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Background: The double burden of malnutrition and diet-related disease has 
been attributed to diets high in ultra-processed and discretionary foods, with 
increased sugars, saturated fats, and sodium, and insufficient dietary fibre. There 
is a limited understanding of the role of other macronutrients and micronutrients.

Objective: Determine the highest priority nutrients to address both malnutrition 
and diet-related disease in Australia and New Zealand, for each demographic 
group and the total population.

Methods: A novel four-step methodological approach was undertaken to 
identify: 1. Demographic (age-sex) groups; 2. Health priorities; 3. Potential 
nutrients based on inadequacy, increased requirements, and health priority 
association; and 4. Priority nutrients. Nutrient intake data was obtained from the 
most recent Australian and New Zealand nutrition surveys. Health priorities were 
based on national statistical data and expert consultation. High-level scientific 
literature (systematic reviews) was scoped for associations with health priorities 
and the suitability of recommended intakes. A quantitative scoring matrix was 
developed and used to determine the highest priority nutrients, with scoring over 
three domains: extent of inadequacy; consensus for increased requirements; 
and degree of association with health priorities.

Results: Nutritional inadequacies were common, with 22 of 31 essential nutrients 
consumed below recommended levels. Nine priority nutrients were identified 
across the demographic groups, with each demographic group characterised 
by a specific subset of these. Six nutrients were highest priority within the total 
population: vitamin D, calcium, omega-3 fatty acids, magnesium, folate, dietary 
fibre.

Conclusion: The extent of nutritional inadequacies in Australia and New Zealand 
is high, both within each demographic group and the entire population, relative 
to both recommended intakes and key health outcomes. The methodology 
can be  applied to other countries and globally. Findings make a significant 
contribution to understanding the nutrients to prioritise in future-proofing the 
health of the Australian and New Zealand populations. Guidelines and policies 
can target priority nutrients to address the malnutrition and diet-related disease 
double burden.
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Introduction

Malnutrition, defined by the World Health Organization as 
deficiencies, excesses, or imbalances in a person’s intake of energy and/
or nutrients, contributes to a double burden within the developed 
world, where an increasing proportion of the population are either not 
meeting recommended nutrient intakes, suffering from diet-related 
chronic diseases, or both (1, 2). The relationship between adequate 
nutrition and the maintenance of health is well-established, with each 
nutrient playing important and integrated roles in metabolism and 
biochemistry, contributing to recommended levels of dietary intake 
to maintain health (3, 4). While most often attributed to excess caloric 
intake, diet-related disease pathogenesis also involves nutrient 
inadequacies, where intake and/or status is suboptimal (1, 2). This 
includes (but is not limited to) cardiovascular disease (CVD), type 2 
diabetes (T2DM), obesity, some cancers (1, 2), and infectious disease, 
including COVID-19 (5, 6). Although some diet-related diseases show 
elevated prevalence across the population, demographic groups have 
specific nutrient requirements and diet-related health priorities, 
indicating that the relative importance of each nutrient may vary 
depending on age and sex, and for women, pregnancy and menopausal 
status. For example, vitamin D deficiency or insufficiency has been 
suggested to increase the global burden of disease overall (7), but has 
also been associated with osteoporosis in menopausal women (8), an 
increased risk for gestational diabetes in pregnant women (9), and 
increased susceptibility to respiratory infection in the older men and 
women (10). Folic acid supplementation is recommended pre- and 
during pregnancy due to the well-established increased risk of 
sub-optimal folate for foetal neural tube defects (11, 12).

The increase in diet-related disease prevalence in the developed 
world, including Australia and New  Zealand, has been primarily 
attributed to the widespread over-consumption of foods that are both 
energy rich and nutrient poor (2, 13, 14), partly due to a large 
percentage of the diet made up of ultra-processed and/or discretionary 
foods and beverages in these countries. These foods are predominantly 
high in saturated fat, sodium, and added sugars, nutrients labelled to 
be of concern and recommended to limit across dietary guidelines 
globally (13). The diets also fail to meet food group recommendations 
and are consequently inadequate in meeting several macro- and 
micronutrient recommendations (13, 15); in Australia and/or 
New  Zealand, common nutrient inadequacies include calcium, 
vitamin D, iron, selenium, zinc, folate, thiamin, and vitamin B12 
(16–18). Other factors impacting suboptimal dietary choices include 
(but are not limited to) affordability and sustainability, with refined 
ingredients often cheaper than their whole-food counterparts (19), 
and an increasing movement towards plant-based diets, containing, 
for example, processed meat and dairy alternatives (20). There is 
evidence that increasing intake of key micronutrients has a measurable 
impact on public health, for example, via mandatory fortification of 
bread with folic acid to prevent neural-tube defects (12) and the 
universal iodisation of salt and bread to prevent iodine deficiency-
related hypothyroidism and goitre (21, 22). Thus, there is a need to 

identify the nutrients that offer the greatest potential to address both 
malnutrition and diet-related disease in Australia and New Zealand.

Nutritional adequacy plays a key role in supporting health 
priorities for each demographic group. Reference intake values for 
each essential nutrient are provided by government recommendations, 
such as the US Dietary Reference Intakes (DRIs) (23), and the 
Nutrient Reference Values (NRVs) for Australian and New Zealand 
(3). The NRVs were developed to determine the average nutrient 
values needed by individuals and populations, with the majority last 
updated in 2006; the most recent update was 2017 (for sodium). While 
the NRVs provide intake recommendations for essential nutrients 
across the lifespan to maintain health, varying according to life stage, 
age, and sex, scientific evidence suggests that they may be outdated, 
with some nutrient requirements greater than prescribed (24, 25). 
Further, the NRVs include suggested dietary targets (SDTs) for some 
nutrients, where higher nutrient intake recommendations are 
provided to help support and prevent chronic disease, showcasing the 
importance of nutrients beyond overt malnutrition. For some of these 
nutrients, doses shown to reduce the risk of chronic disease (26) are 
at doses greater than those in the NRVs. Thus, there is a need to better 
understand the evidence-base related to nutrients of the highest 
priority for frank deficiency prevention, reduction of diet-related 
disease, and health promotion. This information plays an important 
role in informing food policy, dietary guidelines, food development 
and fortification programs to close nutrient gaps, prevent deficiency, 
improve the quality of the food supply, and better support public 
health across the lifespan.

The aim of this research was to develop and implement 
methodology for determination of the highest priority nutrients for 
each demographic group (based on age and sex, in alignment with the 
NRVs) in Australia and New  Zealand. These nutrients can 
simultaneously support both nutrient adequacy and efforts to reduce 
diet-related disease. Further, the methodology can be applied globally 
to uncover and compare nutrient inadequacies and priority nutrients 
between countries.

Methods

For each demographic group, nutrient intake information from 
the most recent Australian [2011/12 (18)] and New Zealand [2008/09 
(27), 2002 (28)] nutrition surveys were obtained, followed by the 
identification of health priorities, based on government-managed 
statistical and consultation with an expert (nutritional and dietary 
management) panel of PhD-qualified health care professionals. A 
detailed scope of high-level scientific evidence regarding the 
relationship of specific nutrients to health priorities was performed 
(systematic literature reviews (SLRs) of randomised controlled trials 
(RCTs) or prospective cohort studies), including any evidence that 
current recommended intakes may not be sufficient to support health 
(SLRs, RCTs, and nutrient balance studies). A quantitative scoring 
matrix was developed and used to determine the nutrients with the 
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highest priority for each demographic group. For each nutrient and 
each demographic group, the scoring was based on: 1. the level of 
dietary inadequacy [percentage of the population with intake below 
the Estimated Average Requirement (EAR) or Adequate Intake (AI)]; 
2. the presence of consistent evidence for increased requirements 
(compared to current EAR/Recommended Dietary Intake (RDI)/AI 
values); and 3. the degree of association with identified 
health priorities.

An overview of the methodology used is provided as a flowchart 
in Figure 1. The methodology included 4 steps to identify demographic 
groups for assessment, followed by the key health priorities, a shortlist 
of nutrients, and a final list of priority nutrients, per each demographic 
group. An assessment of priority nutrients for the total population was 
also performed. These steps are described in detail below.

Step 1: Demographic selection

Demographic groups were created based on both consistency and 
clinical relevance in health priorities and nutrient requirements, 
taking age and sex into account. The age groups used by the National 
Health and Medical Research Council’s (NHMRC) Nutrient Reference 

Values (NRVs; targets for both Australia and New Zealand) (3) and 
dietary modelling to inform the Australian Guide to Healthy Eating 
(29) were assessed for suitability and refined as follows. The NHMRC 
age groups were collapsed if the following conditions were met: no 
clinically relevant difference in the nutrient requirements between 
consecutive age groups; no significantly different eating patterns 
known between consecutive age groups; and, health priorities were 
consistent between consecutive age groups. Age groups were split if 
health priorities were substantially different for a subsection of the age 
group, e.g., women of peri or post-menopausal age. Males and females 
were combined for age groups when the following criteria were met: 
no clinically relevant difference in the nutrient requirements; and, 
health priorities were consistent between the sexes. Infants and 
toddlers under 4 years of age were excluded due to a focus on children 
and adults.

Step 2: Selection of health priorities

Health priorities were determined by a targeted search of 
government-managed statistical information followed by 
consultation with a panel of healthcare professionals. Health 

FIGURE 1

Flowchart of methodology applied to identify priority nutrients per each demographic and at the population level.

https://doi.org/10.3389/fnut.2024.1370550
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Starck et al. 10.3389/fnut.2024.1370550

Frontiers in Nutrition 04 frontiersin.org

priorities were categorised as the leading causes of death (30), 
non-fatal physical morbidity (31–34), and mental or cognitive 
ill-health (34, 35) that are known to be modifiable by diet. The health 
priorities in each category and for each demographic group were 
first informed by nationally representative Australian data collected 
by the Australian Bureau of Statistics (ABS), the Australian 
Department of Health, and the Australian Institute of Health and 
Welfare (AIHW). Health priorities identified as a subtype of a larger 
disease were reclassified as the umbrella disease most relevant to 
dietary intervention; for example, lung cancer as cancer, coronary 
heart disease as cardiovascular disease, Alzheimer’s disease as 
dementia, back pain as chronic pain. Australian data were used to 
determine the health priorities for both Australia and New Zealand, 
due to Australia being considered broadly representative of the 
health and dietary intake patterns of New Zealand (36–38), based 
on a larger population size, having equivalent NRVs to New Zealand 
(3), and due to the leading causes of death or morbidity being 
comparable between Australia and New Zealand (39, 40).

The top 50% of health priorities for each demographic group were 
finalised via workshop consultation with a panel of five PhD-qualified 
health professionals with expertise in the nutritional and dietary 
management of the demographic groups. Health priorities with the 
highest prevalence of mortality and/or morbidity and highest 
association with diet were prioritised. In addition to confirming the 
data-derived leading causes of mortality and morbidity, the health 
professionals were able to advise on any additional health priorities 
not identified by the scientific literature.

Step 3: Identification of the nutrients

Nutrients considered for inclusion in the assessment (Table 1) 
were defined as those recognised by the NRVs (3). Energy was 
excluded due to being dependent on more than one nutrient, 
including those already listed. Sodium, saturated fat, and sugars were 
excluded due to being known nutrients of excess and concern in the 
population. Water was excluded due to the impact of additional 
beverages, including those containing nutrients, on hydration.

For each nutrient, three types of evidence were used, for: 
inadequate intake (percentage of the population with intake less than 
the EAR or AI); increased needs (evidence for a requirement greater 
than the current EAR, RDI, AI), and an established association to 
modify one of the identified health priorities. For completeness, any 
evidence for excess intake [above the Upper Level of Intake (UL)], 

decreased needs, and an adverse association with health priorities was 
also captured.

Evidence of inadequate intake
Dietary intake data were extracted from the 2011–2012 Australian 

National Nutrition and Physical Activity Survey (18), the 2008/09 
New Zealand Adult Nutrition Survey (27), and the 2002 New Zealand 
National Children’s Nutrition Survey (28). These data represent the 
most recent national survey data available for Australia and 
New Zealand, obtained from 24-h dietary recall data collected via 
in-person interviews with trained interviewers. Interviews with 
children were conducted in the presence of a caregiver, either in the 
child’s home or at school. As age ranges used in New Zealand intake 
data were not equivalent to NRV age groupings, data were integrated 
with the most closely matched NRV age grouping. Where survey data 
were not available (for example, for pregnant and lactating women), a 
targeted literature search via the PubMed (Medline) database for peer-
reviewed original research of nationally representative Australian or 
New Zealand samples was conducted and used as a proxy.

The level of intake of each nutrient, relative to its NRV (EAR, AI, 
or UL if applicable) for each demographic group was recorded, as 
well as the percentage of the population with intake lower than the 
NRV, if applicable. Intakes higher than the UL were recorded, in the 
instance that any nutrient was identified as being of concern (beyond 
the established nutrients of concern: sodium, saturated and trans fats, 
and added sugars). Nutrients were classified as having inadequate 
intake for a demographic group if 20% or more of that group had an 
intake below the EAR. Where a nutrient was defined by an AI, 
inadequate intake was defined as 50% or more of the population 
having an intake below the AI, in recognition that the AI cannot 
be used to determine inadequacy, yet represents the best indicator of 
requirement for some nutrients (41). Nutrients were classified as 
having excess intake for a demographic group if 20% or more of that 
group had an intake above the UL. Deficiency data according to 
nutritional status (serum or urinary data) were used in place of the 
EAR/AI where intake information was not available. Where the 
intake or deficiency data differed between Australia and New Zealand, 
age or sex groups, within the same demographic group, data from the 
segment of the demographic group with the highest proportion 
below the EAR or AI was used to represent that demographic group. 
For example, if teenagers from Australia were found to have 
inadequate intake for a nutrient, but New  Zealanders met 
requirements for the same nutrient, the nutrient was classed as 
having inadequate intake, with the level of inadequacy for Australian 
teenagers taken to represent all teenagers. This process ensured that 
the most at-risk group was identified and would be accounted for. 
Where percentage inadequacy or percentile data were not available, 
the mean population intake was compared to the NRV (EAR or AI) 
to determine inadequacy, with a mean or median intake below the 
NRV taken to represent ≥50% with intakes below the NRV. Nutrients 
of concern were defined as those with a 20% or more prevalence of 
intake above an upper level of intake.

Increased requirements
Evidence of increased nutrient requirements was defined in three 

ways: 1. the nutrient is known to have limited absorption, utilisation, 
or increased losses in the demographic group; 2. the nutrient has an 
established SDT [recommended intake to prevent a high burden of 

TABLE 1 Nutrients considered for inclusion.

Nutrient type Nutrients considered

Macronutrients Protein, dietary fibre, n-6 (linoleic) fatty acids, n-3 (ALA, 

DHA, DPA, EPA) fatty acids.

Vitamins Vitamins A, B1, B2, B3, B6, B12, C, D, E and K; folate, 

pantothenic acid, biotin, choline.

Minerals Calcium, chromium, copper, fluoride, iodine, iron, 

magnesium, manganese, molybdenum, phosphorus, 

potassium, selenium, zinc.

ALA, alpha-linolenic acid; DHA, docosahexanoic acid; DPA, docosapentanoic acid; EPA, 
eicosapentanoic acid; n-3, omega 3; n-6, omega 6.
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chronic disease (3)]; 3. there is a consensus in the scientific literature 
that the NRV (EAR, RDI, or AI) is too low for a demographic group, 
or that the demographic group may benefit from intakes above the 
specified NRV. Evidence was obtained in the first instance via a search 
of the information provided by the NRV report. However, given many 
of the NRVs have not been updated since 2006, a targeted literature 
search of peer reviewed original research was undertaken, limited to 
SLRs, RCTs, and nutrient balance studies. Any evidence for decreased 
requirements or that a demographic group would benefit from intakes 
lower than the specified NRV was captured when applicable.

Established association with health priority
To collate evidence showing an association of a nutrient with one 

of the identified health priorities, a targeted literature search of the 
PubMed database was undertaken, complemented by a grey literature 
search for guidelines, on 18 November 2022. The search strategies 
used to scope the health priorities are listed in Supplementary Table S1. 
Only SLRs of RCTs or prospective cohort studies were eligible for 
inclusion to ensure that the highest level of available evidence was 
captured, based on the NHMRC framework (42). Where the evidence-
base was extensive, the most recently published studies were 
prioritised. For each SLR selected, the evidence was applied to the 
appropriate demographic group(s) according to the age ranges 
covered by the included research. Dosage information was extracted 
and reported where available, including dose–response relationships 
and any dose associated with adverse effects.

Step 4: Determination of highest priority 
nutrients

To identify priority nutrients for each demographic group, 
nutrients were objectively scored using a point-based scoring matrix at 
each of three levels, and scores added to determine an overall priority 
score. The scoring matrix is shown in Table 2. First, a baseline score was 
determined based on the extent of dietary inadequacy (percentage of 
sampled population having an intake below the EAR or AI) within the 
demographic group, from 0 (no inadequacy) to 4 (more than 80% of 
the sampled population having a lower than recommended intake) for 
the EAR, and from 0 (no inadequacy) to 2 (more than 75% of the 
sampled population have a lower than recommended intake) for the 
AI. Distinct scoring was used for the EAR vs. the AI given the 
limitations of using the AI for describing inadequacy (41). For nutrients 
where the risk of inadequacy was determined by the proportion with 
low nutritional status (e.g., vitamin D and iodine via serum or urinary 
analysis, respectively), the baseline score was determined using the 
same scoring system as if the nutrient had an EAR. Up to one additional 
point was added where the evidence strongly suggested an increased 
intake was optimal for health. For evidence taken from the NRVs 
regarding poor absorption or utilisation, or increased losses, a point 
was only awarded in the absence of baseline points for inadequacy, to 
avoid double scoring. One point was added for each health priority a 
nutrient showed an established beneficial association with, up to a 
maximum of 5 points, representing the maximum number of health 
priorities selected. Thus, the total score for any potential priority 
nutrient was 10 points. While the number of health priorities differed 
between demographic groups, this did not affect scoring, as nutrients 

were assessed for priority relative to the other nutrients within a 
demographic group only.

If a nutrient was identified as having excess intake, decreased 
requirements, or an adverse association with a health priority, it was 
labelled as a nutrient of concern and scored based on the extent of 
dietary excess (above the UL) from 0 (no excess) to 4 (more than 80% 
of the population having an intake above the UL), the presence of 
evidence for decreased requirements (up to one additional point), and 
the number of health priorities where intake of a nutrient was 
associated was an adverse effect (up to a maximum of 5 points). These 

TABLE 2 Quantitative scoring matrix for nutrient prioritisation.

Scoring criterion Score Description

Priority nutrient scoring

Baseline score:  

evidence of inadequate 

intake

0 No inadequacy

1 ≥20- < 40 population less than EAR 

OR ≥ 50- < 75% population less than AI

2 ≥40- < 60% population less than EAR 

OR ≥ 75–100% population less than AI

3 ≥60- < 80% population less than EAR

4 ≥80% population less than EAR

Additional points: 

evidence of increased 

needsa

0 No or equivocal evidence

1 Consistent evidence or consensus for 

increased needs

Additional points: 

evidence of established 

association with health 

priority

0 No associated health priorities

1 One associated health priority

2 Two associated health priorities

3 Three associated health priorities

4 Four associated health priorities

5 Five associated health priorities

Nutrient of concern scoring

Baseline score:  

evidence of excess intake

0 No excess

1 ≥20- < 40% population greater than UL

2 ≥40- < 60% population greater than UL

3 ≥60- < 80% population greater than UL

4 ≥80% population greater than UL

Additional points: 

evidence of decreased 

needsa

0 No or equivocal evidence

1 Consistent evidence or consensus for 

decreased needs

Additional points: 

evidence of established 

adverse association with 

health priority

0 No associated health priorities

1 One associated health priority

2 Two associated health priorities

3 Three associated health priorities

4 Four or more associated health 

priorities

5 Five associated health priorities

Total score Priority nutrient score minus nutrient 

of concern score

aRelative to the current EAR, RDI, or AI. AI, Adequate Intake; EAR, Estimated Average 
Requirement; UL, Upper Level of Intake.

https://doi.org/10.3389/fnut.2024.1370550
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Starck et al. 10.3389/fnut.2024.1370550

Frontiers in Nutrition 06 frontiersin.org

points were subtracted from the priority scoring for that nutrient to 
determine an overall score.

Within each demographic group, scores for each nutrient were 
calculated and ranked from highest to lowest. Nutrients scoring in the 
top quartile (25%) for each group were taken to be the highest priority 
nutrients for that demographic group. Where scores were tied in a way 
that did not readily distinguish the top 25% of nutrients, the selection 
of the highest priority nutrients was based on the grouping containing 
the number of nutrients closest to that equivalent to the top 25%. For 
example, in a case where there are 20 nutrients in total, five priority 
nutrients would be selected (25% of 20). However, if four nutrients 
had the highest score of four, and four nutrients had the next highest 
score of three, the two potential groupings would be either four or 
eight highest priority nutrients, respectively. Thus, according to the 
methodology, the top four nutrients would be  selected as highest 
priority, since four is closer to the quartile number of five than is eight.

The process was repeated for all nutrients identified for all 
demographic groups (based on having inadequate intake and/or 
increased needs and/or an established association with health 
priorities) to determine the highest priority nutrients across the total 
Australia/New Zealand population.

Results

Step 1: Selection of demographic groups

Seven demographic groups were created: Children (male and 
female) aged 4–11 years; Teenagers (male and female) aged 
12–18 years; Males aged 19–60 years; Females aged 19–45 years; 
Pregnant or lactating females aged 19–45 years; Peri-menopausal or 
menopausal women aged >45 to 60 years; and, Older adults (males 
and females) aged >60 years. The age of ≥60 or 65 years is routinely 
used to define older adults in research (43). A list of the demographic 
groups and the rationale for their development is provided in Table 3.

Step 2: Selection of health priorities for 
each demographic group

The health priorities selected for each demographic group are 
provided in Table 3. Health priorities identified for each category 
(leading causes of death, non-fatal physical morbidity, mental or 
cognitive ill-health, or other) are listed in Supplementary Table S2. 

TABLE 3 Demographic groups included in the current research and their health priorities.

Demographic group Rationale for group development Final selected health priorities

Children (male and female) 

aged 4–11 years

Children 4–8 years are grouped together in NHMRC 

demographic groups (3).

Ages 9–11 were included due to similarities in health 

requirements, e.g., pre-pubertal growth.

 • Bone mass acquisition

 • Cognitive development

 • Infectious immunity

Teenagers (male and female) 

aged 12–18 years

Although teenage females have some changes hormonally, the 

majority of nutrients show similar requirements between 

males and females (3). Health priorities were specified based 

on sex where applicable.

 • Anxiety and depression

 • Cognitive development

 • Growth and development focusing on bone and muscle

 • Maturation focusing puberty/sexual organ development

Males aged 19–60 years Male demographic groups specified by the NHMRC from ages 

19–60 years have predominantly similar nutrient needs (3).

 • Anxiety and depression

 • Cancer

 • CVD

 • Metabolic disorders

Females aged 19–45 years To cover females of reproductive age; female demographic 

groups specified by the NHMRC from ages 19–45 years have 

predominantly similar nutrient needs (3).

 • Anxiety and depression

 • Cancer

 • CVD

 • Fertility and pre-pregnancy nutrition

 • Metabolic disorders

Pregnant or lactating females 

aged 19–45 years

Pregnancy and lactation life stages have specific nutrient 

requirements (3).

 • Healthy foetal/infant growth and development.

 • Healthy maternal weight gain.

 • Maternal mental health.

Peri-menopausal or 

menopausal females aged 

>45–60 years

To cover the menopausal transition, including perimenopause 

and menopause (44). These life stages are accompanied by 

unique biological changes.

 • Anxiety and depression

 • Bone health

 • Cancer

 • CVD

 • Metabolic disorders

Older adults (males and 

females) aged >60 years

Grouped from >60 years rather than >70 years [as defined by 

NHMRC (3)] due to the majority of women being post-

menopausal at this age (44), and for consistency between 

males and females. In addition, the age of 60–65 years and 

older is usually used to define older adults in research (43).

 • Cognitive function / decline

 • CVD

 • Physical independence (i.e., muscle and bone maintenance, falls risk)

 • Metabolic disorders

CVD, cardiovascular disease; NHMRC, National Health and Medical Research Council.
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Final health priorities were primarily either specific to life stage, such 
as healthy maternal weight gain for pregnancy and lactation or were 
non-communicable diseases covering most of the adult population, 
such as cancer and cardiovascular disease. Some health priorities 
across demographic groups shared common features such as bone 
health but had differential focus according to life stage. For example, 
bone mass acquisition for children, compared to the maintenance of 
bone health for peri and post-menopausal woman. The number of 
final health priorities ranged from three to five, depending on the 
demographic group.

Step 3: Identification of nutrients

Out of 31 eligible nutrients for consideration, 22 (71%) nutrients 
were categorized as having inadequate intake, 19 (61%) as having 
increased needs, and 16 (52%) as being associated with a health 
priority, across the Australian and New Zealand populations (Table 4; 
Supplementary Tables S3–S5, respectively). The demographic groups 
with the highest number of inadequate nutrients were males 
(19–60 years) and older adults (males and females, >60 years), with 16 
nutrients having at least 20% or 50% of the demographic group not 
meeting the EAR or AI, respectively. Children had the lowest number 

of inadequate nutrients (n = 7). The demographic group with the 
greatest number of nutrients showing an increased need was older 
adults (n = 16) and both males and peri-menopausal/menopausal 
women shared the greatest number of health priority associations 
(n = 9). No nutrients of concern other than those already established 
as nutrients of concern in the literature (sodium, saturated fat, and 
added sugars), were identified as having excess intake or evidence for 
decreased needs. However, two adverse associations with health 
priorities were identified: dairy protein for males [increased risk of 
prostate cancer (8–10%) with an intake of at least 30 g/day and a dose–
response association per 20 g/day increase (45)]; and folate for 
pregnant women (increased risk of gestational diabetes mellitus with 
the highest vs. lowest serum levels of folate or prolonged folic acid 
supplementation (46); however, evidence was rated as low and very 
low certainty, respectively) (Supplementary Table S5).

Figure 2 details the number of demographic groups with nutrient 
inadequacy, increased needs for a nutrient, and nutrient-health 
priority associations for the total population (all included demographic 
groups, from age 4 to >60 years). The highest prevalence of inadequate 
intake was found for dietary fibre, choline, potassium, calcium, and 
vitamin B6, with inadequate intake identified for all demographic 
groups (Figure 2A). Nutrients showing the highest prevalence for 
increased needs were magnesium and protein (all demographic 

TABLE 4 Nutrients identified by type of evidence for each demographic group.

Demographic group

Identified nutrients

Inadequate dietary intake Increased requirements
Established association 
with health prioritya

Children (male and female) aged 

4–11 years

Omega-6 fatty acids, dietary fibre, choline, 

potassium, calcium, fluoride, vitamin B6

Iron, protein, magnesium Vitamin D, calcium, omega-3 fatty 

acids

Teenagers (male and female) aged 

12–18 years

Omega-6 fatty acids, dietary fibre, vitamin 

A, vitamin B6, choline, calcium, fluoride, 

iodine, magnesium, potassium, selenium, 

thiamin, vitamin E, iron, phosphorus

Calcium, iron, zinc, protein, magnesium Vitamin D, calcium, dietary fibre, 

monounsaturated fatty acids, omega-3 

fatty acids

Males aged 19–60 years Omega-6 fatty acids, dietary fibre, vitamin 

A, vitamin D, choline, calcium, fluoride, 

iodine, magnesium, potassium, selenium, 

zinc, thiamin, vitamin B6, pantothenic 

acid, biotin

Choline, zinc, protein, vitamin C, 

magnesium, Long chain omega-3 fatty 

acids, dietary fibre, vitamin A, vitamin E, 

folate, potassium

Omega-3 fatty acids, vitamin D, 

vitamin C, folate, zinc, magnesium, 

dietary fibre, selenium, omega-6 fatty 

acids, protein

Females aged 19–45 years Dietary fibre, thiamin, vitamin B6, vitamin 

D, choline, calcium, fluoride, iodine, 

magnesium, vitamin B12, potassium, 

selenium

Iron, protein, vitamin C, magnesium, 

zinc, Long chain omega-3 fatty acids, 

dietary fibre, vitamin A, vitamin E, folate, 

potassium

Omega-3 fatty acids, vitamin D, 

vitamin C, folate, zinc, magnesium, 

dietary fibre, omega-6 fatty acids, 

protein

Pregnant or lactating females aged 

19–45 years

Dietary fibre, vitamin B6, vitamin D, folate, 

choline, calcium, iodine, potassium, iron

Protein, folate, pantothenic acid, iodine, 

iron, selenium, zinc, magnesium

Omega-3 fatty acids, vitamin D, folate, 

iodine, calcium, zinc

Peri or post-menopausal females aged 

>45–60 years

Dietary fibre, thiamin, vitamin B6, vitamin 

D, choline, calcium, fluoride, iodine, 

magnesium, potassium, selenium

Calcium, protein, vitamin C, magnesium, 

zinc, long chain omega-3 fatty acids, 

dietary fibre, vitamin A, vitamin E, folate, 

potassium

Omega-3 fatty acids, vitamin D, 

vitamin C, folate, zinc, magnesium, 

dietary fibre, calcium, protein, omega-6 

fatty acids

Older adults (males and females) aged 

>60 years

Omega-6 fatty acids, dietary fibre, thiamin, 

riboflavin, vitamin B6, vitamin D, choline, 

calcium, fluoride, iodine, magnesium, 

potassium, selenium, zinc, vitamin A, 

vitamin B12

Protein, vitamin B12, vitamin D, calcium, 

zinc, riboflavin, vitamin C, magnesium, 

zinc, long chain omega-3 fatty acids, 

dietary fibre, vitamin A, vitamin E, folate, 

potassium

Omega-3 fatty acids, omega-6 fatty 

acids, dietary fibre, protein, folate, 

vitamin D

aNutrients in italics represent an adverse association identified for one or more health priorities. Beneficial associations may also have been identified for this nutrient within this demographic 
group.
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FIGURE 2

Nutrients ordered according to prevalence of inadequate intake (A), 
increased needs (B), and association with health priorities (C) across 
all demographic groups.

groups), followed by zinc (n = 6 demographic groups) and folate (n = 5 
demographic groups) (Figure 2B) and those with the highest number 
of demographic groups showing a health priority association were 
vitamin D and omega-3 fatty acids (all demographic groups), followed 
by dietary fibre and zinc (n = 6) (Figure 2C). While folate featured as 
having a health priority association in five demographic groups, this 
association was consistently beneficial (no adverse effects identified) 
in four demographic groups only.

Step 4: Prioritisation of nutrients

Between one (pregnancy and lactation) and six (males, females 
aged 19–45 years, and older adults) priority nutrients were identified 
for each demographic group. These details, including information on 
level of inadequacy and dose associated with health priorities is 
provided in Table 5. While folate was a close second to vitamin D for 
pregnancy and lactation, scoring was downgraded due to the adverse 
health association identified for this demographic group for folate. A 
total of nine priority nutrients featured across all demographic groups. 
Within this group of nine priority nutrients, those with the highest 
prevalence for prioritisation across the demographic groups were 
vitamin D (all demographic groups, n = 7), calcium (n = 5), magnesium 
(n = 4), and omega-3 fatty acids (n = 4) (Figure 3A).

When nutrient scoring was pooled and applied at the population 
level, the top 25% of nutrients were, in order of priority, vitamin D, 
calcium, omega-3 fatty acids, folate, dietary fibre, and magnesium 
(Figure 3B). These nutrients represent those with the highest levels of 
inadequacy and increased needs, and an association with health 
priorities across the total population. The final scoring for each 
nutrient across each of the three scoring domains was shown in grey 
(inadequacy), red (increased needs) and blue (health priority). While 
vitamin D, omega-3 fatty acids, dietary fibre, and folate achieved their 
highest scores for association with health priorities, calcium and 
magnesium ranked the highest for inadequacy. Magnesium also 
ranked the highest for increased needs. Four of the highest priority 
nutrients at the population level were also those with the highest 
prevalence of priority across individual demographic groups; these 
were vitamin D, calcium, omega-3 fatty acids, and magnesium.

Discussion

The research presented here has highlighted the priority nutrients, 
or those with the highest potential to address the double burden of 
malnutrition and diet-related disease in Australia and New Zealand, 
at both the demographic group and population-level. Nutritional 
inadequacies (relative to current NRVs) were prevalent across all 
demographic groups, ranging from a minimum of 7 (children) to 16 
(males and older adults), highlighting an important gap in intake vs. 
needs. While the number and specifics of priority nutrients varied 
between demographic groups, there was notable consistency in the 
nutrients found to be of highest importance across the demographic 
groups. Furthermore, this consistency was maintained when priority 
nutrient scoring was applied at the population level, with four 
nutrients featuring as the highest priority regardless of scoring 
method; these were vitamin D, calcium, omega-3 fatty acids, and 
magnesium. Dietary fibre and folate were also priority nutrients at the 
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TABLE 5 Highest priority (top 25%) nutrients identified for each demographic group, with dietary inadequacy, increased needs, and health priority association data.

Demographic 
group

Identified nutrients

Priority 
nutrients

Level of dietary inadequacy Level of increased need Associated health priorities (effective 
dose)

Children (male and 

female) 4–11 y

Calcium  • EAR: 520–800 mg/day

 • Mean intake: 676–866 mg/day

 • 20.3% of AUS girls failed to meet the EAR (18).

N/A  • Bone health and bone mass acquisition (460 mg/day 

increase; 300 to 1,200 mg/day) (47–49)

Vitamin D N/A N/A  • Infectious immunity [H v L serum status; < 300,000 IU 

(single dose)] (50, 51)

 • Bone health and bone mass acquisition (132 IU/day to 

14,000 IU/week) (52, 53)

 • Cognitive development (60 to 1,000 IU/day) (54)

Magnesium  • EAR: 110–200 mg/day

 • Mean intake: 212–252 mg/day

 • 24.6% of AUS girls failed to meet the EAR (18).

 • Intake of 133 mg/d for children aged 4–8 years old necessary 

for growth and adequate bone mineral content (55).

 • Magnesium requirements should be updated to account 

factors that can affect the need for magnesium (56).

N/A

Iron N/A  • Increased requirement due to iron accretion during 

childhood growth (3).

 • Cognitive development (1.04 to 1.17 μg/day) (57)

Teenagers (male and 

female) 12–18 y

Calcium  • EAR: 1050 mg/day

 • Mean intake: 912–946 mg/day

 • 67 to 90.3% AUS teenagers failed to meet the EAR (18).

 • 59.1 to 87.8% NZ teenagers failed to meet the EAR (27).

N/A  • Growth and development focusing on bone and muscle 

(460 mg/day increase; 300 to 1,200 mg/day) (47–49)

Magnesium  • EAR: 300–340 mg/day

 • Mean intake: 252–322 mg/day

 • Up to 71.6% of Australian teenagers did not meet the EAR (18).

 • Magnesium requirements should be updated to account 

factors that can affect the need for magnesium (56).

N/A

Selenium  • EAR: 50–60 μg/day

 • Mean intake: 34.9–66.6 μg/day

 • 40.4 to 78.2% of NZ teenagers did not meet the EAR (27).

N/A N/A

Vitamin D N/A N/A  • Anxiety and depression (25 μg/day to 1,250 μg/week) 

(58)

 • Cognitive development (60 to 1,000 IU/day) (54)

 • Growth and development focusing on bone and muscle 

(132 IU/day to 14,000 IU/week) (52, 53)

Zinc  • EAR: 6–11 mg/day

 • Mean intake: 10.6–12.8 mg/day.

 • 27.4% of Australian males failed to meet the EAR (18).

 • Increased requirement for males due to higher losses in 

semen combined with possible decreased absorptive capacity (3, 

59, 60).

 • US requirement data may overestimate zinc absorption by 

10% (60); a similar overestimation may be relevant to AUS/NZ.

 • Cognitive development (1.7 to 2.9 mg/day) (57)

(Continued)
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TABLE 5 (Continued)

Demographic 
group

Identified nutrients

Priority 
nutrients

Level of dietary inadequacy Level of increased need Associated health priorities (effective 
dose)

Males 19–60 y Dietary fibre  • AI: 30 g/day

 • Mean intake: 20.8–24 g/day

 • 50th percentile of intake was below the AI for AUS (18) and NZ 

(27) men.

 • The SDT is 38 g/day for men (3, 61).  • Cancer (high vs. low intake) (62, 63)

 • CVD (high vs. low intake; 10 g/day increase; 3–30 g/

day) (64–66)

 • Metabolic health (3–20 g/day) (66)

Zinc  • EAR: 12 mg/day

 • Mean intake: 12.1–15 g/day

 • 24.2 to 52% of AUS and NZ men did not meet the EAR (18, 27)

 • Increased requirement for males due to higher losses in 

semen combined with possible decreased absorptive capacity (3, 

59, 60).

 • US requirement data may overestimate zinc absorption by 

13% (60); a similar overestimation may be relevant to AUS/NZ.

 • Anxiety and depression (7 to 25 mg/day) (67)

Folate  • N/A  • The SDT for dietary folate equivalents is 300–600 μg; an 

additional 100–400 μg over current intakes (3).

 • Anxiety and depression (0.5 to 10 mg/day folic acid; 

15 mg/day L-methylfolate) (68)

 • Cancer (high vs. low intake; 20 to 30 mg/day folic acid) 

(69–71)

 • CVD (0.8 mg folic acid) (72)

Omega-3 fatty 

acids

 • N/A  • The SDT for long-chain omega-3 fatty acids is 610 mg for 

men (3, 61).

 • Anxiety and depression (all doses, but ≥2000 mg/day 

better than <2000 mg/day) (73)

 • Cancer (0.51 to 2.2 g/day EPA and 0.24 to 0.92 g/day 

DHA; high vs. low blood levels DPA or DHA) (74, 75)

 • CVD (high vs. low blood levels DPA, DHA, EPA; 0.5 to 

>5 g/day; per 1 g/day increase) (72, 75–82)

 • Metabolic health (High vs. low blood markers of 

omega-3 intake) (75)

Vitamin D  • AI: 5–10 μg/day

 • Serum levels used as proxy for intake.

 • 21.6–31.1% of AUS men showed mild to severe vitamin D 

deficiency (18).

N/A  • Anxiety and depression (≥ 50,000 IU/week) (83)

 • Cancer (high vs. low blood levels; 1,200 to 8,000 IU/day 

after cancer diagnosis) (84–88)

 • CVD (high vs. low blood levels; 1,000 to 7142.9 IU/day) 

(89–92)

 • Metabolic health (1,000 to 7142.9 IU/day; 59,000 IU 

periodically) (92, 93)

Magnesium  • EAR: 330 mg/day

 • Mean intake: 366–391 mg/day

 • 33 to 46.5% of AUS men did not meet the EAR (18).

 • Magnesium requirements should be updated to account 

factors that can affect the need for magnesium (56).

 • Anxiety and depression (120 to 300 mg/day elemental 

magnesium; 250 mg/day magnesium oxide; 320 mg to 4 g/

day magnesium sulfate) (94)

(Continued)
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TABLE 5 (Continued)

Demographic 
group

Identified nutrients

Priority 
nutrients

Level of dietary inadequacy Level of increased need Associated health priorities (effective 
dose)

Females 19–45 y Dietary fibre  • AI: 25 g/day

 • Mean intake: 17–20 g/day

 • 50th percentile of intake was below the AI for AUS (18) and NZ 

(27) women.

 • The SDT is 28 g (3, 61).  • Cancer (high vs. low intake) (62, 63)

 • CVD (high vs. low intake; 10 g/day increase; 3–30 g/

day) (64–66)

 • Metabolic health (3–20 g/day) (66)

Calcium  • EAR: 840 mg/day

 • Mean intake: 724–847 mg/day

 • The proportion of Australian and New Zealand women failing to 

meet the EAR was 55.5 to 71.3% (18, 27).

N/A N/A

Vitamin D  • AI: 5 μg/day

 • Serum levels were used as a proxy for intake.

 • 22.9–31.1% of women showed mild to severe deficiency (18).

N/A  • Anxiety and depression (≥ 50,000 IU/week) (83)

 • Cancer (high vs. low blood levels; 1,200 to 8,000 IU/day 

after cancer diagnosis) (84–88)

 • CVD (high vs. low blood levels; 1,000 to 7142.9 IU/day) 

(89–92)

 • Fertility and pre-pregnancy nutrition (1,000 IU/day; 

50,000 IU/week; sufficient vs. insufficient/deficient status) 

(95, 96)

 • Metabolic health (1,000 to 7142.9 IU/day; 59,000 IU 

periodically) (92, 93)

Selenium  • EAR: 50 μg/day

 • Mean intake: 47.1–52.3 μg/day

 • 43.8 to 71.7% of NZ women failed to meet the EAR (27).

N/A N/A

Folate N/A  • The SDT for dietary folate equivalents is 300–600 μg; an 

additional 100–400 μg over current intakes (3).

 • Anxiety and depression (0.5 to 10 mg/day folic acid; 

15 mg/day L-methylfolate) (68)

 • Cancer (high vs. low intake; 20 to 30 mg/day folic acid) 

(69–71)

 • CVD (0.8 mg folic acid) (72)

 • Fertility and pre-pregnancy nutrition (<0.4 to <5 mg/

day folic acid) (11, 97)

(Continued)
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TABLE 5 (Continued)

Demographic 
group

Identified nutrients

Priority 
nutrients

Level of dietary inadequacy Level of increased need Associated health priorities (effective 
dose)

Omega-3 fatty 

acids

N/A  • The SDT is 430 mg (3, 61).  • Anxiety and depression (all doses, but ≥2000 mg/day 

better than <2000 mg/day) (73)

 • Cancer (0.51 to 2.2 g/day EPA and 0.24 to 0.92 g/day 

DHA; high vs. low blood levels DPA or DHA) (74, 75)

 • CVD (high vs. low blood levels DPA, DHA, EPA; 0.5 to 

>5 g/day; per 1 g/day increase) (72, 75–82)

 • Fertility and pre-pregnancy nutrition (1 to 2 g/day; 

high vs. low intake) (98)

 • Metabolic health (high vs. low blood markers of 

omega-3 intake) (75)

Pregnant or lactating 

females 19–45 y

Vitamin D  • AI: 5 μg/day

 • Mean intake: 1.2–4.4 μg/day

 • Mean intake below the EAR in NZ women, and 42% show 

deficient serum levels (99–102).

N/A  • Healthy foetal/infant growth and development (800 to 

7142.9 IU/day; each 25 mmol increase in blood status; 

deficiency/insufficiency vs. sufficiency; high vs. low blood 

status) (96, 103–111)

 • Healthy maternal weight gain (400 to 3571.4 IU/day; 

deficiency/insufficiency vs. sufficiency) (107, 112–118)

 • Maternal mental health (blood vitamin D status of 

90–110 nmoL/L; 400 to 6,000 IU/day) (119, 120)

Peri or post-

menopausal females 

>45–60 y

Dietary fibre  • AI: 25 g/day

 • Mean intake: 18.1–21 g/day)

 • 50th percentile of intake was below the AI for AUS (18) and NZ 

(27) women.

 • The SDT is 28 g (3, 61).  • Cancer (high vs. low intake) (62, 63)

 • CVD (high vs. low intake; 10 g/day increase; 3–30 g/

day) (64–66)

 • Metabolic health (3–20 g/day) (66)

Calcium  • EAR: 1100 mg/day

 • Mean intake: 741–775 mg/day

 • 88.2 to 91.2% of women failed to meet the EAR (18, 27)

N/A  • Bone health (≥ 700 mg/day; optimal intake 1,200 mg/

day) (121)

Vitamin D  • AI: 5–10 μg/day

 • Serum levels used as proxy for intake.

 • 21.6% of AUS women showed mild to severe vitamin D 

deficiency (18).

N/A  • Anxiety and depression (≥ 50,000 IU/week) (83)

 • Bone health (Low vs. high serum status; < 400 IU/day 

(combined with calcium) (122, 123)

 • Cancer (high vs. low blood levels; 1,200 to 8,000 IU/day 

after cancer diagnosis) (84–88)

 • CVD (high vs. low blood levels; 1,000 to 7142.9 IU/day) 

(89–92)

 • Metabolic health (1,000 to 7142.9 IU/day; 59,000 IU 

periodically) (92, 93)

(Continued)
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TABLE 5 (Continued)

Demographic 
group

Identified nutrients

Priority 
nutrients

Level of dietary inadequacy Level of increased need Associated health priorities (effective 
dose)

Omega-3 fatty 

acids

N/A  • The SDT is 430 mg (3, 61).  • Anxiety and depression (all doses, but ≥2000 mg/day 

better than <2000 mg/day) (73)

 • Cancer (0.51 to 2.2 g/day EPA and 0.24 to 0.92 g/day 

DHA; high vs. low blood levels DPA or DHA) (74, 75)

 • CVD (high vs. low blood levels DPA, DHA, EPA; 0.5 to 

>5 g/day; per 1 g/day increase) (72, 75–82)

 • Metabolic health (High vs. low blood markers of 

omega-3 intake) (75)

Folate N/A  • The SDT s 300–600 μg; an additional 100–400 μg over current 

intakes (3).

 • Anxiety and depression (0.5 to 10 mg/day folic acid; 

15 mg/day L-methylfolate) (68)

 • Cancer (high vs. low intake; 20 to 30 mg/day folic acid) 

(69–71)

 • CVD (0.8 mg folic acid) (72)

Older adults (males 

and females) >60 y

Vitamin D  • AI: 15 μg/day

 • Serum levels were used as a proxy for intake.

 • 20.2% of older AUS adults showed mild to severe deficiency (18).

N/A  • Cognitive function (deficiency) (124)

 • Physical independence (500–1,600 IU/day; 2,500–

5,000 IU/week (with protein or exercise); high vs. low 

serum status; 400–60,000 IU/day (with insufficient serum 

status) (125–132)

 • CVD (high vs. low blood levels; 1,000 to 7142.9 IU/day) 

(89–92)

 • Metabolic health (1,000 to 7142.9 IU/day; 59,000 IU 

periodically) (92, 93)

Calcium  • EAR: 1100 mg/day

 • Mean intake: 690–785 mg/day

 • 86 to 94.3% AUS and NZ older adults failed to meet the EAR (18, 

27).

N/A N/A

Magnesium  • EAR: 265–330 mg/day

 • Mean intake: 274–326 mg/day

 • 48.5 to 63.9% AUS older adults did not meet the EAR (18).

 • Magnesium requirements should be updated to account 

factors that can affect the need for magnesium (56).

N/A

Selenium  • AI: 50–60 μg/day

 • Mean intake: 41.6–56.9 μg/day

 • 63.8 to 89.7% NZ older adults failed to meet the EAR (27).

N/A N/A

(Continued)
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population level. The methodology adopted to uncover the highest 
priority nutrients was evidence-based and systematic and provides a 
novel approach that can be replicated for application on a global scale.

The highest priority nutrients at the population level arose due to 
not only overt inadequacy, but increased needs and health priorities, 
addressing both sides of the double burden of disease. While priority 
for each nutrient was based on the combination of scoring within each 
one of these domains, each priority nutrient showed variation in terms 
of which domain made the largest contribution to the total score. This 
suggests that the two major diet-related issues of malnutrition and 
diet-related disease are both independent and integrated; a nutrient 
inadequacy can be an issue due to its necessity for normal physiology, 
but might also contribute, either directly or indirectly, to the 
development of one or more diet-related diseases. For example, 
calcium had a relatively low number of health priority associations (4: 
bone growth in childhood and adolescence, bone maintenance in 
peri-menopausal and menopausal women, and healthy weight gain 
during pregnancy), and intakes associated with health benefits in 
these health priorities (120–1,200 mg/day in pregnancy) were 
comparable to recommended values. However, dietary inadequacy 
was high, with up to 94% not meeting the EAR, thus likely to 
exacerbate calcium-related disease prevalence. On the other hand, 
even if met, recommended intakes may not support optimal health or 
the prevention of diet-related disease. This is evidenced by the 
development of SDTs for some nutrients (3). For example, while no 
dietary inadequacy was identified for the omega-3 fatty acids, this 
nutrient had one of the highest scores for association with health 
priorities, has an SDT, showing that increased intakes are likely 
necessary to optimally support health. Regardless of the underlying 
mechanism, increased intakes are needed for each one of the priority 
nutrients, and a focus on these nutrients in public nutrition policy and 
messaging, including the promotion of foods supplying these 
nutrients, is needed. While previous efforts to uncover priority 
nutrients have been employed, including nutrition surveys and the 
development of SDTs (3), our research and scoring matrix integrates 
three key domains (inadequate intake, evidence for increased needs, 
and association with health priorities) related to nutrient intake and 
health to pinpoint the nutrients that may represent the biggest 
bottlenecks for public nutrition and disease reduction.

The specific priority nutrients identified for each demographic 
group contribute key information to the recommendations of policy 
makers, as well as health organisations and professionals, including 
GPs, nurses, and paediatric dietitians, to name a few. For example, 
Vitamin D emerged as a priority nutrient for all demographic groups. 
This finding is consistent with recent dietary intake and blood status 
data suggesting that the prevalence of vitamin D deficiency and 
insufficiency are critically high and potentially increasing, with a call 
for changes in policy to address this (17). However, vitamin D was the 
sole priority nutrient for pregnant and lactating women, indicating 
that a targeted focus within this demographic group may be warranted. 
Similarly, each demographic group was characterised by a unique set 
of priority nutrients, suggesting that these nutrients require specific 
attention to optimally support health within that group. For example, 
five (zinc, folate, omeg-3 fatty acids, vitamin D, and magnesium) of 
the six priority nutrients identified for males were associated with 
supporting the health priority of anxiety and depression in this 
demographic group. Despite identification as a health priority, anxiety 
and depression have been suggested to be largely overlooked and/or 
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under-reported in adult males (139, 140), accentuating that the 
priority placement of these nutrients is warranted and has the 
potential to address the specific needs of each demographic group.

It is important to highlight that 22 nutrients were identified as 
having inadequate intake in at least one demographic group, despite 
Australia and New  Zealand being developed countries. These 
nutrients included vitamin A, iron, and iodine, the primary nutrients 
of concern for deficiency on a global scale (141). Alongside a clear role 
in health and disease prevention, nutrient and food group 
inadequacies have significant economic implications, including both 
health-care costs and losses in productivity. A recent systematic review 
to assess the cost vs. benefit of folic acid fortification for the prevention 
of neural tube defects identified a return of 17.5 monetary units for 
each monetary unit spent, with doses above 300 μg/100 g showing the 
highest benefit (142). Research on the cost of iron deficiency for 10 
developing countries suggested that the median value of annual 
physical productivity losses was around $2.32 per capita, or 0.57% of 
GDP, with median total losses (physical and cognitive combined) at 
$16.78 per capita, 4.05% of GDP (143). Not surprisingly, there is a cost 
benefit of addressing deficiency; it has been estimated that addressing 
micronutrient (iodine, iron, or vitamin A) deficiency via 
supplementation or fortification efforts produces an economic gain, 
of 4 to 37 US dollars per disability adjusted life-year (144). In America, 
$12.7 billion in direct health care costs was the estimated saving if all 
adults were to consume the US Food and Drug Administration Daily 
Reference Value for dietary fibre of 25 grams per day (145). Research 

to determine the cost benefit of addressing priority nutrients in 
Australia and other developed countries is needed.

In addition to a focus on specific priority nutrients, diet- and 
food-based recommendations can help to support their intake. Table 6 
shows the major dietary sources for each of the population-level 
priority nutrients (3, 146); while folate and dietary fibre feature 
primarily in plant-based sources, the major dietary contributors of 
vitamin D and calcium are animal foods, while magnesium can 
be found in both. Despite the omega-3 fatty acids also being provided 
by both plant and animal foods, the forms are not synonymous and 
have different roles within the body. Further, while ALA (found in 
nuts and seeds) can be converted into DHA and EPA (found in fatty 
fish), the efficiency of this conversion is both low and varies among 
individuals, and much of the literature regarding health associations 
was focused on DHA, DPA, and EPA. Some foods also provide more 
than one priority nutrient, for example, fatty fish provide both 
omega-3 fatty acids and vitamin D, and dairy milk provides both 
calcium and magnesium. The identification and specific targeting of 
key foods providing priority nutrients may serve as a useful and 
effective way to address the lowest-hanging fruit for both malnutrition 
and diet-related disease burdens.

In theory, a balanced diet containing all core food groups, as well 
as fatty fish, should be able to provide all priority nutrients. However, 
there is a current trend towards plant-based diets to support health 
and sustainability, coupled with an increased use of and/or demand 
for plant-based meat and milk alternatives (147, 148). As these foods 
are often matched (to their animal-based counterpart) for use but not 
nutritional composition and/or adequacy (141, 149), these dietary 
patterns may lead to further increases in the inadequacy level of some 
of these key nutrients. This pattern may be of even greater importance 
given that the dietary intake data obtained for the current research was 
based on the most recent survey data available, now up to 20 years old; 
the intake of some nutrients may have declined even further with 
these shifts in dietary patterns. Concern has been expressed regarding 
the use of plant-based milk alternatives as a substitute for dairy milk, 
except for fortified soy milk, due to nutritional inequivalence (148, 
150). In children, this substitution has been suggested to result in 
severe consequences for metabolic health (147). As calcium has been 
identified as having inadequate intakes in both Australia and 
New Zealand, for which the major dietary source is dairy products 
(Table 6) an increased shift from dairy milk to plant-based milks may 
further exacerbate these inadequacies (16, 18). Further, the dietary 
modelling used to develop the most recent Australian Dietary 
Guidelines produced dietary patterns that supported the intake of all 
essential nutrients except for vitamin D (151). These issues need to 
be addressed and taken seriously, particularly for dietary guidelines. 
There is a need to balance recommendations to meet nutrient 
adequacy with dietary shifts in plant-based eating for health as well as 
for environment for all demographic groups.

Rather than existing and acting in isolation, each dietary nutrient 
interacts and can act synergistically with other dietary nutrients, both 
within foods and inside the body following digestion and absorption 
(152, 153). While outside of the scope of this research, inadequacies 
in priority nutrients may impact the provision and activity of other 
nutrients. These interactions may also be involved in the associations 
identified for priority nutrients and selected health priorities. These 
factors are important considerations for future research as well as 
recommendations made by dietary guidelines.

FIGURE 3

The “population-level priority nutrients”; those nutrients with the 
highest priority identified across the demographic groups. 
(A) Prevalence of the priority nutrients across the demographic 
groups; (B) Highest priority (top 25%) nutrients based on population-
level scoring across all demographic groups. n-3, omega-3; Preg/
lact., Pregnancy and lactation; Peri/meno., Perimenopause and 
menopause.
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This research has a number of strengths and limitations. First, 
the holistic and integrated approach of identifying priority nutrients 
is novel in its ability to determine the priority nutritional targets for 
both individual demographic groups, as well as the total population, 
addressing both sides of the nutritional double burden: malnutrition 
and diet-related disease. As current efforts focus on nutrient intake 
or health outcomes independently, they lack the ability to target 
both at the same time. Second, only high-level evidence [based on 
the NHMRC framework (42)] in nutrition was collected to ensure 
robustness in the study design and support the conclusions made. 
Third, the methodology described can be applied to other countries, 
to highlight nutrients that have importance on a global scale and 
allowing for comparisons in nutrient inadequacy and nutrient 
prioritisation. While some nutrients [such as vitamin D (7)] show 
widespread deficiency and many diet-related diseases are common 
throughout developed countries (such as cardiometabolic issues 
and cancer), each country is likely to be characterised by differing 
degrees of inadequacy for each nutrient, as well as specific nutrient 
inadequacies, depending on the food environment. In addition, 
leading causes of morbidity and mortality may differ between 
countries; for example, cardiovascular complications are a leading 
cause of maternal mortality in the US (154) but were not identified 
as such in Australia and New  Zealand. Application of the 
methodology to additional countries and subsequent comparisons 
are warranted.

Although the most recent national nutrition survey data were 
utilised, the major limitation of the findings is the age of the most 
recent dietary intake data, collected in 2011–2012 for Australia, 
2007–2008 for New  Zealand adults, and 2003 for New  Zealand 
children; and it is likely that dietary patterns have evolved and 
shifted since this time, indicating that a repeat of this research when 
new data become available will be essential. Regardless, the findings 
provide a proof-of-concept for the novel methodology presented; 
furthermore, given that many of the nutrient inadequacies 

identified are mimicked by current evidence worldwide (17, 155, 
156), these findings remain relevant despite the age of the included 
data. In addition, while the level of nutrient inadequacy was a major 
aspect of the methodology, nutrient adequacy alone is not sufficient 
to prevent disease; there are many factors involved, including (but 
not limited to) physical activity, smoking and alcohol, social 
connection, and mental health and wellbeing. However, nutrient 
adequacy is a key part of any solution, and the current research was 
focused on nutrition. The methodology for the selection of health 
priorities was designed to identify disease categories regarded by 
authorities as being most pertinent to public health in Australia and 
New Zealand. While robust and specific, this approach does not 
consider individual diseases of significance within each disease 
category, nor additional health outcomes showing increasing 
significance. For example, a high prevalence of vitamin D deficiency 
was identified in patients with cancer sub-category of 
neuroendocrine neoplasms (157), and gastrointestinal diseases such 
as inflammatory bowel disease are both increasing in prevalence 
and involve malnutrition (158). Further iterations of the 
methodology can seek to include such diseases and their nutritional 
relationships. Finally, relating single nutrients to chronic disease 
outcomes has shortcomings, due to disease being complex and 
multifaceted in its causes and presentation. Food context, nutrient 
interactions, and overall dietary patterns play key roles in health, 
and should be  taken into consideration when interpreting the 
findings presented here, though the NRVs tend to allow for these 
complex interactions when setting reference values. The overall 
opportunity lies in the translation of these priority nutrients to food 
and diet-based recommendations. In line with this, the study did 
not address non-nutritive dietary factors, which are additional 
mediators of disease (such as antioxidants), and should 
be considered in policies, guidelines, and/or strategies that use diet 
to address health priorities. Further research to understand the 
highest priority non-nutrients is required.

TABLE 6 Primary dietary sources for each population-level priority nutrient.

Nutrient Primary dietary sources

Vitamin D  • Fatty fish such as salmon, herring and mackerel, and eggs

 • In AUS, fortification is mandated for edible oil spreads (table margarine) and voluntary for modified and skim milks, powdered milk, yoghurts and table 

confections and cheese; fortified margarine is a major source in Australia.

 • In New Zealand, voluntary fortification of margarine, fat spreads and their reduced fat counterparts has been permitted. It is also permitted to add 

vitamin D to dried milk, dried skim milk and non-fat milk solids, skim milk and reduced fat cows’ milk, legume beverages and ‘food’ drinks.

Calcium  • Primary source is dairy milk and dairy milk-based foods.

 • Smaller amounts in bony fish, legumes and certain nuts, fortified plant-based beverages, and breakfast cereals.

Omega-3 

fatty acids

 • ALA is found in legumes, canola oils and margarines, linseed oils and products, certain nuts such as walnuts, and in small amounts in leafy vegetables; 

legumes also contribute some.

 • EPA, DHA, and DPA predominantly in oily fish such as mackerel, herrings, sardines, salmon and tuna, and other seafood.

Dietary fibre  • Plant-based foods and food products, including vegetables, fruits, legumes and pulses, nuts and seeds, and grains.

Magnesium  • Widely distributed in both plant and animal foods.

 • Richest sources are most green vegetables, legumes, peas, beans and nuts, plus shellfish and spices.

 • Milk and milk products.

 • Most unrefined cereals are reasonable sources, but highly refined flours, tubers, fruits, oils and fats contribute little.

Folate  • Main sources in Australia and New Zealand are cereals/grains, cereal products and dishes based on cereals, and vegetables and legumes.

 • Fruit provides smaller amount; orange juice provides a notable contribution due to the recent introduction of fortification with folate.

Primary dietary sources based on information provided within the NHMRC Nutrient Reference Values (3) and Australian Dietary Guidelines (Eat for Health Educator’s Guide) (146). ALA, 
alpha linolenic acid; DHA, docosahexanoic acid; DPA, docosopentanoic acid; EPA, eicosapentanoic acid.
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Conclusion

Multi-nutrient inadequacies within Australia and New Zealand 
were reported across all demographic groups, including nutrients with 
a direct link to increasing rates of diet-related disease. There is a need 
to revisit and revise nutrient and food-based recommendations, to 
ensure adequacy for the population, with a focus on priority nutrients 
that are more likely to impact health. Efforts to provide education and 
awareness about priority nutrients, to ensure that the current double 
burden of malnutrition and diet-related disease is alleviated, rather 
than exacerbated are warranted. Future research needs to focus on the 
identification and promotion of foods that contribute to priority 
nutrient intake, whilst also supporting sustainability efforts and taking 
into consideration cost. While this research was focused on the 
Australian and New Zealand populations, the methodology presented 
can be applied globally, to determine and communicate nutrients for 
prioritisation and nutrition, a fundamental cornerstone for the 
reduction of diet-related disease.
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