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Specifically formulated ketogenic, 
low carbohydrate, and carnivore 
diets can prevent migraine: a 
perspective
Angela A. Stanton *

Stanton Migraine Protocol Inc., Anaheim, CA, United States

This article presents a hypothesis explaining the cause of migraines, suggesting 
that electrolyte imbalance, specifically a lack of sufficient sodium in the 
extracellular space of sensory neurons, leads to failed action potentials. The author 
argues that migraines are triggered when sodium channels fail to initiate action 
potentials, preventing communication between neurons. The article discusses 
the evolutionary perspective of the migraine brain, stating that migraineurs have 
a hypersensitive brain with more sensory neuronal connections, making them 
more reactive to environmental stimuli and in need of more minerals for the 
increased sensory neuronal communication. Since glucose is often used to 
reduce serum hypernatremia, it follows that a high carbohydrate diet reduces 
sodium availability for use in the brain, causing an electrolyte imbalance. Low 
carbohydrate diets, such as ketogenic, low carb-high fat (LCHF), and carnivore 
(all animal products), can be beneficial for migraineurs by reducing/eliminating 
carbohydrate intake, thereby increasing sodium availability. In support, many 
research papers and some anecdotal evidences are referred to. The article 
concludes by proposing lifestyle modifications, such as dietary changes and 
sodium intake management. These will provide migraineurs with a long-term 
healthy metabolic foundation helping them to maintain strong nutritional 
adherence and with that aiding continued proper neuronal functioning and 
migraine free life.
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1 Introduction

Migraine is one of the top 10 most disabling conditions, leading to much suffering and 
negative lifestyle consequences, including loss of work (1). Current treatments available for 
migraine headaches are not effective; most of them do not work, or if they do, they have very 
serious side effects. Migraine medications aim to reduce or prevent headache symptoms but 
do not stop or prevent the migraine itself. Headache is just one very common but nonessential 
symptom of migraines. There is no scientific consensus on the cause of migraine. Disparate 
research areas are heading in different directions, suggesting various mechanisms. Not only is 
migraine not understood, but some of the medications prescribed for it have unknown 
mechanisms of actions, like Flunarizine (Flumig or Sibelium) (2), Amitriptyline (Elavil) (3), 
Levetiracetam (Keppra) (4) and many others. Migraine is a “black box” condition. Yet 
interestingly these and most other drugs for migraine do tap into the same areas this paper 
covers, only, as the reader will see, they hinder rather than support healthy brain activity.
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That migraine is little understood can be seen by the variety of 
studies that try to define what it is and what it is caused by. Researchers 
usually look to food triggers (5), environmental variables like the 
weather (6), vascular conditions, or hormonal changes (7), and even 
suggest that migraine is predominantly a “woman’s disease” (8) and 
therefore female hormones are often blamed. While the majority of 
migraineurs are female, a large percent of them is menopausal or post-
menopausal and, of course, how do we account for the small but still 
present male and child populations with migraines? And how do 
we account for those females who do not get migraines from their 
hormonal variations? In fact, in the years prior to puberty, migraine 
is more common among boys than girls (9), and colic is suspected to 
be an infant migraine presentation (10). Clearly, while hormones may 
make things worse in migraine, they cannot possibly be the cause of it.

While other suggestions are more general in nature, many of them 
can be  eliminated from further consideration by the available 
evidence. Migraines have also been associated with anxiety and other 
psychiatric disorders (11), vascular disease (disease of the blood 
vessels), cardiovascular disease (disease involving the heart) (12, 13), 
MTHFR gene polymorphism (14), contraceptives (15), stroke (16), 
increased matrix metalloproteinase activity (17), oxidative stress (18, 
19), neuropathy (20), blood-sugar level variations (21), maladaptive 
stress response (22), and metabolic disease (17, 23, 24). And with each 
field so narrowly defined, it is hard, if not impossible, for specialists 
within any one of these fields to look outside and find patterns of 
similarities and differences, so that many areas of research could 
be combined, and conclusions drawn.

Some researchers suggest that migraine is not inside the brain but 
is extracranial, and is associated with arterial dilatation (25). While 
extracranial dilation may or may not be associated with migraine, it 
most certainly is not the cause of it. Imagining studies show changes 
inside the brain right before or during a migraine. Examples are: 
cortical hypoactivity that is characterized by a decreased level of 
neuronal pre-activation excitability (26) or neuronal hyperexcitability 
(27, 28), structural abnormalities of the brain (29), brainstem 
dysfunction (30), white matter abnormalities and/or infarct-like 
lesions and/or volumetric changes in gray and white matter regions 
(29), neurogenic inflammatory responses from CGRP releasing 
trigeminovascular network of neurons (31), abnormal function of 
receptor channels of sensory neurons in some cortical areas that 
stimulate perivascular intracranial nerve fibers (32), structural and 
functional brain alterations (33), occipital cortex hyperexcitability 
(34), neurotransmitter and neuromodulator metabolic abnormalities 
(35), a spreading depression-like neuroelectric event during migraine 
aura (36) and in migraine without aura (37), hsCRP-measured 
cerebral white matter hyperintensities (13), and many more.

A number of research papers on migraine discuss the differences 
between neuronal plasticity and variations in excitatory vs. inhibitory 
behavior of the neurons (38, 39), as well as differences in functional 
connectivity between the brain of migraine sufferers and non-sufferers 
(40), as well as yet unexplained white matter differences (41). Migraine 
and seizure share many of their features. The Epilepsy Foundation 
suggests that those having an epileptic seizure disorder are twice as 
likely to also have migraines. Misdiagnoses are frequent because the 
symptoms are so similar (42, 43). In the case of epileptic seizures, the 
“seizures are generated by hyperexcitable and hypersynchronous 
neuronal firing that leads to the rhythmic recruitment of large 
populations of neurons. A seizure is triggered when a sufficient 

number of neurons synchronously depolarize and generate action 
potentials” (43), and this is quite similar to what happens in migraine, 
only the neurons do not depolarize synchronously but in a wave, 
which is referred to as Cortical Spreading Depression (CSD). 
Although it is still debated whether CSD even exists, and if it does, 
what its role may be (34), here we will emphasize the role of CSD, 
which we believe to be a crucial and characteristic phase of migraine. 
CSD is not exclusive to migraine, it is also part of seizure, brain injury, 
and other conditions (44).

Looking at any of the research areas, none provides a 
comprehensive explanation of how and why what they found occurs, 
and how it generates migraine with or without headache. A 
comprehensive theory must explain the major manifestations of the 
condition, must generalize the phenomena to similar or related 
entities, and must include hypotheses that can be supported, refuted, 
or improved on (45), to explain how and why a migraine starts and 
why it often leads to pain. It is clear that not only is the cause of 
migraine elusive, but also the manifestation of migraine is not 
understood. In addition, although migraine need not have pain 
accompanying it (46), it appears that almost all research is following 
the headache aspect of migraine, which suggests that whatever they 
find could not explain what “migraine” is; they only aim at preventing 
migraine headaches.

With little understanding of what migraine actually is, no wonder 
that good and reliable prevention measures or treatments are not 
available. I found that even the diagnostic practices are questionable. 
For example, migraines always come with prodromes, yet prodromes 
are hard to define or recognize by the migraineurs themselves. An 
experiment, using electroencephalogram, detected prodrome as a 
higher complexity of brain activity in patients who were in the preictal 
phase (prodrome phase) than in patients during the interictal phase 
(the actual migraine) (47). Understanding prodromes and helping 
migraineurs discover when they are in a prodrome phase can help 
them avoid a migraine. Doctors rarely if ever ask if the patient 
experiences prodromes. Ignoring this means that a doctor may 
diagnose some other form of headache, such as cluster, sinus, 
cervicogenic, stress, occipital neuralgia, optic neuritis, or idiopathic 
intracranial hypertension as migraine.

Existing guidelines are not clear and are also ignored or overruled 
by physicians. The International Headache Society is the main 
authority on headache types, and migraine headache is defined by it 
as a unilateral pain (48). Yet in a large percent of the literature and 
online guides—such as Medscape (49) or Merck Manual (50) and 
other scientific literature (51) this definition is not followed and even 
stated that migraine can also be bilateral. There are many other areas 
where confusion exists in the definition of what a migraine headache 
really is. Per the International Headache Society migraine is a primary 
headache, meaning it is not caused by any preexisting condition. 
Nevertheless, much literature informs us (and also reported to me by 
a large number of people) that doctors often diagnose any “big 
headache” as migraine headache, even when it is caused directly by a 
traumatic brain injury or some other health condition (52). There is a 
misdiagnosis crisis of migraines.

Many studies discuss how well epileptic seizures can be lessened 
and or prevented by lifestyle modifications, specifically by the 
ketogenic diet (53–56). Given the similar pathophysiological nature 
of seizure and migraine, the benefits of the ketogenic diet need to 
be examined, not just to see if it works to lessen migraine headache 
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frequency or eliminate migraines completely, but to also give us clues 
as to the cause of migraine. It is likely that if we  can reduce the 
incidence of a condition by a particular treatment, the treatment itself 
can be reverse engineered to shed light on the cause.

As we  have seen, there is no widely accepted, comprehensive 
definition of migraine. One of the confounding factors is that most 
migraineurs have multiple “types” of migraine symptoms. Literature 
separates migraines into “migraine types” based on symptoms and 
assumes that once a person is, for example, a hemiplegic migraineur, 
that person will have all her migraine hemiplegic. Based on the 
numerous cases that I have come across—including my own migraines 
that have contained a number of different migraine types from classic 
aura to scintillating scotoma, to complex migraine (without aura), to 
light hemiplegic (arm tingling and loss of strength, droopy eye)—I can 
firmly state that migraine type based on symptoms is not a stable, life-
long determinant.

While this paper will cover all migraine types, after identifying the 
root cause, it will become clear that all migraine types are just one 
thing: migraine. What makes them appear different is the area of the 
brain being affected. The cause is the same in all migraines, no matter 
what their symptoms and where in the brain they start. Based on the 
brain differences between a migraineur and a non-migraineur, if 
we place them into the same room with a specific light, odor, and 
sound setting, they will sense a completely different environment 
around them. The migraineur will find the light brighter, the sound 
louder, and the odor stronger. What this suggests is that migraineurs 
are not sensitive to bright light, but they see regular light brighter, they 
hear regular sounds louder, and smell regular odors stronger. Their 
brain is more “environment adapted.” As was introduced earlier, this 
was an evolutionary advantage in human ancestral life, but it has 
become a burden in our modern bright, loud, odorous lives full of 
excitatory stimulants that play havoc with a brain brimming with 
sensory neurons that overreact to them.

2 The cause of migraine

I first define the cause based on my hypothesis, and then proceed 
to show why and how it is correct. At the same time, I aim to bring up 
as many opposing arguments to it as I can think of.

2.1 The hypothesis

The cause of migraine is an electrolyte imbalance, specifically, 
not enough sodium in the extracellular space of the sensory neuron 
(s) to initiate action potential. Action potentials spread information 
in the nervous system to connected neurons and propagate 
commands to the periphery. If the action potential fails at any Node 
of Ranvier, the neuron’s communication is stopped, and instructions 
never reach their intended target. The neuron moves back into 
resting state with voltage-gated sodium channels closed. The 
symptoms resulting from blocked or malfunctioning sodium 
channels or insufficient sodium at the channels are: seizures, altered 
mental status, hypotension, prolonged QRS (ventricular 
depolarization in the heart), a terminal R-wave in lead to aVR (57), 
edema, swelling of the brain, coma, death, and I argue that this list 
should also include migraine.

We should ask why the brain would ever be short of sodium to the 
extent that the neurons cannot function as a result of failed action 
potentials. Common causes of hyponatremia are dehydration, 
vomiting, diarrhea, too much fluid consumption (water toxicity), type 
2 diabetes, hyperglycemia, hyperkalemia, malabsorption disorders, 
kidney failure, heart failure, cirrhosis, diuretics, cerebral hemorrhage, 
subarachnoid hemorrhage, Guillain-Barré syndrome, head injury, 
brain tumor, meningitis, certain medications, hypomagnesemia, 
hypocalcemia, vitamin D deficiency, and there are many more (58).

To ensure properly functioning osmolality in the brain the right 
amount of sodium, chloride, and potassium must be  present. At 
equilibrium, extracellular osmolality equals intracellular osmolality, 
and the net movement of water across the cell membrane is zero. 
When the extracellular sodium concentration is reduced, hypo-
osmolality and hypotonicity will ensue as the water flows from the 
extracellular space into the intracellular area. The water movement 
into the neuron causes its swelling. In the brain, even minimal changes 
in the intraneuronal volume (specifically swelling) leads to dramatic 
symptoms due to the lack of space (59). Neuronal adaptation to 
hyponatremia involves movement of electrolytes from inside the cell 
to the extracellular area. Within the first hours of hyponatremia, there 
is a significant decrease in the intracellular content of sodium, 
chloride, and potassium (60, 61). The kinetics of brain electrolytes 
depletion during acute hyponatremia have been studied and 
described. After 3 h of hyponatremia, brain depletion in electrolytes 
reaches a plateau, and the depletion of sodium is believed to 
be primarily from the cerebrospinal fluid, which occurs together with 
intracellular depletion of chloride faster than the intracellular 
depletion of potassium (62). In total, the brain can lose no more than 
18% of its ion content (59). It is expected that by the time the 
mechanisms behind electrolyte loss are exhausted, severe continued 
hyponatremia will inevitably cause significant brain edema. 
Hyponatremic encephalopathy has many very similar symptoms to 
migraine: headache, nausea and vomiting, fatigue, confusion, and loss 
of balance, pointing to similar pathophysiology of the two conditions.

Furthermore, renal sodium wasting is a common feature of 
migraineurs. An early study showed that migraineurs excrete 50% 
more sodium in their urine than non-migraineurs (63). And 
hyponatremia is the most common cause for electrolyte imbalance in 
the brain (64). It is important to elaborate that the brain may suffer a 
hyponatremic event for reasons other than dehydration. Hyponatremia 
may be caused by the foods we eat as well. A study showed that for 
every 100 mg/dL increase in serum glucose concentration, the average 
decrease is serum sodium is 2.4 mEq/L (65), but this reduction in 
serum sodium is not linear. With the ranges of normal sodium levels 
of 135–145 mEq/L, a 2.4 mEq/L drop can easily tilt the person toward 
serious hyponatremia by simply eating lots of carbohydrates (66). In 
fact, mortality rate increases when serum sodium levels drop from 
139 mEq/L to 132 mEq/L (67). Since hyperglycemia is a causal factor 
in hyponatremia, the reduction of hyperglycemia will prevent a 
dangerous drop in serum sodium levels.

Hypernatremia is less likely to occur, and if it does, it is less likely 
to cause any trouble in the brain, because it induces the movement of 
water across cell membranes in the opposite direction from 
hyponatremia (68). Hypernatremia induces hypertonicity and causes 
transient cellular dehydration (69, 70). Sustained hypertonicity 
promotes the accumulation of organic osmolytes (e.g., glutamate, 
taurine, and myo-inositol) and these adaptive changes thereby pull 
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water into the cells and restore the cell volume (71, 72). Therefore, 
chronic hypernatremia is much less likely to provoke 
neurologic symptoms.

At this point it is important to introduce the actual anatomical 
and physiological differences that distinguish the migraine brain from 
the brain of a person without migraines.

2.2 The evolution of the migraine brain

The sensory neurons in the brain of a migraineur have more 
connections (73) than in the brain of those without migraine and 
these connections themselves also differ from the norm (74). Migraine 
brain seems to always be  “on,” as migraineurs have only nominal 
changes in voltage between states of action potential and resting 
potential (75–77). Clearly, the brain of a migraineur is anatomically 
different from the brain of a non-migraineur, and as a result, it has 
been called the hypersensitive brain (78). The sensory neurons in 
mammals evolved during periods of high vulnerability levels, when 
vigilance was a major component of survivability, and the heightened 
sensory sensitivity presented a survival advantage.

Limited studies exist on the evolution of specific sensory networks 
in the brains of mammals (79), and these studies do not compare 
modern humans to other mammals in their native wilderness, where 
predation presents a risk to life, and where heightened sensory organs 
provide fitness for survival. Some studies that compare some of the 
human sensory organs to those of other primates conclude that 
humans have lost some of their ability to smell relative to other 
primates (80). The hypersensitive brain had to be the original standard 
but by now the majority of humans have adapted to a lack of danger 
from predatory animals and to a measure of predictability and safety 
of their environment. A great number of the human population have 
also adapted to city-dwelling and the associated noises, odors, and 
lights with excitation inhibition of their sensory neurons.

Why females and children are more vulnerable can also 
be  explained by the hypothesis. Generally men were the hunters, 
carrying weapons, and the success rate of a predator killing a hunter 
was likely quite low. By contrast, women and children were left behind 
to gather—squatting or bending down without weapons, they are the 
ideal pray for a predator. As a consequence, this group developed and 
retained stronger sensory organ systems, especially for the time of 
their heightened vulnerability. Before puberty, more boys have 
migraines than girls (81). Boys became hunters at or shortly after 
puberty and correspondingly we see most boys losing their migraines 
after puberty (81). In our modern Western civilized world humans 
have no need for keen sensory organs against predators, and so it 
makes sense that such an energy sink would have devolved by 
adapting to a less sensitized human lifestyle with reduced ability 
to sense.

However, a group of people, the migraine sufferers, appear to lack 
this adaptation. Comparison studies of the sensory neurons of the 
sensory organs are lacking, but what we do know is that migraine is 
initiated by odor, light, sound, taste, and touch, suggesting that 
migraineurs form a subpopulation of humans who are not properly 
adapted to modern life full of odors, noise, light, and other potentially 
overstimulating factors. The explanation for this is the lack of proper 
neuronal inhibition that some studies do show (82–84).

It is well understood that the migraine brain responds to 
stimulation differently from the norm; it is easily overstimulated and 
has difficulty dealing with a hyperexcited state (78). Excitation in the 
brain is defined as communication between neurons via 
neurotransmitters, which move through each neuron by electricity 
created in the axon at each Node of Ranvier and rushes through the 
spike train to the axon terminals (85). An average neuron has a Node 
of Ranvier at about every 350 μM (86), and at each one there are 
approximately 700,000 voltage gated sodium channels (87). These 
sodium channels are responsible for the initiation of the electricity by 
generating action potentials, which then can move to the next Node 
of Ranvier by saltatory conduction (88) and all through the axon of 
the neuron to the axon terminals.

Neuronal excitability depends on membrane potential that can 
be  altered by neurotransmitters released at synapses. Membrane 
potential is created by selectively permeable ion channels in the 
membrane. Altering the membrane potential creates a current across 
the membrane. However, every action potential is either excitatory or 
inhibitory. Excitatory currents are those that prompt one neuron to 
share information with the next neuron through an action potential 
that leads to the release of excitatory neurotransmitters, while 
inhibitory currents are action potentials that send inhibitory 
neurotransmitters into the synapse. In addition, the action potential 
itself also differs between excitatory and inhibitory release. Disruption 
of the balance between excitatory and inhibitory inputs is one likely 
cause of diseases marked by bouts of abnormal neural activity (83).

In the case of inhibition, it is an inhibiting neuron that is used for 
activation in order to release GABA, an inhibitory neurotransmitter. 
Its activity reduces the amount of neurotransmitter released into the 
presynaptic area, and with fewer Ca2+ rushing into the neuron, less 
neurotransmitter is released into the target synapse. There is also 
postsynaptic inhibition, where the dendrites of the postsynaptic 
neuron cancel some of the incoming signals, receiving fewer average 
stimulus, too small to start an excitatory state.

Most of the sodium channels in the Nodes of Ranvier are Nav1.6 
sodium channels. These channels are responsible for the generation of 
the action potentials that initiate the electricity that must move 
through the axon to either excite or inhibit. There is a threshold 
number of these sodium channels that must be  met if the action 
potential is to be successfully generated. Presynaptic action potential 
failure prevents transmission to postsynaptic neuron, stopping the 
spike train (89, 90). Since the brain of the migraineur has altered 
sensory neuronal connections and more of them (33, 91) firing in 
what is referred to as hypersynchrony (92) or more commonly in 
migraine as cortical spreading depression (CSD) (93), a lot more 
sodium and ATP is used by the brain of a migraineur than that of a 
brain of an individual without migraines.

Myelin is a cholesterol and fatty acid rich substance that serves as 
a specialized insulation sheath around the axons in the nervous 
system, facilitating axon signal conduction by enabling saltatory 
conduction. Damage to the myelin sheath can inhibit saltatory 
conduction and prevent neuronal transmission. Myelin sheath 
damage is commonly seen on brain MRIs of migraineurs (94, 95). 
“Myelin can decrease the capacitance by a factor of up to 1,000” (39) 
suggesting that damage to the myelin increases the need for charge, 
necessitating a larger number of sodium ions entering through more 
sodium channels.
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Several academic articles refer to migraine as channelopathy (96–
99). Channelopathies are diseases associated with defects in ion 
channels, either genetic or acquired (100). A channelopathy may cause 
an abnormal “gain of function” (such as myokymia (101) and ptosis 
(102), that are commonly missed by practitioners, even though they 
are often associated with migraine), or an abnormal loss of function 
(such as weakness or numbness) depending on whether loss of 
channel function leads to excessive excitability or to lack of excitability 
(103). In the case of migraine, several ionic channels are genetic 
variants, including the sodium-potassium ATPase (Na+/K+/ATPase) 
channel, which is responsible for resetting the membrane potential to 
resting state (104) to rebuild the saltatory conduction. In addition, 
visiting the human genome database (105) and looking at the currently 
discovered genetic variants associated with migraine, in order of 
relevance of the variant to migraine, the first three most relevant 
variants out of 3,866 to date are the ATP1A2 (Na+/K+/ATPase Subunit 
Alpha 2), CACNA1A (Calcium Voltage-Gated Channel Subunit Alpha 
A), and SCN1A (Sodium Voltage-Gated Channel Alpha Subunit 1). 
These are the three main voltage-gated ionic channels whose proper 
functions are most critical to neuronal communication, and which 
are variant.

As noted earlier, an important aspect of migraine is CSD. During 
CSD, a large ionic shift with the redistribution of ions between 
intracellular and extracellular compartments takes place in the 
brain (106) intermixed with a pH shift (107, 108). The ionic shift 
appears to increase the sodium availability, and with the changes in 
cerebral pH a large increase in lactate is seen in the brain (107). The 
neurons in the brain are able to use lactate fed to them by the 
astrocytes instead of glucose. The reason for the increased lactate is 
possibly associated with a sugar crash (reactive hypoglycemia), 
which may follow a carbohydrate meal. Studies show that dietary 
carbohydrates cause fatigue and brain fog as part of reactive 
hypoglycemia (109). These events are described in great detail 
elsewhere (106), but in brief: As cells lose energy resulting from a 
sugar crash and/or hypoxia, voltage-gated pumps that normally 
move ions into and out of the cell fail or operate in reverse. These 
induce a rapid efflux of K+ from intracellular space, causing an 
increase in extracellular K+. The rapid rise in extracellular K+ elicits 
neuronal excitation, followed by excessive depolarization and a 
period of electrical silence during which the potential at the brain 
surface becomes negative. Ca2+ ions flow in as the depolarization 
opens voltage gated Ca2+ channels and extracellular Ca2+ falls to 
abnormally low levels. Na+ and Cl− enter neurons. Water follows 
passively, driven by the influx of Na+ and Cl−, which greatly exceeds 
the efflux of K+. The extracellular space is reduced, and local 
intracellular edema ensues.

In case of migraine brains, because of the hyperexcited state of the 
sensory neurons, more fuel is needed. The amygdala initiates a fight-
or-flight response, sending a message to the adrenal glands to release 
epinephrine (adrenaline), which in turn triggers many functions. One 
of them is the release of glycogen for more energy in order to facilitate 
the extra work and the need for recovery of the brain. The glial cells, 
primarily the astrocytes, store some small amounts of glycogen to 
ensure constant glycogen supply in the brain in order to prevent a 
critical sugar crash for short amounts of time. However, as glucose 
enters a neuron large amount of sodium leaves (110). This causes 
localized extracellular edema and reduction in the intracellular Na+ 
levels, increase in the intracellular K+ levels relative to Na+, closure of 

the voltage-gated sodium channels, and ultimately failed 
action potential.

And this is where we reach the state when migraine starts. To 
visualize the differences in response to the same stimulus by a 
migraineur vs. a non-migraineur, the following schematic 
demonstrates the summary of events. The specific stimulus elicits the 
conditions for a migraine (111), generating unstable excitability (112), 
leading to migraine following the order of events as described above 
(Figure 1).

Furthermore, while all people will experience similar efflux of 
sodium and water from neurons in response to glucose, a sodium 
imbalance will not trigger other conditions with similar frequency or 
with the same symptoms. For example, epileptic seizures may also 
be caused by electrolyte imbalance and reduced sodium availability 
(113), but the symptoms of seizures are very distinct and easy to tell 
from migraine. Other clinical conditions, such as dehydration, renal 
failure, diabetes insipidus, or sodium wasting (63), all can cause 
serious modifications of plasma osmolality and electrolyte imbalance, 
causing alterations in brain metabolism and function (114). The 
driving force behind the extreme sensitivity to these osmolality 
changes in electrolytes in migraines is associated with the anatomic 
differences of the sensory neurons in the brain of migraineurs. 
Migraineurs have excess sensory neuronal connections (73) and that 
means more action potential is needed to work with the incoming 
sensory stimulus.

One may ask about the importance of other electrolytes, such as 
potassium, calcium, or magnesium. How might they connect to 
migraines? Most of the potassium is inside the cells whereas most of 
the sodium is outside of the cells and potassium is not affected by 
glucose entering the cells because potassium is not a glucose 
cotransporter. Potassium levels are modulated by many conditions, 
such as kidney failure, diabetes mellitus, adrenal disease, angiotensin-
converting enzyme inhibitors, angiotensin receptor blockers, and 
potassium-sparing diuretics (115), but these conditions are not 
associated with migraines and so are not discussed in this paper. 
Magnesium does not leave because of glucose entering the cells and 
so does not affect electrolyte osmolality at all. And lastly, while more 
calcium is needed as a result of more neurotransmitter delivery into 
the synapse, calcium is not affected by glucose entering neurons either. 
The only mineral that is actively affected is sodium. Sodium is an 
active glucose cotransporter in the body as well as in the brain, where 
SGLT1 and SGLT3 cotransporters are used.

2.3 The nutrition connection

The availability and variety of nutrition for humans can 
be followed by moving back in the evolutionary timeline. For most of 
human evolution humans mostly consumed animal products if they 
could, with some carbohydrates mixed in as necessity or seasonally 
desirable. For 99% of human history, humans had a hunter-gatherer 
lifestyle (116). It wasn’t until about 12,000–15,000 years ago that the 
diet of some human groups started to include larger amounts of plants 
filled with carbohydrates. In addition, the ancestral human lived 
without loud smelly cities with cars, and flashing lights, and so they 
did not live in a constant hyperexcited sensory state, where electrolyte 
imbalance is highly likely. Consequently, a diet that reduces electrolyte 
imbalance should be beneficial for migraine sufferers.
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The question then becomes, what may a migraine sufferer eat that 
would affect her hypersensitive sensory neuronal brain in a way that 
prevents the development of a migraine? Can a change in lifestyle 
drive a change in migraines? And if so, how does a new way of eating 
prevent migraine and migraine headaches?

2.4 Carbohydrate and migraine

As we have just concluded, the hypersensitive sensory neuronal 
migraine brain possesses a high number of connections, that transmit 
more signals because of the higher number of registered environmental 
excitatory inputs. As a result, the brain of a migraineur has not only 
increased energy requirements in terms of fuel (ATP) but also in 
sodium to operate the increased electrical activity of this hypersensitive 
brain. The brain uses glucose, lactate, and glycogen as its primary fuel 
for about 25% of its energy need, as these are the exclusive fuels for 
astrocytes. While some neurotransmitter generation do require 
glucose, most may be generated by the use of ketones (117).

An interesting phenomenon occurs because of increased glucose 
use by the mitochondria, due specifically to the pyruvate conversion 
process in the form of excess reactive oxygen species (ROS). A study 
showed a metabolic collapse in the hippocampus—the area of the 
increased ROS—resulting in ionic channel malfunction and CSD-like 
depolarization (118), which is precisely what precedes a migraine. 
CSD is not the exclusive property of migraine; many other neurological 
conditions also exhibit it, including mechanical brain damage, 
electrical stimulation, hypo-osmolarity, hyperthermia, chemical 
agents such as potassium, the neurotransmitters glutamate and 
acetylcholine, acute hyperexcitability, sodium pump inhibitors, 
hypoglycemia, hypoxia, ischemia, and it can also be  induced by 
noxious odor challenges (119–122). CSD is a common occurrence and 
seeing it preceding a migraine is not surprising. One may envision 
CSD as a brain-driven self-rescue system to reallocate available 
resources to neurons across the brain. In fact, a study on rats 
concluded that CSD can also be induced by exercise and the CSD 
leads to beneficial effects in cerebrovascular system functions and 
increased cerebrovascular stability (123).

When the brain does not get enough glucose, the neurons will 
switch to ketone use. However, it is seldom discussed if a brain, given 
plentiful glucose and ketones at the same time, would prefer to use 
glucose or ketones? Since glucose is considered to be the prime fuel 
for the brain by most academic literature, the assumption is that as 
long as glucose is provided for the brain, it will use glucose. But this 

is incorrect. A study showed that the brain will preferentially use 
ketones over glucose even when both are present (124), where 
exogenous ketones were supplied to otherwise glucose-rich brains 
that had degenerative diseases caused by glucose metabolism 
difficulties in the brain. This paper suggests that a migraine brain 
seems to have glucose metabolism difficulties. This leads to the 
important point that it is not whether glucose is available or not, but 
rather can the brain metabolize glucose or not? Experiments on rats 
show that ATP is increased when ketones are used by the brain 
(125). This study further suggests that with ketone use by the brain, 
neuronal stability is followed.

Studies on human fetuses while in the mothers’ womb show that 
the fetus’ brain selectively uses ketones, yet clearly the fetus’ brain is 
well endowed with the opportunity to use glucose if it wishes (126, 
127). And babies retain metabolic flexibility for a number of years as 
they come in and out of ketosis based on their feeding schedule (128). 
Clearly, such stability is what the brain could benefit from in the case 
of migraine (and other brain-diseases) as well. And as mentioned 
repeatedly earlier, glucose entering neurons causes an efflux of 
sodium, contrary to the increased requirements, creating instability. 
The logical conclusion is that a reduction of carbohydrate consumption 
and an increase of ketones and sodium in the brain are likely beneficial 
for migraine prevention.

The cascade of events leading to the inability of firing action 
potentials can be  prevented by increased sodium (129–131) and 
reduced carbohydrate consumption. The consumption of 
carbohydrates is not essential because gluconeogenesis by the liver 
provides the necessary glucose to all organs as needed. The primary 
fuel for the body is fat, not glucose (132–135). The primary preferred 
fuel for the brain is ketones, as demonstrated earlier. Diets low in 
carbohydrate, such as the ketogenic, low carb-high fat (LCHF), and 
carnivore diets (136, 137), as well as consumption of appropriately 
higher levels of sodium (130, 138) are beneficial. Studies show that 
fatty acid utilization for fuel in the brain is key for repairing 
neurodegenerative disorders (139). Ketone bodies are an efficient fatty 
acid fuel that can compensate for the deficient glycolytic metabolism 
of the migraine brain (140).

The ketogenic diet has been a much-researched approach in many 
neurological conditions (141, 142) because the brain is very specifically 
adapted to use ketones as fuel instead of glucose (143). Many studies 
have focused on the ketogenic diet especially for epilepsy (144) but 
some studies show its benefits in migraine as well (145). However, 
numerous concerns have been voiced because of the temporary side 
effects of converting from a high carbohydrate diet, where the brain 

FIGURE 1

Migraine Progression.
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and much of the body use glucose as its primary fuel, to the ketogenic 
diet, where the brain’s and some organs’ primary fuel changes to 
ketones. While the brain appears to make the change from glucose to 
ketones quite easily (146), it is not so easy for the body for some 
people. There are two primary issues: the ketogenic diet is restrictive, 
and some people find it difficult to adhere to and there is an adaptation 
period that can cause discomfort for some.

While the ketogenic diet is restrictive, the extreme carbohydrate 
sensitivity of migraineurs gives near immediate feedback about the 
benefits or harms of dietary choices. If the migraineur gets a migraine 
each time a high carbohydrate meal is consumed and remains 
migraine free after a ketogenic, LCHF, or carnivore meal, the 
migraineur will happily accept the new regimen.

Some of the known physiological difficulties are grouped under 
the term “keto flu,” represented by fatigue, headache, and 
gastrointestinal difficulties associated with the body converting to 
ketone use. A similar condition is referred to as “fat adaptation” in 
athletes who restrict carbohydrates in order to train for a competitive 
event a couple of weeks later, because the body using fat for fuel can 
become stronger and important glycogen stores are spared (147). 
The reason for keto flu is debated (148), but most agree that it affects 
a large part of the general population when starting the ketogenic 
diet (149). It is likely associated with the loss of fluids and 
electrolytes, specifically sodium, as insulin drops to lower levels in 
the body quite drastically after the reduction of carbohydrates. With 
high insulin, the kidneys recycle sodium and retain excess water 
correspondingly (150). It is also important to replenish lost 
electrolytes, because the ketogenic diet is a fasting mimicking diet 
(151), and the increased use of glucagon in response to fasting 
reduces both sodium and water (152).

Additionally, keto adaptation is not the same for each person. 
Some people enter the state of ketosis very soon after starting the 
ketogenic diet and without keto flu. Since comprehensive research is 
lacking in this area, we cannot forecast how long such adaptation will 
take and when any benefits of the ketogenic diet can be realized for a 
given candidate. In my limited experience I found that the benefits 
accrue sometimes from as little as a couple of weeks to as much as 
many months, depending on how long the person had migraines, 
what kind of medications were taken, how damaged the metabolic 
health of the individual is, and also the age of the individual.

A critical point is the potential interactions between certain 
medications and the ketogenic diet. For example, Topiramate 
(Topamax) label lists serious interactions with the ketogenic diet as it 
may lead to kidney stones. Although other drugs have not been 
labeled with warnings, caution must be  taken, and frequent 
de-prescribing may be necessary. Patients on the ketogenic diet find 
their insulin and weight dropping very fast and medication doses 
correspondingly need to be reduced. The ketogenic diet has shown 
blood pressure reduction (153), the reversal of kidney disease (154), 
reduction of HbA1c and increase of HDL (155, 156) and even the 
reversal of type 2 diabetes (157). Many thousands of anecdotal reports 
point to great success with the ketogenic diet as well as with the lesser 
studied carnivore and LCHF diets, providing an incentive for others 
to try them.

Our next questions are: Can we remove carbohydrates from the 
diet of migraineurs safely? Can we increase the availability of sodium 
to the brain of migraineurs safely and what is the best way? Will these 
steps help reduce or prevent migraines?

2.5 The safety of salt

There are many research papers showing results in applying 
ketogenic or other low carbohydrate diets to migraine, but studies do 
not exist about adding extra salt. In fact, there is quite a bit of concern 
surrounding the increase of dietary sodium. Here I address some of 
the issues.

Strong anecdotal evidence suggests that increasing salt, specifically 
when taken with water (as opposed to eating more salt with food) in 
order to increase sodium availability in the blood for the use of the 
brain, is beneficial. Electrolyte drinks are sold in stores and research 
shows that they have beneficial effects in hydration over water (158). 
Studies show that migraineurs who consumed more salt reported 
fewer headaches (129). Hypertension and hypotension both are 
considered to be comorbid with migraine and therefore it is suggested 
that the cardiovascular risk profile is higher in migraineurs (159–162). 
However, I previously questioned the perceived cardiovascular risk 
aspect of migraine (163) and it is very easy to overlook that the 
medications migraineurs are placed on often cause cardiovascular 
diseases on their own. Might it be  that migraineurs end up with 
hypertension and increased cardiovascular disease as a result of the 
medications they are taking for migraine? For example, NSAIDs are 
the choice for over-the-counter use, and they are well-known to cause 
cardiovascular problems (164). Propranolol (propranolol 
hydrochloride) is a frequently prescribed medication for migraine, 
although it is actually a strong heart medication with significant 
cardiovascular health concerns (165). Triptans are the most often 
prescribed medications for migraine and there are very serious 
concerns with respect to the cardiovascular and heart damage they 
cause (166). Various SSRIs and TCAs are often prescribed for migraine 
as well. While SSRIs are deemed safer than TCAs in terms of 
cardiovascular profile, they are not completely safe (167). CGRP 
inhibitors are the latest class of medications recommended for 
migraine and because they are so new, less information is available in 
published literature. But some academic articles point out that the 
cardiovascular system has CGRP receptors in order to initiate 
vasodilation. When the CGRP receptors are inhibited, vascular 
damage and associated dangers arise (168, 169). Given the many 
medications prescribed to migraineurs and that the evaluation of 
cardiovascular disease associated with migraine often does not include 
a questionnaire for what medications migraineurs take, I believe that 
it is irresponsible to suggest that migraineurs are generally more 
susceptible to end up with hypertension and cardiovascular disease, 
absent any medications.

While there is much general concern about increased dietary 
sodium and its association with hypertension, the physiology of 
sodium use by the body and the method of elimination of the excess 
sodium does not give rise to hypertension concern in the metabolically 
and thereby cardiovascular-healthy, individuals, and, in fact, the 
opposite is true: a reduced sodium diet leads to hypertension (170, 
171). In addition, reduced sodium diets are now understood to cause 
insulin resistance and cardiovascular disease (172, 173). And a study 
showed that even in the case of subjects with salt sensitive and salt 
resistant hypertension, while their systolic pressure dropped 
minimally on a reduced sodium diet, their insulin resistance markedly 
increased (174). It is also interesting to note that while most people in 
pain tend to have an increase in blood pressure, a study showed that 
migraineurs suffer from hypotension before, during, and shortly after 
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a migraine attack (175). This is further validation that migraine is 
associated with hypovolemia due to electrolyte imbalance and loss of 
sodium. And hypovolemia is a consequence of inappropriate 
hydration and high carbohydrate consumption. And lastly, a study 
injected saline directly into the arterial vein of the brain and found 
that all subjects experienced significant relief, with a large percent 
having complete pain relief (176).

Therefore, even if the consumption of salt may increase blood 
pressure in some people, given the hypotension migraineurs exhibit 
before, during, and after a migraine episode, an increase in blood 
pressure would clearly be welcome. Additionally, one may ask: if salt 
increases blood pressure, why is intravenous saline the first line of 
treatment (for migraine as well as for many other conditions) in most 
emergency departments (177, 178)? And would not an increase in salt 
(an essential mineral) be safer than the taking of unsafe medications 
with lots of side effects?

Salt in water is an electrolyte and it heads straight to the blood 
since it is not “food” per se. And since most of the sodium in our body 
is in our blood and outside of the cells, drinking salt with water is the 
fastest and safest way to regulate the sodium amount in the blood. 
There are no human experiments on salt in food vs. water, but a mouse 
study shows that the pathways of sodium absorption are different in 
food from water (179). We excrete salt both via the kidneys and also 
via feces, although much of what is excreted in the feces is reabsorbed 
by the colon (180).

2.6 The safety of low carb diets

The low carbohydrate diets have initiated quite a controversy 
over the past few years. However, by now there are dozens of clinical 
trials associated with research on low carbohydrate diets. Not only 
are they safe, but these trials show them effective in helping, and in 
some cases reversing various illnesses, or at least putting a particular 
condition into remission. Specifically weight loss, cardiovascular 
health, type 2 diabetes, and many neurological conditions, such as 
epilepsy, Alzheimer’s disease, Multiple Sclerosis, Parkinson’s Disease, 
Schizophrenia, and many more conditions have been shown to 
strongly benefit from a low carbohydrate diet (157, 181–187).

Overwhelming anecdotal evidence suggests that the application 
of any of the low carbohydrate diet forms: LCHF, ketogenic, and 
carnivore, provided they are well-formulated for health with 
sufficient protein and fats, should be helpful in preventing migraine, 
but the reason why it is so, is often misunderstood. For example, a 
small trial concluded that the ketogenic diet is likely beneficial 
because it helps people lose weight and migraine sufferers are 
overweight (188). Interestingly there are many studies pointing to 
migraineurs being overweight (189, 190), yet my experience in 
working with thousands of migraine sufferers from around the 
world is that they are not overweight—in fact many are underweight 
as a result of being unable to eat while they are so often in pain. 
Regardless, weight loss on its own is not likely to lead to the 
reduction of migraine given that it is a genetic condition of ionic 
channel variants and the brain’s glucose intolerance (191). Rather, 
with the help of the hypothesis laid out in this paper we  can 
understand that it is the reduced carbohydrates in the ketogenic and 
other low carbohydrate diets, especially the carnivore diet, and the 
increased salt that provide relief for migraine sufferers.

Let me bring a couple of specific anecdotal evidences, where the 
benefit of the diet change and especially the use of salt in water was 
very specifically the cause of the migraine free life.

In one example, a marathon runner approached me for help. She 
was not overweight and appeared metabolically healthy but she 
would run 10 miles daily for practice and always end up with a 
migraine. She was also suffering from monthly hormonal migraines 
with her cycles. Knowing that estrogen recycles sodium and thereby 
increases body weight by retaining water, whereas progesterone does 
the exact opposite, and both estrogen and progesterone thereby 
cause an electrolyte imbalance, measuring her first morning weight 
daily helped us identify her need for excess salt and water for her 
cycle prep, which in turn got rid of the hormonal migraines. She 
started with the LCHF diet and moved to ketogenic once feeling 
stable. During her marathon practices, and later during the actual 
races, the sugar gel packs were replaced with butter, cheese, and salt 
packs, and with the reduction of water from a cup at every stand to 
saltwater sips once in a while, she has been able to run marathons 
without ending with a migraine. She recently celebrated 1 year 
without a migraine.1

In another example, a teenager presented with her mom. He had 
cyclical vomiting and irritable bowel syndromes. Given his strong 
reaction to any form of carbohydrate, he  started a specifically 
formulated high protein medium fat carnivore diet, which he has 
been able to maintain now for over 5 years. He  and his parents 
celebrated his success of passing the Marine’s Crucible last year (see 
Footnote 1).

2.7 The low carbohydrate benefit

Why any of the low carbohydrate diets are beneficial is clear 
considering the carbohydrate sensitivity of the brain and the 
associated osmolality changes. As noted earlier, ketones are the 
preferred fuel for the brain that has glucose metabolism 
difficulties (192). Ketones in the brain are 3β-Hydroxybutyrate 
(3HB) and acetoacetate, which are fatty acids of medium chain 
triglycerides that can easily cross the blood brain barrier (193) 
and provide the fuel with great efficiency (194–196). Ketogenic 
diets have had great success with epileptic seizures (197), as well 
as Alzheimer’s disease, Multiple Sclerosis, and a host of other 
neurodegenerative diseases. The use of ketones by most brain 
functions defers the use of glucose to the glial cells (198). When 
we reduce glucose to the brain, we are also reducing glucose to 
the body. The ensuing fundamental changes lead to reversal of 
metabolic disease and re-establishment of insulin sensitivity in 
general, which improves the brain’s insulin sensitivity as well 
(181, 182, 199, 200).

The reversal and/or prevention of metabolic disease in the brain, 
especially in those populations whose brain cannot use glucose well 
as fuel, aids the healing processes of the brain. Further studies are 
needed in this area specifically with respect to migraine. These studies 
will help us to fully understand and underscore the numerous 
empirical success stories.

1 https://stantonmigraineprotocol.com/testimonials/
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3 Discussion

Rather than medicating with strong brain modifying drugs in 
order to reduce the sensitivity of the brain of the migraineurs, why not 
modify the brain’s environment in such a way that the migraineur’s 
brain can retain plenty of sodium for the increased level of action 
potential it needs. Having enhanced sensory organs is not an absolute 
disadvantage. For example, we can frequently hear of stories where a 
migraineur smelled a gas leak, verified only by gas leak detection 
equipment, and saved a neighborhood. Medications blunt the 
hypersensory neurons of the migraine brain by blocking how the 
brain normally functions. While this may help reduce migraine 
symptoms, these medications degenerate the brain to work at a lower 
level of sensitivity. Instead of reducing the sensitivity, thereby dulling 
the senses of the migraineur, we could simply support the migraine 
brain with the right nutrients to reduce the chance for an electrolyte 
imbalance and the ensuing migraine.

The problem can be resolved by avoiding a high carbohydrate diet 
and by adding a sufficiently increased amount of salt to consumed 
water to increase blood volume, to provide enough sodium for the 
brain under any circumstance, so it can continuously support those 
important action potentials.

The ketogenic diet is specifically beneficial because it is a 
comfortable way of eating in a social setting, and it is also easy to 
remain on the ketogenic diet for a long time—perhaps for life. The 
production of ketones for the use of the brain has additional benefits, 
such as reversal of metabolic disease and the possible prevention/
reversal of neurodegenerative diseases that often disproportionally 
afflict migraine sufferers (201, 202).

Finally, clinical trials are lacking in migraine research with 
nutrition. This is understandable, given how many medications 
migraine sufferers normally use, the subjectivity of evaluating if the 
diet reduced the number of migraines or migraine intensity, and the 
potential interactions between the many migraine medications taken 
and a given diet. To test the real benefit of a nutritional approach, the 
migraineurs would have to remain medication free during the trial 
and, of course, there is no placebo for food, so the control and trial 
groups would never be  blinded, and thus inherently biased. In 
addition, since most migraines start in the morning hours—often the 

result of the dawn phenomenon blood glucose variations—the test 
subjects would have to be in a controlled environment for the entire 
length of a clinical trial. This is a hard task given that migraine 
prevalence is highest during childbearing and raring (203), making an 
in-house long-term clinical trial with meal and medication control 
very expensive and impractical.
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