
Frontiers in Nutrition 01 frontiersin.org

Longitudinal gut microbial signals 
are associated with weight loss: 
insights from a digital 
therapeutics program
Shreyas V. Kumbhare 1†, Inti Pedroso 1†, Bharat Joshi 1, 
Karthik M. Muthukumar 1, Santosh K. Saravanan 1, 
Carmel Irudayanathan 1, Gursimran S. Kochhar 2, 
Parambir S. Dulai 3, Ranjan Sinha 1 and Daniel E. Almonacid 1*
1 Digbi Health, Mountain View, CA, United States, 2 Division of Gastroenterology, Hepatology and 
Nutrition, Allegheny Health Network, Pittsburgh, PA, United States, 3 Division of Gastroenterology, 
Northwestern University, Chicago, IL, United States

Introduction: The gut microbiome’s influence on weight management has 
gained significant interest for its potential to support better obesity therapeutics. 
Patient stratification leading to personalized nutritional intervention has shown 
benefits over one-size-fit-all diets. However, the efficacy and impact on the gut’s 
microbiome of personalizing weight loss diets based on individual factors remains 
under-investigated.

Methods: This study assessed the impact of Digbi Health’s personalized dietary 
and lifestyle program on weight loss and the gut microbiome end-points in 103 
individuals. Participants’ weight loss patterns and gut microbiome profiles were 
analyzed from baseline to follow-up samples.

Results: Specific microbial genera, functional pathways, and communities 
associated with BMI changes and the program’s effectiveness were identified. 80% 
of participants achieved weight loss. Analysis of the gut microbiome identified 
genera and functional pathways associated with a reduction in BMI, including 
Akkermansia, Christensenella, Oscillospiraceae, Alistipes, and Sutterella, short-
chain fatty acid production, and degradation of simple sugars like arabinose, 
sucrose, and melibiose. Network analysis identified a microbiome community 
associated with BMI, which includes multiple taxa known for associations with 
BMI and obesity.

Discussion: The personalized dietary and lifestyle program positively impacted the 
gut microbiome and demonstrated significant associations between gut microbial 
changes and weight loss. These findings support the use of the gut microbiome 
as an endpoint in weight loss interventions, highlighting potential microbiome 
biomarkers for further research.
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Introduction

Obesity and related comorbidities, such as heart disease, type 2 diabetes, and certain 
cancers are a significant public health burden, leading to rising costs for healthcare systems. 
Despite continuous efforts in developing weight-loss strategies and public health campaigns, 
most interventions fail at a population level to achieve effective long-term weight management. 

OPEN ACCESS

EDITED BY

Christophe Lacroix,  
ETH Zürich, Switzerland

REVIEWED BY

Kaijian Hou,  
Shantou University, China
Javad Barouei,  
Prairie View A&M University, United States

*CORRESPONDENCE

Daniel E. Almonacid  
 almonacid@digbihealth.com

†These authors have contributed equally to 
this work

RECEIVED 29 December 2023
ACCEPTED 24 June 2024
PUBLISHED 08 July 2024

CITATION

Kumbhare SV, Pedroso I, Joshi B, 
Muthukumar KM, Saravanan SK, 
Irudayanathan C, Kochhar GS, Dulai PS, 
Sinha R and Almonacid DE (2024) 
Longitudinal gut microbial signals are 
associated with weight loss: insights from a 
digital therapeutics program.
Front. Nutr. 11:1363079.
doi: 10.3389/fnut.2024.1363079

COPYRIGHT

© 2024 Kumbhare, Pedroso, Joshi, 
Muthukumar, Saravanan, Irudayanathan, 
Kochhar, Dulai, Sinha and Almonacid. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 08 July 2024
DOI 10.3389/fnut.2024.1363079

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2024.1363079&domain=pdf&date_stamp=2024-07-08
https://www.frontiersin.org/articles/10.3389/fnut.2024.1363079/full
https://www.frontiersin.org/articles/10.3389/fnut.2024.1363079/full
https://www.frontiersin.org/articles/10.3389/fnut.2024.1363079/full
https://www.frontiersin.org/articles/10.3389/fnut.2024.1363079/full
mailto:almonacid@digbihealth.com
https://doi.org/10.3389/fnut.2024.1363079
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2024.1363079


Kumbhare et al. 10.3389/fnut.2024.1363079

Frontiers in Nutrition 02 frontiersin.org

Obesity is a complex disorder with a multifaceted etiology influenced 
by a complex interplay of genetic, environmental, and lifestyle factors. 
While genetics lay the groundwork for susceptibility, environmental 
influences, particularly diet and physical activity, and epigenetic 
modifications play pivotal roles in the manifestation of obesity (1, 2). 
Over the past decade, research has unveiled the critical role of the gut 
microbiome in the development of obesity and its contribution to the 
reversal of metabolic disorders in general (3–6), placing the gut 
microbiome at the center of new strategies to prevent, treat and 
reverse obesity.

The human gut microbiome is a complex and dynamic community 
of microorganisms essential for maintaining human health (7), and it 
is influenced by various factors, including diet and lifestyle (8, 9). The 
human gut microbiome plays a critical role in the metabolism of 
nutrients and other substances and can produce a wide range of 
beneficial and harmful metabolites (10). For example, gut bacteria can 
ferment dietary fibers that are indigestible by human enzymes, 
producing short-chain fatty acids (SCFAs) that serve as an energy 
source for the gut lining cells and can also influence overall body 
metabolism (10). Conversely, certain animal-food rich diets are 
associated with the production of trimethylamine (TMA). TMA is 
subsequently converted into trimethylamine N-oxide (TMAO) by the 
liver, and elevated levels of TMAO in the bloodstream have been 
linked to an increased risk of cardiovascular disease (11, 12). Changes 
in the taxonomic composition of the gut microbiome can therefore 
affect the balance of microbial metabolic pathways, leading to changes 
in the types and amounts of metabolites produced, with important 
implications for human health.

In recent years, there has been increasing interest in studying the 
longitudinal changes in the gut microbiome over time as a response 
to different interventions and their relationship to various health 
outcomes, including body mass index (BMI) (13). Research studies 
have shown that different diets can modulate the gut microbiome in 
individuals with obesity (14, 15). For example, a high-fat diet may 
increase the abundance of certain bacteria associated with obesity. In 
contrast, a low-fat diet may increase the abundance of bacteria 
associated with leanness (5, 16). A few reports have shown differences 
in the gut microbiome taxonomic composition, diversity, and 
metabolic pathways encoded in individuals with different BMIs (13, 
17, 18), and that different dietary patterns result in distinct patterns of 
microbial taxa (8). Understanding the intricate association between 
diet and the gut microbiome is therefore crucial to deciphering the 
mechanisms underlying the development of various disease 
conditions. Although it is evident from studies that dietary 
interventions, such as changing the types and amounts of food that 
are consumed, are associated with the composition and function of 
the gut microbiome, it is not well understood how these differences 
evolve over time (13).

Recent advances in gut microbiome research have provided 
insights into the associations between dietary components, gut 
microbiome composition, and weight regulation allowing for the 
development of dietary interventions targeting the gut microbiome to 
achieve effective weight loss (17, 19, 20). A growing body of research 
explores the impact of dietary interventions on obesity, type 2 diabetes 
(T2D), and non-alcoholic fatty liver disease (NAFLD). These studies 
encompass various dietary approaches, including interventions 
enriched with sardines (21), specific fat types (22), or traditional foods 
like yogurt (23). Notably, Balfegó et al. (2016) investigated a T2D diet 

supplemented with sardines, observing decreased Firmicutes and 
increased E. coli in both disease and control groups, although only the 
control group saw a significant HbA1c reduction (21). This suggests 
that specific dietary components, like sardines in this case, may not 
universally translate to improved glycemic control. Other dietary 
interventions targeting gut microbiota have also been explored. For 
example, Huang et al. found that an Okinawan-based Nordic diet did 
not alter Enterobacteriaceae abundance, microbial diversity, or SCFAs 
(24). Frost et al. employed a 3-phase weight loss program, achieving 
weight loss and improved glycemic control in all participants (25). 
Prior studies often involved smaller cohorts and, crucially, standardized 
interventions across individuals. Digbi Health has developed a digital 
therapeutics program based on the participants’ multi-omic signals 
(genetics and gut microbiome), self-reported data, and data from 
wearable devices. The outcomes of the weight loss program in different 
cohorts of individuals have been recently published, demonstrating its 
applicability not only in weight loss (26), but also in reducing fasting 
blood glucose and HbA1c levels (27), improving mental health 
symptoms (28), and functional gastrointestinal disorders (29).

In this study, we aimed to investigate the effects of Digbi Health’s 
personalized dietary and lifestyle weight loss program on the gut 
microbiome composition over time and its relationship to BMI. To 
understand the impact of this program on the gut microbiome, 
we performed longitudinal microbiome sampling at the beginning 
and approximately at 6 months follow-up. Our analyses identified 
changes over time in the abundances of microbial taxa and their 
encoded metabolic pathways, alpha and beta diversity, and the 
structure of microbial co-abundance networks in response to the 
weight loss program.

Methods

Cohort enrollment and inclusion criteria

The study subjects enrolled in the Digbi Health personalized care 
program for weight loss, which is a commercially available product 
known as Digbi Control™, are all 18 years of age and above, located in 
the United States at the time of the study (between August 2019 to 
November 2021), and have access to this health program as part of 
their employers’ benefits system. For this retrospective observational 
study, the inclusion criteria were: 18 years and older (mandatory), and 
BMI ≥ 30, or BMI between 25 and 30 with a cardiometabolic 
comorbidity, or diagnosed with prediabetes or Type 2 Diabetes, 
NAFLD, pancreatitis. Only subjects with gut microbiome data at 
two-time points were included. The exclusion criteria was subjects 
with antibiotics consumption (self-reported) at the enrollment date. 
Research associated with this weight loss program has been reviewed 
and approved by the Institutional Review Board of E&I Review 
Services (protocol code #18053 on 05/22/2018). All subjects considered 
for the present manuscript provided their research informed consent 
electronically as part of their written informed consent form.

Digital therapeutics weight loss program

The primary objective of the Digbi Health intervention program 
is to assist participants in achieving weight loss while addressing 
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weight-related inflammatory disorders and associated comorbidities 
affecting multiple bodily systems. Digbi Health is an innovative digital 
therapeutics platform that leverages artificial intelligence (AI) models 
within a scientific framework. This framework encompasses genetic 
and gut microbiome profiling, baseline participant information, and 
a comprehensive health monitoring system through an app. Upon 
enrollment, program participants were provided with online login 
access to the Digbi Health app and were asked to complete a health 
questionnaire. A Bluetooth-compatible digital weighing scale, and 
buccal swab and stool sampling kits were shipped to all participants. 
The app was used to track subjects’ weight, assess dietary intake (via 
uploaded photographs of food items consumed), and track wellness 
and lifestyle-associated metrics such as sleep quality and quantity, 
exercise type and duration, stress and meditation, energy levels, 
cravings, and recommended foods consumed/avoided. Dietary intake 
was assessed by coaches who assigned a nutrient density score to 
meals based on their inflammatory, fiber diversity, and expected 
insulin response. The results of the analysis of genetic and gut 
microbiome profiles were evaluated by a health coach. Genetic 
profiling helps assess predisposition to diseases like obesity, chronic 
gastrointestinal disorders, cardiometabolic conditions, behavioral and 
mental health traits, as well as food allergies and intolerances. Digbi 
Health utilizes gut microbiome data to identify taxonomic and 
functional markers of health, such as anti-inflammatory compounds, 
beneficial keystone species, metabolic pathways, and food tolerances. 
This enables an evaluation of how different foods may impact the gut 
microbial community, supporting personalized food 
recommendations for weight loss and improved overall health. The 
multi-omics data, derived from genetic makeup and gut microbiome 
at multiple time points, informs the identification of diagnostic and 
therapeutic indicators. These indicators are then integrated with an 
individual’s lifestyle choices and demographic information to develop 
personalized dietary and lifestyle plans based on their unique multi-
omics data.

Program participants were guided to make appropriate food 
choices based on their food preferences, lifestyle (what time of the day 
they eat, where they eat, whether they are cooking for themselves or 
the whole family, etc), food allergies or intolerances self-reported or 
detected through genetic testing (e.g., lactose intolerance), specific 
gastrointestinal symptoms (bloating, constipation or diarrhea) or 
other symptoms (e.g., anxiety levels, stress, sleep problems). Program 
participants were provided with recipes and meal plans that match 
their profile. To achieve its goal, the program sought to nudge 
participants toward making incremental lifestyle changes focused on 
reducing sugar consumption and timing meals to optimize insulin 
sensitivity, reducing systemic inflammation by identifying possibly 
inflammatory and anti-inflammatory nutrients, and increasing fiber 
diversity to improve gut health. Most importantly, these behavioral 
changes were implemented with the help of virtual health coaching 
and the app to ensure that these changes are habit-forming, i.e., long-
term sustainable.

Sample collection and processing

Subjects self-collected fecal samples using fecal swabs (Mawi 
Technologies iSWAB Microbiome collection kit, Model no. 
ISWAB-MBF-1200). Sample collection was completed by following 
standardized directions provided to all subjects in an instruction 

manual. DNA extraction was performed using Qiagen MagAttract 
Power Microbiome DNA Kit on an automated liquid handling DNA 
extraction instrument, followed by bacterial 16S rRNA gene V3-V4 
region amplification and sequencing on the Illumina MiSeq platform 
using 2 × 300 bp paired-end sequencing performed at Akesogen 
Laboratories in Atlanta, GA. Sequence reads were demultiplexed, 
denoised, and ASVs generated using DADA2  in QIIME2 version 
2021.4 (30).

Microbiome data analysis

We collected 206 stool swab samples (103 individuals at two-time 
points, T1: Early phase, and T2: Follow-up phase). Initial quality 
control steps included the removal of primers and low-quality bases, 
and removing ASVs classified as non-bacterial sequences, or 
unassigned phyla. Taxa were agglomerated at genus levels, and those 
with low abundance (taxa with <10 reads in at least 10% of samples) 
were excluded, resulting in a reduction of the sparsity of the abundance 
matrix from 99.75 to 37.6% (with an average of 98.3% of read 
retention) and removal of singletons. The abundance matrix was 
rarefied (unless mentioned otherwise) at even depth (n = 61,000 reads 
per sample (minimum reads across the samples) with 500 iterations) 
using QIIME2 (31), resulting in 155 taxa. The abundance of functional 
microbial pathways related to gut and neuroactive metabolites (32) 
was calculated with the q2-picrust2 plugin (v2.4.2) in QIIME2 (33) 
and the Omixer-RPM package (version 0.3.2) (34). All raw abundances 
were centered-log ratio (CLR) transformed unless otherwise specified 
(35). Details of network modules and other statistical analyses are 
provided in the Supplementary material. The microbiome sequence 
data used in this study were submitted to NCBI SRA under Bioproject 
accession number PRJNA907500.

Results

Cohort characteristics

The study consisted of three time points, T0: baseline phase 
(enrollment), T1: early phase, and T2: follow-up phase. Gut 
microbiome samples were collected at T1 and T2. At baseline, the 
cohort comprised 75.7% of females with an average age of 53.55 
(Median 55.0; IQR: 44.5, 63.0). Almost 60% of individuals were 
suffering from FGIDs (at least one self-reported functional 
gastrointestinal disorder: IBS, gassiness, bloating, constipation, 
diarrhea, or dyspepsia), while ~86% had other comorbidities in 
addition to overweight or obese BMIs at baseline. 35% of individuals 
were on prescribed antidepressants or anxiolytics, while 14.6% were 
using recreational drugs at baseline.

Most individuals, approx. 80%, lost weight with an average 
reduction in BMI from T0 to T2 of 2.57 BMI units (p-value<0.001), 
and from T1 to T2 of 1.6 BMI units (p-value<0.001; see Table 1 and 
Figure 1A). From T0 to T2 14.6, 34, and 28.2% of individuals lost 
3–5%, 5–10, and > 10% of body weight, respectively. Furthermore, 
17.5, 31.1, and 14.6% of individuals lost 3–5%, 5–10, and > 10% of 
body weight, respectively, from T1 to T2. Although there was variation 
in the program duration across the cohort until T2, it had no 
significant association with the amount of weight loss (p-value = 0.14, 
Figure 1C). Additionally, we did not observe any significant influence 

https://doi.org/10.3389/fnut.2024.1363079
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Kumbhare et al. 10.3389/fnut.2024.1363079

Frontiers in Nutrition 04 frontiersin.org

of age, gender, BMI at T0, and use of anxiolytics and antidepressants 
at T0, except alcohol consumption at T0 on percentage body weight 
loss (Supplementary Table S1).

Body mass index is associated with alpha 
and beta gut microbial diversity

We used multivariate association methods to evaluate the relative 
contribution of different factors to the interindividual differences in gut 
microbiome profiles. We  identified Age, BMI, Gender, Alcohol 
consumption, Antidepressants, or anxiolytics, and Time Point as 
significantly associated with the overall gut microbial diversity (p-values 
<0.05; see Table  2, Figures  1B,D, Figures  2B–D). Interestingly, the 
magnitude of the effect of BMI was 5.8 times larger than that of Time 
Point, suggesting that from the intervention point of view, the change in 
BMI is the main correlate of microbiome change. It is also noteworthy 
that the interaction between BMI and Time Point was not significant 
(p-value = 0.23), indicating that the overall correlation between the 
microbiome composition and BMI was not significantly different 
between the T1 and T2 samples. Interestingly, there was a significant 
difference in inter-individual variation between the genders (Male vs. 
Female, Betadipser test p-value = 0.01), which reduced at T2 (Figure 2A).

We also tested the influence of these predictors on Shannon’s and 
Simpson’s diversity and identified a significant positive association 
between Age and Shannon’s (p-value = 1.6×10−4) and Simpson’s (p-
value = 2.9×10−2) diversity and a negative association between BMI 
and Shannon’s (p-value = 2.7×10−3) but not with Simpson’s (p-
value = 0.39) diversity (Supplementary Table S2).

Gut microbial genera and pathways are 
associated with weight loss

In total, 36 genera showed a statistically significant association 
with BMI after correcting for multiple testing (FDR < 0.05; 
Supplementary Table S3). Of note, Megasphaera, Acidaminococcus, 
Roseburia, and members of the Lachnocpiraceae family (including 
Lachnoclostridium, Sellimonas, Tyzzerella, and unannotated genera 
Lachnospiraceae UCG-001) were associated with increasing 
BMI. While Desulfovibrio, Solobacterium, Phascolarctobacterium, 
Christensenellaceae R7 group, Alistipes, Clostridia vadinBB60 
group, Akkermansia, and unannotated genera from Oscillospiraceae 
family (including UCG_003 and UCG_005,) were associated with 
lower BMI. We  found that the abundance of 24 pathways was 
significantly associated with BMI (FDR < 0.05; Table  3; 
Supplementary Table S4). These pathways were functionally related, 
and several were associated with particular classes of metabolites, 
including the degradation of simple sugars (carbohydrates) such as 
arabinose (MF0014), sucrose (MF0010), and melibiose (MF0009), 
along with fructan (MF0002) and arabinoxylan, which were 
significantly associated with higher BMI. Biosynthesis of propionate 
(MGB054 and MGB055), a Short Chain Fatty Acid (SCFA), GABA 
(γ-Aminobutyric acid) synthesis (MGB021), putrescine 
degradation (MF0082), mucin degradation (MF0103), and 
degradation of amino acids such as lysine (MF0057) and serine 
(MF0048) were associated with lower BMI. We  also identified 
microbial genera and pathways associated with significant changes 
between T1 vs. T2 which provides evidence of the intervention’s 
ability to modulate the gut microbiome composition (see 
Supplementary Tables S3, S4).

We analyzed the intersection between the genera associated with 
BMI and Time Point (T2 vs. T1) and identified 8 out of the 36 (22%) 
taxa with statistically significant changes in both analyses. 
Interestingly, these 8 taxa had a pattern of association indicating that 
the weight loss program improved their abundance, i.e., negatively 
associated with BMI and increased at T2 or positively associated with 
BMI and decreased at T2. In particular, those negatively associated 
with BMI, Desulfovibrio, Solobacterium, Christensenellaceae R7 
group, Anaerotruncus, Parabacteroides, Oscillospiraceae UCG-002, 
were enriched at time point T2; on the other hand, genera positively 
associated with BMI, Lachnoclostrdium and Roseburia depleted 
substantially at T2 (See Supplementary Figure S2A; 
Supplementary Table S3). We also observed 7 genera with statistically 
significant association with BMI (FDR < 0.05) and marginal evidence 
of changing abundance at T2 (p-value <0.05), including Akkermansia, 
Clostridia vadinBB60 group, Oscillibacter, Oscillospiraceae UCG-005, 
Phascolarctobacterium, Ruminococcus gauvreauii group and 
Unannotated Oscillospiraceae (Family). All of these, except for 
Phascolarctobacterium, had a directional change at T2 indicating the 
intervention improved their abundance (Supplementary Table S3).

TABLE 1 Study cohort and demographic characteristics.

Cohort Characteristic Total, n  =  103

Age Median (IQR) 55.0 (44.5, 63.0)

Gender n (%)

Male 25 (24.3%)

Female 78 (75.7%)

Weight profile (in lbs)

Weight at T0 (Start weight) 199.2 (175.0, 235.0)

Weight at T1 195.5 (170.3, 226.9)

Weight at T2 181.8 (162.2, 215.8)

Change in weight (T1-T2) 8.6 (2.0, 15.9)

Individuals with weight loss (at T2) 82 (79.6%)

BMI kg/m2 (Median, IQR)

BMI at T0 (Start BMI) 32.3 (29.0, 37.4)

BMI at T1 31.8 (28.3, 36.6)

BMI at T2 29.7 (26.9, 34.8)

Change in BMI (T1-T2) 1.4 (0.3, 2.7)

Consume alcohol at T0 n (%) 66 (64.1%)

Weeks in program until T2 (Median, IQR) 26 (21.0, 39.0)

Clinical characteristics

Used recreational drugs at T0 n (%) 15 (14.6%)

FGID at T0 n (%) 61 (59.2%)

Other comorbidities at T0 n (%) 88 (85.4%)

Use of antidepressants or anxiolytics at T0 n 

(%)

36 (35%)

Values are expressed as median (IQR) and percentages of available data. FGID, Functional 
Gastro-Intestinal Disorders; BMI, Body Mass Index; T0, at Baseline (during enrollment); T1, 
Early phase; T2, Follow-up phase.
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Similarly, four pathways were significantly associated with BMI 
and Time Point, including MF0043 (cysteine biosynthesis/
homocysteine degradation), MF0078 (lactaldehyde degradation), 
MF0096 (succinate production), and MGB038 (Inositol degradation), 
and another six reached marginal evidence of changing abundance at 
T2 (p-values <0.05), including melibiose degradation (MF0009), 
arginine degradation V (MF0055), lysine degradation I (MF0057), 
acetate to acetyl-CoA (MF0075), mucin degradation (MF0103), and 
acetate degradation (MGB047). We found that all of these pathways 
changed at T2, indicating that the weight loss program had improved 
their abundance (Supplementary Table S4).

Association of gut microbiome networks 
with BMI

Weighted network analyses identified three network modules as 
the study samples’ overall organizational structure of the gut 
microbiome (See Figure 3A; Table 4). These network modules ranged 
in size between 18 to 24 taxa. We used the module’s eigenvector as a 
summary of the abundance of the taxa of each module and tested its 
statistical association with BMI and the change between T1 to T2. 

Module 1 was associated with BMI with a negative correlation (Sidak 
p-value = 0.013; Figure 3B). Module 1 also showed a change in the 
abundance pattern between T1 and T2 with a positive correlation 
(Sidak p-value = 0.045; Figure  3C). Several genera identified in 
univariate analyses were part of and key drivers of Module 1 variation 
such as the unannotated genus of Oscillospiraceae (Family) including 
Oscillospiraceae UCG-002 and UCG-005, unannotated genus of 
Lachnospiraceae (Family) along with genera of unannotated genus of 
Ruminococcaceae (Family), Anaerovoracaceae Family XIII AD3011 
group, Clostridia Vadin BB60 group, Christensenellaceae R-7 group, 
Clostridia vadinBB60 group, Alistipes, and Roseburia. 
Supplementary Table S5 lists the taxa associated with network 
modules 1 and 2 and their correlation with their module’s eigenvector. 
Supplementary Figure S1 presents the correlation pattern between the 
Module 1 eigenvector and its top three driving genera.

Discussion

Our study analyzed a retrospective cohort of 103 individuals 
from their enrollment (T0) to study the effect of Digbi Health’s 
digital therapeutic obesity management and weight loss program 

FIGURE 1

Weight loss after participating in the program and gut microbial composition. (A) Box-plot of BMI for the individuals at T1 and T2. Measurements of the 
same individual are linked with a line across the two-time points. p-value from Wilcoxon-signed rank test. (B) Box-plot displaying the Shannon diversity 
across different BMI groups. (C) Scatter plot showing the regression analysis of change in BMI (T2-T1) and Weeks in Program (WIP) until T2. 
(D) Principal Coordinate Analysis (PCoA) plot showing the beta diversity of the gut microbes across all individuals based on the Bray–Curtis dissimilarity. 
Ellipses represent 95% confidence regions. PERMANOVA analysis showed significant differences (shift) in overall diversity between two-time points 
(p-value <0.001). PERMANOVA, Permutational Multivariate Analysis of Variance; T1, Early phase; T2, Follow-up phase.
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on their BMI and gut microbiome (measured at T1 and T2) as 
primary endpoints. Our study participants experienced significant 
weight loss, with a mean decrease of 2.6 BMI units from T0 to T2 
and 1.4 BMI units from T1 to T2 (Table 1). This weight loss has 
notable health and economic implications, particularly given that 
a substantial proportion of individuals lost significant percentages 
of their body weight (36). The individual’s demographics or 
lifestyle factors analyzed did not influence the weight loss (or 
gain) achieved between T1 and T2 (Supplementary Table S1). 
This is in line with our previous scientific reports that show 
equitable results of Digbi Health’s weight loss program concerning 
the individual gender and age, among other socio-economic 
factors (28). Overall, we observed a significant improvement in 
the gut microbiome diversity between T1 and T2 and this was 
primarily associated with weight loss (Table  2; 
Supplementary Table S2). Additionally, we  identified gut 
microbiome genera (Supplementary Table S3), bacterial 
functional pathways (Supplementary Table S4), and bacterial 
community networks (Table  4; Supplementary Table S5) 
associated with weight loss.

Consistent with previous studies, our findings show that 
decreasing BMI is associated with increased gut microbial diversity 
(37–40). Notably, the change in beta diversity is significantly more 
influenced by BMI than other factors such as medication intake or 
alcohol consumption, underscoring the pivotal role of BMI in shaping 
gut microbiome diversity (Table 2; Supplementary Table S2).

Our analysis identified significant associations between BMI and 
the abundance of certain genera and microbial pathways. Notably, the 
intervention appears to have beneficially modulated the abundance of 
genera like Christensenella and Oscillospiraceae, which have known 
associations with BMI (41). The observed increase in mucin 
degradation pathways, linked to Akkermansia, aligns with previous 
studies highlighting its role in metabolic health improvement (42).

The association of simple sugar metabolism pathways with higher 
BMI supports the notion that certain gut microbiome compositions 
can enhance energy extraction from food, contributing to obesity (17, 
43). This finding is consistent with previous studies suggesting that the 
microbiome’s efficiency in extracting energy from simple sugars plays 
a role in weight gain (17, 43, 44).

Conversely, propionate synthesis pathways, including 
MGB055 and MGB054, showed a negative association with BMI 
(Table 3). Propionate is a type of SCFA produced by certain types 
of bacteria in the gut. Increased gut propionate levels have been 
linked to reduced inflammation, improved insulin sensitivity, 
and regulation of appetite and body weight maintenance by 
promoting the secretion of Peptide YY (PYY) and Glucagon-like 
peptide-1 (GLP-1) (45, 46). Evidence of more than a decade of 
research has shown that gut microbiome alterations (both at taxa 
and functional levels) are associated with diet-induced obesity 
and are reversible, leading to the suggestion that weight loss 
programs targeting the gut microbiome can be  used to treat 
obesity (3, 8, 47). In this context, the evidence presented in this 
and our previous studies supports this premise. It highlights 
microbial taxa and their functions that may be  targeted to 
improve the gut microbiome composition with concomitant 
positive effects on health outcomes, including obesity, 
cardiovascular health, mental health, and functional 
gastrointestinal disorders (26–29).

Interestingly, the 8 genera associated with BMI, also changed 
their abundance in a pattern consistent with the beneficial effect 
of the weight loss program on the gut microbiome. In particular, 
their abundance was negatively associated with BMI, which 
increased at T2, or their abundance was positively associated with 
BMI and decreased at T2. Further, four pathways, including 
lactaldehyde degradation (MF0078), Inositol degradation 
(MGB038), succinate production (MF0096), and cysteine 
biosynthesis/homocysteine degradation (MF0043) were seen to 
have a similar trend (Supplementary Table S4). These pathways 
are associated with insulin signaling and lipid metabolism, which 
play critical roles in overall metabolic health (48).

The gut microbiome is a dynamic assemblage of ecological 
communities whose components are physically and metabolically 
interacting. We carried out network analyses to identify groups of 
taxa with tightly correlated abundance patterns that may reflect 
the underlying microbial community assembly and are associated 
with human health outcomes (49, 50). Our analyses identified 
three network modules of which Module 1 was significantly 
associated with BMI with a negative correlation (Figure  3B; 
Supplementary Table S5). Reassuringly, several of the genera in 
this module associated with BMI and Time Point with the same 
directions of effect, have been associated with BMI in previous 
studies, including, Roseburia, Butyricicoccus, and Lachnospira, 

TABLE 2 Results from multivariate analysis (PERMANOVA) illustrate an 
association between variables and gut microbial diversity.

Description Df SumOfSqs R2 F Pr(>F)

Gender 1 0.0692 0.01444 3.202 0.00194**

Age 1 0.1146 0.02389 5.2991 0.00194**

Time.point 1 0.0169 0.00352 0.7801 0.00026***

BMI 1 0.0984 0.02051 4.5505 0.04332*

comorbidity_

binary 1 0.0331 0.00689 1.5285 0.18537

FGID_binary 1 0.0295 0.00616 1.3662 0.06771

Antidepressants_

anxiolytics 1 0.0356 0.00743 1.6483 0.01376*

Alcohol 

consumption 1 0.0581 0.01212 2.6879 0.01449*

Recreational_

drugs 1 0.0584 0.01217 2.6994 0.66618

Gender:BMI 1 0.0291 0.00608 1.348 0.89259

Age:BMI 1 0.0487 0.01016 2.254 0.48809

Time point:BMI 1 0.0071 0.00148 0.3281 0.23059

BMI:Alcohol 

consumption 1 0.039 0.00814 1.8058 0.81954

BMI:Recreational 

drugs 1 0.0285 0.00594 1.3185 0.70696

PERMANOVA: Permutational Multivariate Analysis of Variance.
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Christensenellaceae, Alistipes, and Sutterella (51–53) 
(Supplementary Table S3).

These findings provide further evidence that the composition 
of the gut microbiome is associated with BMI (or obesity) and 
that the changes in BMI are reflected in changes in abundance in 
microbial communities (networks), genera, and their functional 
pathways. We  identified several gut microbial components 
(genera, functional pathways, and communities) that significantly 
changed during the intervention period evaluated (T1 to T2) and 
whose changes are in concordance with an intervention-induced 
weight loss. This provides evidence of the longitudinal impact the 
intervention has on the gut microbiome. The gut microbiome 
markers identified, warrant further research and may prove useful 
as biomarkers to assess the response of the gut microbiome to 
dietary interventions, the effect of medications, or individual food 
components aimed at supporting weight loss.

This study has some limitations that are important to note. 
The findings presented here are derived from a weight loss cohort 
and thus may not reflect the relationship between BMI and gut 
microbiome diversity and health in the broader population. This 

was a retrospective observational study that did not collect 
information regarding longitudinal changes in factors that 
influence the microbiome composition, such as disease diagnoses, 
medication changes, stress levels, or measures of environmental, 
social, and work determinants of health which may also explain 
the gut microbiome changes observed. Our study did not include 
a control group, because all enrolled individuals underwent the 
weight loss intervention, and we  cannot rule out that the 
association reported may change in magnitude or direction in 
individuals not undergoing a weight loss program or a different 
dietary intervention. This study employed a two-time point 
design, limiting our ability to capture the dynamic fluctuations of 
the gut microbiome throughout the intervention. Capturing data 
at multiple time points could provide a more nuanced 
understanding of how the microbiome adapts and responds to 
dietary changes. However, it still offers a snapshot of the 
association between dietary changes, gut microbiome and weight 
loss from a real-world dietary intervention. Our associations with 
bacterial functional pathways relied on predicting the abundance 
of the relevant genes and did not directly relate to the activity at 

FIGURE 2

Association of Gender, Age, and BMI with gut microbial diversity. Principal Coordinate Analysis (PCoA) plot showing the beta diversity of the gut 
microbes across all individuals based on the Bray–Curtis dissimilarity. Ellipses in panel (A) represent 95% confidence regions stratified by gender at each 
time point. PERMANOVA analysis showed significant differences (shift) in overall diversity (A) between gender (PERMANOVA: p-value <0.01, Betadisper: 
Homogeneity of Variances test: p-value  =  0.01), (B) with age (PERMANOVA: p-value <0.01), (C) with BMI (PERMANOVA: p-value  =  0.04) and 
(D) between BMI groups (PERMANOVA, p-value  =  0.01, Betadisper: Homogeneity of Variances test: p-value  =  0.78). PERMANOVA: Permutational 
Multivariate Analysis of Variance; T1: Early phase; T2: Follow-up phase.
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the enzymatic or molecular level. There were substantial 
variations in the time elapsed between T0 to T2, and T1 to T2. 
Despite not finding a relationship between these periods and the 
amount of weight loss, we cannot rule out a systematic effect on 
the changes in the microbiome observed. These limitations imply 
that our results may be  affected by ascertainment or collider 
biases that we  cannot effectively control due to this study’s 
observational and retrospective nature. Nonetheless, our findings 
provide new insights into the effects of dietary and lifestyle 
changes on the longitudinal evolution of the gut microbiome and 
its potential involvement in weight loss and warrant consideration 
by the broader scientific community.

In conclusion, this study reinforces the concept of a dynamic 
link between the gut microbiome and body weight. We observed 
significant weight loss accompanied by an improvement in gut 

microbiome diversity following a real-world, 6-month dietary 
intervention. Furthermore, our results suggest specific gut 
microbial communities, genera, and functional pathways are 
associated with weight loss, highlighting the potential for 
microbiome-targeted strategies in obesity treatment. Future 
research with a prospective design and broader participant 
demographics can strengthen these associations and elucidate 
causal relationships between gut microbiota, dietary interventions, 
and weight management. Nonetheless, this study provides 
valuable insights from a real-world setting, offering a snapshot of 
how dietary changes can influence gut microbiome composition 
and contribute to weight loss. These findings pave the way for 
further exploration of personalized dietary interventions that 
manipulate the gut microbiome for weight management and 
overall health promotion.

TABLE 3 Association of gut microbial pathways and BMI.

Module Pathway name Estimate Std. Error t value p-value FDR

Positive association with BMI

MF0043 Cysteine biosynthesis/

homocysteine degradation

0.0205 0.0038 5.4278 2.54E-07 1.61E-05

MF0102 Sulfate reduction 

(dissimilatory)

0.0106 0.0020 5.3322 4.01E-07 8.33E-06

MF0098 Hydrogen metabolism 0.0093 0.0024 3.9016 0.0001 0.0035

MF0001 Arabinoxylan degradation 0.0089 0.0017 5.1680 7.34E-07 1.51E-05

MF0041 Valine degradation I 0.0049 0.0013 3.8299 0.0002 0.0036

MF0078 Lactaldehyde degradation 0.0046 0.0009 5.2245 7.24E-07 9.12E-06

MF0055 Arginine degradation V 0.0046 0.0011 4.0972 6.94E-05 0.0014

MF0009 Melibiose degradation 0.0045 0.0010 4.6754 6.32E-06 0.0001

MF0014 Arabinose degradation 0.0040 0.0011 3.6626 0.0004 0.0069

MF0002 Fructan degradation 0.0036 0.0010 3.5593 0.0005 0.0103

MF0010 Sucrose degradation I 0.0027 0.0007 4.1785 4.97E-05 0.0013

Negative association with BMI

MF0071 Pentose phosphate 

pathway (non-oxidative 

branch)

−0.0012 0.0004 −3.4249 0.0008 0.0360

MF0048 Serine degradation −0.0030 0.0006 −5.3007 4.95E-07 7.70E-06

MF0096 Succinate production −0.0061 0.0018 −3.3307 0.0011 0.0185

MGB054 Propionate synthesis II −0.0073 0.0024 −3.0817 0.0025 0.0387

MF0080 Lactate consumption II −0.0073 0.0024 −3.0817 0.0025 0.0387

MF0103 Mucin degradation −0.0080 0.0020 −4.0253 9.73E-05 0.0020

MGB047 Acetate degradation −0.0083 0.0028 −3.0072 0.0032 0.0493

MF0075 Acetate to acetyl-CoA −0.0083 0.0028 −3.0072 0.0032 0.0493

MGB055 Propionate synthesis III −0.0112 0.0030 −3.7771 2.32E-04 6.64E-03

MF0057 Lysine degradation I −0.0131 0.0030 −4.4138 1.94E-05 0.0008

MGB038 Inositol degradation −0.0138 0.0041 −3.3388 1.07E-03 0.0328

MGB021 GABA synthesis II −0.0277 0.0056 −4.9627 2.26E-06 0.0003

MF0082 Putrescine degradation −0.0277 0.0056 −4.9627 2.26E-06 0.0003
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The datasets presented in this study can be found in online 
repositories. The microbiome sequence data used in this study 

were submitted to NCBI SRA under Bioproject accession number 
PRJNA907500. The names of the repository/repositories and 
accession number(s) can be found in the article/ 
Supplementary material.

FIGURE 3

Association of gut microbial network modules and BMI. (A) The dendrogram presents the correlation among gut microbiome taxa abundance values 
on which each tip of the tree represents a genus, and two genera are close to each other if they have a high signed bicor correlation value. Color 
blocks at the lower part of the figure represent the groups of taxa network modules identified as independent network modules. The relationship 
between colors and numbers is the following: turquoise  =  1, blue  =  2, brown  =  3, and gray  =  0. (B) Correlation between module’s 1 eigenvector and BMI. 
The regression line (blue line and the gray area covers 1 standard deviation around the mean) represents the linear relationship between the two 
variables. (C) box-plot displaying the module’s 1 eigenvector values across T1 and T2.

TABLE 4 Association of gut microbial network modules with BMI and time point.

Module name Module color Estimate Std. Error df t value p-value Sidak p-
value

BMI

ME1 Turquoise −0.0023 0.0008 −2.91 116.00 0.0043 0.0130

ME2 Blue −0.0004 0.0003 −1.38 128.00 0.1690 0.4261

ME3 Brown 0.0006 0.0009 0.68 127.00 0.5000 0.8750

Time point

ME1 Turquoise 0.0163 0.0066 2.47 99.80 0.0153 0.0452

ME2 Blue 0.0044 0.0022 2.00 99.40 0.0479 0.1369

ME3 Brown −0.0048 0.0061 −0.79 100.00 0.4320 0.8167
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