetes mellitus; IFG, impaired fasting 
glucose; IGT, impaired glucose tolerance; HbA1c, glycated hemoglobin A1c; ALT, alanine aminotransferase; AST, aspartate aminotransferase. Adjusted for age, gender, race, marital status, 
hypertension, DM, CVD, CKD, COPD, asthma, education status, HbA1c, creatinine, ALT, AST, lymphocytes, neutrophils, hemoglobin, platelets, and PIR.
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0.018) (OR: 0.970, 95% CI: 0.941–0.999; OR: 0.939, 95% CI: 0.913–
0.967, respectively), but less associated in those with educational 
levels below high school. The remaining subgroups showed no 
significant associations (p > 0.05).

4 Discussion

This cross-sectional study used NHANES data from 2011 to 
2018, resulting in the enrollment of 6,307 individuals meeting the 
inclusion criteria. OBS was used to represent the degree of 
oxidative stress and investigated the link between OBS and low 
muscle mass. The univariate logistic regression model indicated a 
negative association between the two. Following adjustment of 
confounders, it was still found that OBS was independently linked 
with the increased odds of low muscle mass. The maximum level 
of OBS was found to be 36 and did not increase indefinitely. Over 
the range of 0–36, higher OBS values reflected lower odds of low 
muscle mass. In addition, dietary and lifestyle components were 
associated with low muscle mass independently. Our results 
demonstrate the value of antioxidant-rich diets and lifestyles in 
improving muscle mass.

The findings on OBS and low muscle mass are reliable and similar 
to earlier investigations. The presence of oxidative stress is a possible 
reason for the link between OBS and low muscle mass, leading to 
disrupted oxidative homeostasis in the body with the production of 
excess ROS and RNS. ROS accumulation may induce atrophy of 
skeletal muscles possibly exacerbated by oxidative stress associated 
with chronic diseases. As shown by Zhang et al., conditions such as 
aging, obesity, and cancer can increase ROS generation in muscles 
(41), potentially inducing oxidative damage and the disruption of 
mitochondrial functioning. This can lead to reduced ATP generation 
and protein synthesis, as well as protein degradation, contributing to 
reduced muscle mass and dysfunction (42, 43). In the dietary OBS 
section, higher OBS scores often mean more intake of antioxidant 
components. Many dietary components of OBS have been believed to 
inhibit oxidative stress and contribute to the management of 
sarcopenia (44). Both vitamin C and vitamin E can function as ROS 
scavengers and can thus mitigate oxidative stress. Vitamin E is known 
to promote the repair of membrane injury in skeletal muscle cells (45). 
A study showed that increased vitamin E intake enhanced muscle 
mass (46) while other studies indicated that vitamin C supplementation 
reduced oxidative stress, and that increased dietary intake of the 
vitamin C alleviated muscle loss in younger women (47, 48). Besides, 
in skeletal muscle physiology, vitamin C helps with carnitine and 
collagen production and has a positive association with muscle (49). 
It is reported that sarcopenia patients tend to have reduced intake of 
minerals such as calcium, selenium, and magnesium relative to 
healthy individuals (50). However, some research also suggested that 
certain antioxidant supplements like vitamin E and C might impair 
adaptations to resistance training (51, 52). Therefore, special caution 
should be taken with these supplements during endurance training. 
Nonetheless, the effects of antioxidants on muscle mass/strength 
might also depend on the individual’s oxidative stress/antioxidant 
balance (53).

The link between lifestyle and low muscle mass has been 
demonstrated. Multiple studies have shown that smoking is a risk 
factor for skeletal muscle dysfunction (54, 55). Smoking causes 

skeletal muscle dysfunction by reducing oxygen delivery to the 
mitochondria, which can lead to chronic muscle atrophy and 
sarcopenia (56). In addition, alcohol can also increase the incidence 
of low hand grip strength (57). Alcohol consumption may disrupt 
protein metabolism in skeletal muscles and response to anabolic 
stimuli by reducing overall protein synthesis (58). Additionally, 
exercise can help reduce mitochondrial damage caused by aging by 
inhibiting oxidative stress, DNA damage, and apoptosis in 
mitochondria (59).

Consideration of a single factor only may be insufficient to explain 
its antioxidant effect. As a comprehensive indicator of oxidative/
antioxidant balance, the OBS may provide a better reflection of the 
overall state of oxidative stress than any individual factors 
considered alone.

We then further investigated the nonlinear relationship between 
OBS and odd of low muscle mass and found that there was the 
J-shaped relationship between OBS and odd of low muscle mass. The 
inflection points for OBS were 20 points. Before the inflection point, 
increasing OBS hardly affected the odd of low muscle mass, but after 
the inflection point, increasing OBS would have a greater impact on 
the odd of low muscle mass. This may be due to: After reaching this 
balance point, the antioxidant capacity exceeded its oxidation capacity 
in the individual oxidation balance system (30, 60). Earlier 
investigations have reported significant links between socioeconomic 
status (including educational levels and income) and sarcopenia (61). 
The current research findings are consistent with this. It was found 
that the participants with higher OBS tended to have higher PIR and 
education. Usually, a higher level of education often leads to more 
employment opportunities and higher income and contributes to 
healthier lifestyles and behaviors. Educational level was found to be a 
factor in translating nutritional knowledge into improved dietary 
habits, as indicated by a study on diet quality in the United States (62). 
Participants with higher levels of education tended to consume more 
fruit, vegetables, and whole grains, while controlling their intake of 
solid fats, alcohol, and added sugar (63).

The study had several limitations. First, due to its cross-sectional 
design, it is possible that there may have been additional confounders; 
furthermore, causal associations could not be determined. Second, the 
use of self-reported recall in the NHANES data may have introduced 
both recall and reporting bias. Lastly, while the correlation found 
between muscle mass and OBS is significant, it is not very substantial. 
This is likely due to the population being used. DXA scans were only 
used to assess participants aged between 8 and 59 years and thus the 
study did not include older participants. Because loss of muscle mass 
usually starts in 4th decade of life and the average age of participants 
was 39 years old in our research (64), the low muscle mass in elderly 
people is more than in young people. This affects the generalization of 
the results and introduces selection bias. Prospective cohort studies 
and studies involving older adults are thus needed in the future.

5 Conclusion

It was found that OBS and low muscle mass were significantly 
negatively correlated. Nevertheless, further randomized controlled 
trials are needed to assess the causal connection. These findings may 
be useful for the stratification of low muscle mass risk in the general 
population, allowing timely interventions.
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