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The nutritional habits regulate the gut microbiota and increase risk of an 
autoimmune disease. Western diet is rich in sugars, meat, and poly-unsaturated 
fatty acids, which lead to dysbiosis of intestinal microbiota, disruption of 
gut epithelial barrier and chronic mucosal inflammation. In contrast, the 
Mediterranean Diet (MedDiet) is abundant in ω3 fatty acids, fruits, and vegetables, 
possessing anti-inflammatory properties that contribute to the restoration 
of gut eubiosis. Numerous studies have extensively examined the impact 
of MedDiet and its components on both health and various disease states. 
Additionally, specific investigations have explored the correlation between 
MedDiet, microbiota, and the risk of autoimmune diseases. Furthermore, the 
MedDiet has been linked to a reduced risk of cardiovascular diseases, playing 
a pivotal role in lowering mortality rates among individuals with autoimmune 
diseases and comorbidities. The aim of the present review is to specifically 
highlight current knowledge regarding possible interactions of MedDiet with 
the patterns of intestinal microbiota focusing on autoimmunity and a blueprint 
through dietary modulations for the prevention and management of disease’s 
activity and progression.
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Introduction

There is a widely held belief that the Mediterranean Sea provides an ideal temperate 
environment, characterized by favorable conditions in temperature, humidity, and sunlight, for 
the countries and nations in its vicinity. The prevailing dietary habits among the inhabitants of 
the Mediterranean Sea basin are believed by scientists to contribute to a healthy way of life. From 
the early 1960s onwards, it became evident that individuals in the Mediterranean region adhered 
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to a consistent eating pattern with subtle variations, commonly referred 
to as the “Mediterranean Diet” (MedDiet). However, it wasn’t until 1993 
that the Harvard School of Public Health, Ordway’s Preservation and 
Exchange Trust and the European Office of World Health Organization, 
together with Greek researchers introduced the MedDiet Pyramid, 
based mainly on the eating patterns of Crete Island and Southern Italy 
(1, 2). The Mediterranean Diet (MedDiet) emphasizes a plant-based 
approach, with significant consumption of vegetables, cereals, nuts, and 
fruits, providing ample fiber. It includes smaller quantities of animal 
products, with a preference for seafood and fish.

Over the last 15 years, research has yielded a wealth of knowledge 
regarding human microbiome. The inconceivable diversity and 
abundance of all living organisms (microbes, fungi, viruses, parasites), 
which co-evolved with humans for thousands of years and inhabit the 
human body was revealed by next generation technologies. Observations 
in both experimental models and in humans struggle to define the 
precise relations and interactions between microbiota and health, as well 
as their correlation to different diseases. Symbionts and pathobionts are 
in a constant battle within gut microbiota contributing to a final state of 
symbiosis or dysbiosis. Different external and internal factors affect the 
composition of gut microbiome and diet appears to be one of the most 
important. Dietary habits have figurative results in intestinal microbiota 
and MedDiet seems to favor specific phyla while suppressing others (3).

It is widely-recognized that dietary shifts largely impact on microbial 
populations, which can, in turn, modulate innate and adaptive immunity 
(4). Modern techniques, as Next Generation Sequencing (NGS) 
managed to provide evidence for different stages of dysbiosis related to 
various immune-mediated and autoimmune diseases. However, our 
comprehension of the cause-and-effect model and the exact outcomes 
and implications of these interconnections remains limited (5, 6).

The literature research process involved searching the PubMed 
Database using Boolean operators (AND, OR, NOT) and combinations 
of keywords related to Autoimmune Disease, Autoimmunity, 
Dysbiosis, Mediterranean diet, Microbiome, and Intestinal Microbiota. 
Articles were included based on their relevance to how the 
Mediterranean diet influences intestinal microbiota patterns and their 
implications for autoimmunity. We  refined our investigation to 
encompass studies published in English, exclusively concentrating on 
those conducted on human subjects. Our focus was specifically on 
articles discussing the Mediterranean diet as a whole, while excluding 
studies centered on specific foods within this dietary pattern.

The objective is to offer a comprehensive overview exploring the 
interplay between the Mediterranean Diet and Gut Microbiota in 
Autoimmune Resilience. The review aims to synthesize information 
in these areas, focusing on how the Mediterranean Diet influences 
intestinal microbiota patterns and their implications for autoimmunity. 
Additionally, it seeks to outline dietary modulations for preventing 
and managing autoimmune diseases.

Discussion covers the pathophysiology of autoimmune diseases, 
modulation of microbial dysbiosis, and attenuation of 

autoimmune-related inflammation. It’s evident that diet impacts 
various aspects of innate and adaptive immunity through diverse 
mechanisms, microbiota modulation to enhance the effectiveness of 
dietary interventions in managing autoimmune diseases. Articles were 
excluded if they lacked measurement methods and outcomes or 
focused exclusively on children and adolescents.

On a global scale, we seek to encapsulate the probable connections 
between adhering to the Mediterranean Diet (MedDiet) and the 
intestinal microbiota, particularly in the context of autoimmunity. 
Additionally, we explore potential dietary adjustments for the early 
prevention and effective management of autoimmune diseases.

Special features of the Mediterranean 
diet and links to disease prevention or 
improvement

Mediterranean coastal countries have incorporated in their 
traditional food habits for years a healthy style of cooking and eating. 
As previously stated, the key components of MedDiet emphasize 
firstly, on the consumption of fruits and vegetables, nuts and whole 
grains, accompanied by healthy fats, mainly olive oil, spices and herbs, 
and secondly, on the small quantities of red meat and larger portions 
of fish and poultry. Additionally, the moderate drinking of red wine 
and physical activity/exercise is of great importance. In 2010, 
UNESCO introduced an expanded definition of the Mediterranean 
Diet (MedDiet), encompassing “a set of skills, knowledge, practices 
and traditions ranging from the landscape to the table, including the 
crops, harvesting, fishing, conservation, processing, preparation and, 
particularly, consumption of food” (7).

Large-scale projects demonstrated that the advantageous effects 
on the well-being of the participants seem to be attributed mainly to 
healthy mono-unsaturated fatty acids (MUFAs) in olive oil and 
flavonoids in red wine, nuts, spices and more (8–11). These effects are 
accomplished through the anti-inflammatory and anti-oxidative 
actions of these components, leading to the decrease of inflammation 
and oxidative stress (8). Yet, it’s important to also highlight the 
significant contribution of fiber from fruits and vegetables (1). Fiber 
plays a crucial role in digestive health and disease prevention (3). 
Overall, the Mediterranean Diet’s holistic approach, including a 
variety of nutrient-dense foods, has been linked to numerous health 
benefits, underscoring its importance for overall well-being and 
disease prevention.

Research conducted over the last two decades has consistently 
shown that adherence to MedDiet is beneficial for preventing or 
alleviating various inflammatory diseases. The lion’s share of the 
studies underlines the significant role of the Mediterranean dietary 
pattern in preventing cardiovascular diseases (9), type II Diabetes 
(10), obesity and metabolic syndrome (11, 12). Moreover, increased 
interest in the diet’s results on human morbidities underscores the 
effect of prolonged survival of the Elderly (13), better sleep and 
academic performance in teens (14), increased vitamin D levels, 
improvement of neck bone mineral density in adults who already had 
osteoporosis (15), longer length of telomeres in women (16), decreased 
depression in the Elderly (17), lower risk of fatty liver (18), lower risk 
of aggressive prostate cancer (19), prevention of colon cancer (20), 
reduced incidence of gestational diabetes and premature births (21), 
longevity (22), and improvement of arthritis symptoms (7). Studies 

Abbreviations: ACPA, Anti-citrullinated protein antibody; APCs, Antigen-presenting 

cells; CRP, C-reactive protein; DMARD, Disease-modifying anti-Rheumatic Drug; 

EDSS, Expanded Disability Status Score; GNS, Glucosamine (N-acetyl)-6-Sulfatase; 

MedDiet, Mediterranean Diet; MS, Multiple sclerosis; NGS, Next Generation 

Sequencing; NMO, Neuromyelitis optica; RA, Rheumatoid arthritis; TNF, Tumor 

necrosis factor; TNF-α, Tumor necrosis factor alpha; SCFA, Short-Chain Fatty Acids.
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suggest that the essence of the Mediterranean Diet’s benefits lies in the 
combined consumption of multiple health-promoting foods rather 
than strict adherence to a specific eating pattern. The protective effects 
of specific foods or nutrients in the diet appear to be less significant in 
combating diseases compared to embracing the entire dietary 
plan (23).

Effects of diet on gut microbial 
communities

According to Hippocrates, the father of modern medicine, ‘all 
diseases begin in the gut’. Centuries later, the truth of this wisdom has 
been unraveled through numerous studies, intricate reflections, and 
ambitious projects. Culture-independent techniques, as NGS in 
collaboration with bioinformatics, successfully accomplished the 
characterization of the inhabitants of our body from various 
anatomical sites concluding that the gut is, by far, the most populated 
site of the human body (24). Nowadays, it is well recognized that 
nutritional habits regulate the gut microbiota, and may through its 
effects on microbiome, have an impact on homeostasis and immune 
response and autoimmunity (Figure 1).

Advancements in technology and research have led to new 
insights, particularly in distinguishing between the microbiome and 
microbiota, two terms still under debate (25). Recently, there has been 
a resurgence in the original definitions proposed by Whipps et al. in 
1988 (26). The microbiota, as defined, represents a characteristic 
microbial community within a well-defined habitat, characterized by 
specific physiochemical properties. It encompasses not only the 
microorganisms themselves but also their activities, forming distinct 
ecological niches. This dynamic and interactive micro-ecosystem 
undergoes temporal and spatial changes and is intricately linked with 
macro-ecosystems, including eukaryotic hosts, playing a crucial role 
in their functionality and health.

On the other hand, the microbiome consists of a collection of 
microorganisms from various kingdoms (Prokaryotes such as Bacteria 
and Archaea, as well as Eukaryotes like Protozoa, Fungi, and Algae). 
Its scope extends beyond the organisms themselves to include their 
activities, encompassing microbial structures, metabolites, mobile 
genetic elements (such as transposons, phages, and viruses), and relic 
DNA, all of which are influenced by the environmental conditions of 
the habitat.

Large-scale studies have dictated that different eating patterns 
promote a variety of gut microbiota composition and diversity and 
highlight diet as one of the most significant influencing factors (3, 6, 
27, 28).

Different dietary practices, alterations in dietary components 
-such as fats, proteins and carbohydrates-, food complements as 
probiotics and prebiotics, even salt composition, can all modulate the 
gut microbiota (29). However, such changes can exert an effect not just 
at microbial species level but also at phyla differences (30).

The majority of study findings are based on animal experiments, 
particularly the reshaping of the gut microbiome due to a Western 
diet, resulting in a significant expansion of the Mollicute lineage 
within the Firmicutes, alongside a prevailing reduction in 
Bacteroidetes in the microbial community. Furthermore, research in 
both animals and humans indicates that increased fructose 
consumption contributes to small intestine bacterial overgrowth and 

elevated intestinal permeability, leading to high levels of endotoxins 
(31–35). Nevertheless, the supplementation of prebiotics has the 
potential to reverse microbial population shifts induced by a high-fat 
diet in obese mice (36). Furthermore, mice with an elevated protein 
intake exhibited notable increases of Lactobacillaceae/Lactobacillus 
and decreased Clostridiaceae/Clostridium within their gut microbiota, 
with the extent of these changes being dose-dependent (37). In 
humans, gut microbiota varies at the species level, depending on fat 
and fiber or carbohydrate consumption, between omnivores and 
vegetarians, or even among vegetarian subgroups (3). On the whole, 
dietary patterns play a role in shaping the diversity of gut microbiota. 
This diversity lies on higher taxonomy levels, as phylum, family, and 
genus, rather than at the species level. Changes in individual dietary 
components, such as gluten, may also change composition and 
function of the gut microbiome and host physiology of healthy 
individuals (38). Investigating geographical and socio-economic 
differences in various regions, numerous studies shed light on how 
diet influences gut microbiota, comparing a spectrum of dietary habits 
(39–41).

Interestingly, a large-cohort study on US immigrants from non- 
Western countries led to a relatively fast and enduring loss of gut 
microbiome diversity, accompanied by the decline of bacterial 
enzymes related to plant fiber degradation and the displacement of 
native strains and functions within the first 9 months of immigration 
and, as a result, predisposition of individuals to obesity and metabolic 
diseases. Substantial disruptions in the gut microbiome can 
be partially explained by dietary variations (42).

Gut microbiome’s link to 
autoimmunity

It seems that apart from the identification of all taxa of microbes, 
the ultimate challenge is to define the benefits and drawbacks of the 
‘healthy gut’. The human microbiota, and the gut in particular, has 
been deemed an “essential organ,” containing approximately 1,000 
different microbial species, and counting for over 150 times more 
genes than those of the whole human genome (43, 44).

The pivotal role of human microbiota in health and disease 
involves a diverse array of functions. The microbiota assists energy 
extraction from food, supplies unique enzymes and biochemical 
pathways to the human body, and acts as a physical barrier against 
foreign pathogens through antimicrobial substances or space 
competition (45–47). Last but not least, the gut microbiota is essential 
for the normal development of both the intestinal mucosa and the 
host humoral and cellular immune system, as signals and metabolites 
from the microorganisms are sensed by cells of the innate immune 
system and are recognized as physiological responses (48–50). The 
term “autoimmunity” refers to activation of adaptive immune 
responses, with the involvement of T and B lymphocytes against self-
antigens, i.e., against its own healthy cells and tissues. The actual 
causes of autoimmunity are not fully understood, but various 
environmental factors, including diet, lifestyle and infections, along 
with the genetic background of the host, appear to play a crucial role 
(51, 52). The initiation of adaptive immune responses is rooted in the 
connection between the innate and adaptive immune systems. It is the 
innate immune system that can discriminate between self and 
non-self-antigens, whereas the adaptive immune system recognizes 
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either native antigens or peptides presented in the context of major 
histocompatibility complex molecule (MHC) (53). Therefore, when a 
microbial pathogen or parasite invades the host, both the adaptive 
immune system and the innate system respond accordingly. Studies 
in both humans and animal models designate the involvement of 
commensal microbiota in autoimmunity (54, 55).

The impact of the microbiota on autoimmune diseases, which rely 
on the innate-adaptive immune system connection, can range from 
being neutral to being essential for the initiation of autoimmunity. The 
loss of immune tolerance to self-antigens can occur due to changes in 
microbial composition. Consequently, the human microbiota becomes 
a crucial participant in the initiation and perpetuation of autoreactive 
immune responses, ultimately resulting in self-tissue destruction and 

the overt of autoimmune diseases (54, 55). Several factors contribute 
to the loss of immune tolerance and induction of autoimmunity by 
microorganisms, including molecular mimicry, bystander activation, 
and viral persistence with or without epitope spreading (56–60) 
focused, dominant epitope-specific immune response. This expansion 
targets self or foreign proteins, encompassing subdominant and/or 
cryptic epitopes on the same protein (intramolecular spreading) or 
other proteins (intermolecular spreading) (61).

Self-antigens can be a result of slightly changed antigens, even at 
an amino acid residue. As a result, the immune reaction will affect 
both the “wild” protein or the altered one (61, 62).

Microorganisms could trigger autoimmune responses through the 
expression of heat- shock proteins in their cells when under stress, 

FIGURE 1

Interplay between the Mediterranean diet, gut microbiota, and autoimmune diseases.
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such as high temperatures. These proteins can subsequently become 
targets of the immune system’s response. Heat shock proteins 
produced by microbes have the potential to trigger self-reactivity 
toward the host’s own heat shock proteins, potentially leading to 
autoimmune diseases. This self-reactivity toward heat shock proteins 
serves to protect the host against disease by regulating the induction 
and release of pro-inflammatory cytokines. Nevertheless, antibodies 
targeting self heat shock proteins have been implicated in the 
pathogenesis of autoimmune diseases such as arthritis and 
atherosclerosis (63).

In ‘molecular mimicry’, a shared immunologic epitope between a 
microbe and the host is the prerequisite for the initiation of cross-
reactive immune responses. A notable illustration of molecular 
mimicry as a mechanism leading to the onset of autoimmune disease 
is evident in individuals with rheumatic fever after being infected with 
group A beta-hemolytic Streptococci. Analysis of infected hosts’ sera 
demonstrated the presence of antibodies reactive with heart, joints, 
brain, and skin. Moreover, patients’ antibodies are found to cross-react 
with streptococcal antigens, like the group A carbohydrate antigen, 
the M protein (a Streptococcus- related virulence factor) and to cross-
react with myosin. Cross-reactive peptides from M protein and 
cardiac myosin may provoke the onset of autoimmune disease in mice 
with rheumatic heart disease (62). The mechanism of molecular 
mimicry can also operate at the T-cell level involving antigenic 
epitopes of human and foreign origin which serve as targets of CD4 
and CD8 T-cell responses. Previous studies of our group have 
meticulously addressed the role of molecular mimicry in the induction 
of autoimmune diseases, primarily affecting the liver and the 
gastrointestinal tract (62–82).

‘Bystander activation/killing’ is another mechanism resulting in 
autoimmune diseases. Viral infections can activate Antigen-Presenting 
Cells (APCs) which, in turn, activate primed autoreactive T cells for 
the onset of autoimmune disease. Furthermore, initiation of bystander 
activation can be a result of virus-specific T cells. Bystander effect may 
lead to killing of the uninfected neighboring cells, that increases the 
immunopathology at the infected area (82). Finally, persistent viral 
infections may cause immunopathology, as a result of the permanent 
presence of viral antigens challenging the immune system (83).

Adherence in MedDiet and its effects 
on microbiome related to 
autoimmune diseases: the case of 
rheumatoid arthritis

The Mediterranean diet is rich in fiber, antioxidants and vitamins 
and encompasses anti- inflammatory properties (84). Various data 
have demonstrated that consumption of cereals, fruits and vegetables, 
nuts and legumes, omega-3 polyunsaturated fatty acids in olive oil and 
moderate consumption of red wine flavonoids leads to the reduction 
of pro-inflammatory cytokines, the increase of anti-inflammatory 
cytokines and the decrease of oxidative stress (83, 84). It has been 
shown, that adherence to a Mediterranean pattern diet leads to the 
reduction of CRP and TNF-α levels (85, 86).

Several studies investigated the role of MedDiet in Rheumatoid 
Arthritis (RA), a common autoimmune rheumatic disease. 
Highlighting the immunopathological characteristics of rheumatoid 
arthritis (RA), underscore the distinctive cytokine profiles associated 

with the condition, notably the heightened levels of Th1/Th17 
cytokines and the compromised function of Tregs (87). Immune 
dysregulation, and imbalance between the function, differentiation, 
and regulation of Th17 and Treg cell plays a highlighting role in 
disease onset (87) disorders, rheumatoid arthritis is associated with 
oxidative stress. This refers to a state being a quintessential example of 
chronic inflammatory autoimmune where the level of reactive oxygen 
species gradually rises, either due to increased production, diminished 
antioxidant defenses, or both, ultimately leading to disruptions in 
redox signaling (88). Data suggest that adopting a Mediterranean Diet 
model reduces the inflammatory activity of the disease, enhances 
functionality, and improves the quality of life for patients with RA 
(89). Another study claims that adherence to MedDiet is associated 
with decreased disease activity, improved physical function, and 
heightened vitality individuals with RA (87). Subsequent studies have 
yielded inconsistent findings (90–98). A recent systematic review 
analyzing the data so far provided from prospective human studies, 
concluded that MedDiet has beneficial effects in reducing pain and 
increasing physical function in people with RA but underline that 
there is insufficient evidence to support the widespread 
recommendation of the Mediterranean Diet for the prevention and 
management of RA (7).

Data from studies on short term MedDiet and fasting revealed no 
significant impact of these diets on the gut microbial profile in 
individuals with RA or fibromyalgia (98).

Recent studies have underscored the importance of long-term 
adherence, lasting more than 3 months to MedDiet is required to 
produce significant diversity in the gut microbiome of overweight 
omnivores (99). The CARDIVEG study reported that MedDiet 
significantly alters the abundance of Lachnoclostridium, Enterorhabdus 
and Parabacteroides, while vegetarian diet significantly disturbs the 
abundance of Streptococcus, Anaerostipes, Clostridium sensustricto, 
and Odoribacter (99).

A recent study suggests the potential role of P. copri in the 
preclinical evolution and pathogenesis of synovitis in RA, based on 
the analysis of anti-P. copri antibody responses in different RA 
cohorts (100).

RA drugs include disease-modifying antirheumatic drugs 
(DMARDs), target cytokines and immune responses. Patients usually 
initiate treatment with conventional DMARDs such as methotrexate. 
However, exploring alternative approaches like probiotics, prebiotics, 
herbal remedies, and dietary interventions is crucial for discovering 
new avenues for treating the disease.

Modulating gut microbiota holds promise as a potential approach 
for treating rheumatoid arthritis (RA) microbiota transplantation 
(FMT) is being investigated for its ability to rebalance the gut 
microbiota and improve RA symptoms (101).

In rheumatoid arthritis (RA), the presence of Prevotella spp., 
particularly P. copri, exacerbates the disease by promoting 
proinflammatory metabolite production. Colonization with P. copri 
and a fiber-rich diet leads to dysbiosis, characterized by metabolites 
like succinate and fumarate, worsens RA symptoms (102). Conversely, 
a Mediterranean diet’s effectiveness in RA treatment may vary based 
on gut microbiome personalized treatment approaches and may aid 
in identifying predictive biomarkers microbiota in mediating dietary 
effects on RA could help elucidate why certain dietary enhancing the 
efficacy of dietary interventions in RA management, ameliorate and 
exacerbate colitis in animal models. While they have the potential to 
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improve colitis symptoms, caution is advised as certain prebiotic fibers 
may contribute to gut dysbiosis and lead to excessive production of 
colonic butyrate, potentially worsening inflammatory bowel disease 
(IBD) (103). The fermentation products generated by consuming 
high-fiber diets (and possibly Mediterranean diets) can have adverse 
effects, particularly in the presence of intestinal inflammation. For 
instance, the production of butyrate after diet fermentation may 
exacerbate inflammation by promoting NLRP3 activation.

Meddiet lead to changes of intestinal 
short-chain fatty acids (SCFA)

Such studies on gut microbiome changes in patients with RA 
adherent to MedDiet have not been performed so far, but several data 
from research conducted on the gut microbiome and its relation to RA 
may be  relevant. Several studies have assessed changes of the 
microbiota in relation to MedDiet in patients with RA. An early study 
suggested that changes of intestinal Short-Chain Fatty Acids (SCFA) 
from the microbiota are not necessarily correlated with clinical 
improvements and disease activity in RA (104).

An association between MD and increased SCFAs production is 
well known (105). Rich fiber foods like fruits, vegetables, and legumes, 
commonly consumed by those following the Mediterranean Diet, are 
broken down by Firmicutes and Bacteroidetes bacteria. This process 
results in the production of elevated levels of fecal Short-Chain Fatty 
Acids (SCFA) (106, 107).

Among these SCFAs, butyrate, extensively studied for its 
functional role, is produced during the fermentation of dietary fiber 
by the anaerobic intestinal microbiota. Butyrate has beneficial effects 
on intestinal barrier integrity, as it enhances the expression of tight 
junction proteins. Moreover, it helps prevent deleterious intestinal 
permeability and bacterial translocation, thereby exerting a protective 
influence on the initiation of pro- inflammatory responses (106, 108, 
109). To relevance in collagen-induced arthritis, an animal model of 
RA, butyrate is able to suppress RA features and this is achieved via a 
butyrate- mediated increase of IL-10 producing Tregs and a decrease 
of Th17 (110). However, not all Mediterranean type of diets increase 
SCFAs, and butyrate in particular at the same extent, and this may 
have an impact in their ability to suppress anti- inflammatory immune 
responses or to influence intestinal microbiota-related influence of the 
immune system.

Modified Mediterranean type enriched for SCFA production are 
increasingly popular but their effect in RA has not been assessed. 
Omnivores who consume a MedDiet-pattern diet rich in fruit, 
legumes and vegetables not only have increased SCFAs (106), but also 
decreased trimethylamine N-oxide (TMAO), a microbial metabolite 
the precursors of which are carnitine and choline which are primarily 
found in foods of animal origin (106, 111).

Several microbial genera, like L-Ruminococcus, have been linked 
to the intake of animal proteins such as a diet plenty in red meat 
consumption and increased TMAO levels. This is very interesting, in 
view of recent data demonstrating a twofold to threefold increased 
abundance of Ruminococcus gnavus in patients with spondylarthritis 
and to a lesser extent in RA patients compared to healthy 
controls (112).

However, the most notable association over the last few years is 
that linking P. copri the TMAO-producing anaerobic, Gram-negative 

Bacteriodetes, with the development of RA, an association thoroughly 
reviewed elsewhere (113, 114). Prevotella spp. are abundant in the 
periodontium, the intestine, and the respiratory system and its 
heightened presence is deemed a risk factor for RA and features 
associated with RA, such as cardiovascular risk- events (113, 115–
118). Furthermore, it may impact the metabolism of the microbiota 
to reduce the effectiveness of the common disease-modifying anti-
rheumatic drug (DMARD) methotrexate (119). The question arises as 
to whether adherence to MedDiet alone or in combination with other 
diet supplementation can alter gut dysbiosis to a state that Prevotella 
spp. are not dominant (62, 120, 121). This event would stop the vicious 
circle of immunological events that take place, Prevotella being in the 
center of it and could prevent from RA.

A recent elegant study has shown that the microbiota of 
individuals in pre-clinical early RA stages had significantly altered 
fecal microbiota composition compared with their first- degree 
relatives (FDRs) (116). In these pre-clinical RA individuals, who had 
either developed anticitrullinated peptide antibodies or rheumatoid 
factor positivity, and/or exhibited symptomatology and features 
associated with possible RA in the ‘pre-clinical stages,’ their feces were 
significantly enriched in the bacterial family Prevotellaceae, 
particularly Prevotella spp., compared to their first-degree relatives 
(FDRs) (116). These data clearly demonstrate that Prevotella spp. 
enrichment in early RA and very early RA may indeed be  a 
characteristic feature of these subclinical phenotype raising the 
expectation that Prevotella spp. are pathogenically relevant to the 
development of the disease, from early stages, rather than consequence 
of established disease state.

We recently reviewed the existent literature tackling this topic and 
thoroughly discussed mechanistic scenarios, which could implicate 
Prevotella species in the establishment of RA (122). We underlined the 
decisive role of Prevotella species in the potential induction of either 
ACPA-positive or ACPA-negative RA. This contrasts that of the well-
known association of P. gingivalis and ACPA-positive RA and the 
inability of this oral commensal to explain the induction of ACPA-
negative RA. Though several components of the Prevotella-host 
interactions are still puzzling and improperly explored, some of the 
features linking P. copri, as well as oral Prevotella species, to RA are 
striking. One of the most fascinating has recently been obtained by 
Pianta et  al. (123). These authors using liquid chromatography–
tandem mass spectrometry identified two novel RA autoantigens, 
targeted by half of the ACPA-pos and ACPA-negative patients with 
RA. The two autoantigens were the N-acetyloglucosamine- 6- sulfatase 
(GNS) and filamin A (FLNA). Of interest, both GNS and FLNA were 
expressed in synovia, a finding that supports the notion that they 
could be relevant to immune-mediated tissue destruction. The former 
also appeared to be citrullinated, which makes it likely target of ACPA 
antibodies. Data indicating that antibody concentrations of these 
autoantibodies are correlated further supports the likely association 
of anti-GNS antibodies with ACPA (123). These autoantigens were 
recognized by more than half of the RA patients, and were also present 
in ACPA-negative RA. Of immunological relevance, Pianta et al. (123) 
found that the epitopic regions of GNS and FLNA not only are highly 
homologous to Prevotella copri but are also targeted by B and T-cells 
responses, also cross-recognizing the Prevotella homologs. Thus, there 
is evidence that a molecular mimicry mechanism is in operation, 
which could account for the induction of those autoantibodies (123). 
Of relevance, molecular mimicry involving an oral Prevotella sp. and 
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collagen I, have been previously reported and has been considered a 
likely trigger for chronic periodontitis and possibly 
inflammatory (124).

The GNS peptidyl sequence was highly homologous to a sequence 
from sulfatase proteins of the Prevotella sp. and Parabacteroides sp. 
Finding marked homologies between human and microbial highly 
conserved proteins is extremely common and the homology reported 
by Pianta et  al. belongs to this category (123). In a similar vein, 
homologies between human and microbial heat shock proteins and 
human and microbial 2-oxo-acid dehydrogenase complexes have been 
identified and suggested as triggers of various organ and non-organ 
specific immune-mediated and autoimmune diseases. Because they 
are extremely common, several investigators, including authorities in 
the field, suggested that molecular mimicry involving such homologs 
must not be regarded as a perpetuator of autoimmunity.

Similarities between human GNS and Prevotella were shown by 
Pianta et al. (123). The same human GNS sequence had also marked 
amino acid similarity with the gut commensal Parabacteroides sp. 
Using a BLAST program, they investigated for additional similarities 
that could be potentially homologous to the human GNS epitope. 
Microbial mimics that have similarities to the core epitope region of 
the human GNS epitope were also presented.

Particularly, the pentameric -FFMMI- 224-228 aa of human GNS 
is contained in the transmembrane protein of Streptococcus gordonii 
(aa 43–47), transcriptional regulator of Lactobacillus casei (aa 
464-468), acetyl-CoA carboxylase, carboxyl transferase subunit beta 
of Clostridium cellulolyticum H10 (aa 133-137), hypothetical protein 
of Vibrio phage KVP40 (aa 23-27) and several other foreign proteins, 
suggesting that many other triggering factors may really exacerbate 
GNS-specific autoreactivity in RA by molecular mimicry. Thus, 
Pianta’s homologs (123) cannot be disregarded as the relevant mimics 
are targets of cross-reactive responses and the humoral responses 
against the microbial peptides are correlated with disease-specific 
autoantibodies, as ACPAs. Moreover, gut dysbiosis leads to 
immunologic alterations, which are pivotal for the loss of 
immunological tolerance to RA-specific autoantigens. This was 
achieved in a stepwise manner and that several immunological 
mechanisms are involved, molecular mimicry being just one of those. 
Firstly, an external parameter leads to changes in the gut microbiome, 
as well as changes on the microbiome of the oral cavity and an 
establishment of gut dysbiosis (123). This parameter or combination 
of parameters could be drugs, infections, changes of diet habits from 
Mediterranean diet to Western diet and more. Gut dysbiosis, in turn, 
leads to the establishment of an immunological environment, which 
alter the composition of regulatory T and B cells and diminishes their 
capacity to suppress autoreactive immune responses and augments 
pro- inflammatory Th17 responses. The enrichment of specific species, 
such as Prevotella, has additional consequences, notably the activation 
of the immune system against a gut microbe. This can initiate anti-
Prevotella responses, which, through mechanisms like molecular 
mimicry and others, in conjunction with various factors, may lead to 
the induction of autoreactive responses. This initiation can lead to the 
development of autoimmune disease only in susceptible 
individuals (125).

Of indirect relevance to the topic, among the American 
indigenous populations, the Canadian Inuit population has the lowest 
age-adjusted prevalence of RA (at 0.65%, with an incidence of 48.2 per 
100,000 per year) (126). This is of interest because a microbiome study 

has found that Prevotella spp., were enriched among the Inuit 
consuming a Western diet.

However, the gut microbiome of Inuit consuming a traditional 
high-fiber diet (127) had significantly less genetic diversity within the 
Prevotella genus, compared to the Inuit consuming a Western diet 
further, indicating that a low-fiber diet might not only select against 
Prevotella but also decrease its diversity, a factor which could 
be relevant to the induction of autoreactive responses implicating 
Prevotella in inflammatory arthritis.

A recent study has shown that berberine modulates gut microflora 
and exerts an anti- inflammatory effect on collagen-induced arthritis 
(128). This is achieved because the abundance of Prevotella is 
diminished and the abundance of butyrate-producing bacteria in CIA 
rats is increased (128).

Nonetheless, a study examining changes in gut microbiota 
associated with the MedDiet discovered a greater presence of 
Bacteroidetes and a lower Firmicutes–Bacteroidetes ratio in those 
with a higher Mediterranean Diet score (129). However, the study did 
not report significant differences in levels of Bacteroides and 
Prevotella, genera included in the Bacteroidetes phylum (129). Again, 
it is not clear whether long-term adherence to MedDiet may indeed 
exert an influence on the levels of Prevotella, which could in turn 
utilize beneficial effects in preventing from RA or ameliorating 
disease’s clinical features. Another study conducted an integrative 
analysis of distal gut microbiota composition and functions, as well 
as intestinal metabolites in Egyptian teenagers consuming 
Mediterranean Diet- related products. The study compared this 
cohort with a group of USA teenagers consuming a Western-type diet 
enriched in animal proteins, fats, and processed carbohydrates (130). 
The Prevotella enterotype predominated in gut microbial communities 
of the Egyptian teenagers while the Bacteroides enterotype dominated 
the USA cohort. As it was expected the intestinal environment of 
Egyptian teenagers was characterized by higher levels of SCFA, an 
increased prevalence of microbial polysaccharide degradation-
encoding genes, and a higher proportion of several polysaccharide-
degrading genera while the gut environment of the American children 
was enriched in proteolytic microbes and end products of protein and 
fat metabolism (130).

Adherence in MedDiet and its effects 
on microbiome related to 
autoimmune diseases: the case of 
autoimmune disease of the central 
neuros system (CNS)

Multiple sclerosis (MS) and Neuromyelitis optica (NMO) is an 
autoimmune disease of the CNS, with some overlapping symptoms. 
A few studies have shown that both genetic and environmental factors 
may affect the etiology of the MS, including dietary habits. Moreover, 
the onset of the disease post microbial infections via molecular 
mimicry and bystander activation mechanisms is also a scenario (131, 
132). The multifaced roles of gut microbiome on MS pathogenesis has 
been shown in a reciprocal way; germ free or gnotobiotic mice 
demonstrated considerably reduced susceptibility to experimental 
autoimmune encephalomyelitis (EAE), a MS model, while CNS 
disease may affect gut homeostasis. The gut-brain connection is 
largely supported by evidence on individuals with MS (133, 134).
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Th17 cells are normally required for host defense against invaders, 
but they may have vicious effects in terms of autoimmunity, also 
suggested by their increased numbers in MS. The role of gut 
microbiota in Th17 cells and their IL-17 product, and their increased 
numbers of the latter ones in MS have been reviewed in detail (135, 
136). On top of that, the main role of Tregs is the suppression of 
autoreactive T cells, thus maintaining peripheral tolerance. Although 
abundant, demonstrate reduced function in MS patients. Taken 
together, along with the outcome of several studies regarding gut 
microbiota composition in CNS patients, the gut of MS individuals is 
characterized by microbial dysbiosis, i.e. impaired intestinal 
microbiota (131). It is widely accepted that dietary habits affect the 
composition of human microbiota. High-fiber foods enhance gut 
populations of the Firmicutes and Bacteroidetes phyla, which produce 
short-chain fatty acids (SCFAs), which, in turn, suppress inflammation 
via Treg induction (137).

In 2016, the findings of a small, randomized control trial (RCT) 
of a Mediterranean-style dietary intervention for MS were published 
(138). Thirty-three Relapsing–Remitting MS (RRMS) patients were 
randomized into three groups: group  1 undertook a dietary 
intervention with vitamin D supplementation, group 2 started vitamin 
D without a dietary intervention, and group 3 underwent a dietary 
intervention with vitamin D and other nutritional supplements, 
including a multivitamin and fish oil supplement (138). The study 
failed to find a significant effect of the intervention on the Expanded 
Disability Status Score (EDSS) or the Fatigue Severity Scale (FSS) 
(138). Published data evaluating adherence to the Mediterranean Diet 
pattern, assessed using alternate MedDiet score, and the risk of an 
initial clinical diagnosis of the precursor of multiple sclerosis (MS), 
specifically central nervous demyelination (139). The researchers 
found that a Mediterranean diet, included unprocessed red meat, was 
associated with a reduced risk of demyelination in the Australian adult 
population. Their conclusion suggested that integrating unprocessed 
red meat into a Mediterranean diet might bring about beneficial 
effects for individuals at a high risk of multiple sclerosis (MS).

Adherence in MedDiet and its effects on 
microbiome related to autoimmune 
diseases: the case of systemic lupus 
erythematosus (SLE)

Apart from MS and RA, there are other autoimmune diseases 
related with the gut microbiota, as Systemic Lupus Erythematosus 
(SLE), and the Inflammatory Bowel Disease (140–142). Concerning 
Systemic Lupus Erythematosus, there are conflicting results from a 
limited number of studies indicating a smaller Firmicutes-to-
Bacteroidetes (F:B) ratio compared to healthy individuals. It appears 
that this ratio is not well-established as a clear cause or consequence, 
as it could be  both simultaneously (143). Howbeit, Enterococcus 
gallinarum, member of gut commensals of the Firmicutes, appears to 
promote a lupus-like disease (140) In Inflammatory Bowel Disease 
(IBD), specifically in ulcerative colitis (UC) patients, Faecalibacterium 
prausnitzii is reduced in feces. In Crohn’s disease biopsies, 
Faecalibacterium prausnitzii (F. prausnitzii) is also detected (143).

In conclusion, upcoming research focusing on the influence of 
specific components or the entirety of the Mediterranean diet in 
ameliorating microbial dysbiosis and mitigating autoimmune-related 

inflammatory reactions holds significant importance. The diet seems 
to influence components of both innate and adaptive immunity 
through a myriad of mechanisms, either independently 
or collaboratively.

Restoring microbiota through 
‘nutraceuticals’

Nutraceuticals, a term coined by their “Godfather” Dr. Stephen 
De Felice in 1989, embody a fusion of nutritional and pharmaceutical 
concepts. They encompass products that are isolated or purified from 
foods. Established nutraceuticals include probiotics, prebiotics, 
omega-3 and -6 fatty acids, and others like polyphenols, 
phytoestrogens, flavonoids and antioxidants, with already recognized 
favorable effects under specific conditions (143–148). Nutraceuticals 
are “related” to the human microbiota that includes 6 taxonomic 
bacterial phyla with Firmicutes and Bacteriodetes occupying the 90% 
of the host’s colonized areas (149). Nutraceuticals include probiotics, 
which WHO defines as “live micro-organisms” which, when 
administered in adequate amounts, confer a health benefit on the host.

Probiotics produce short chain fatty acids (SCFAs), which are able 
to restore both population numbers and diversity of microbiota. 
Lactobacillus species may decrease or even prevent the symptoms of 
antibiotic associated diarrhea (AAD) (150), while a meta-analysis 
study showed positive effect of probiotics on AAD (151). Furthermore, 
Lactobacillus, Bifidobacterium or Escherichia coli species have positive 
impact on host against metabolic diseases or gastrointestinal 
disorders (149).

Prebiotics, on the other hand, are “dietary carbohydrates 
stimulating the development of gut bacteria or probiotics post external 
administration, having advantageous results on the host” (152). 
Breakdown of carbohydrates supply the body with SCFAs, − acetate, 
propionate and butyrate- which have a beneficial role on the 
composition and diversity of human microbiota (153). Short-chain 
fatty acids (SCFAs) have immunomodulatory effects, but the 
underlying mechanisms are not well understood. SCFAs promote the 
differentiation of Tregs and protect the integrity of the gut barrier 
function (153). Also, these fatty acids may regulate immune 
procedures through G-protein coupled receptors (GPCRs). Gut 
homeostasis is critically correlated to these specific metabolites as 
acetate, butyrate and propionate and its disruption could lead to 
Inflammation Bowel Disease (IBD). SCFAs are very promising 
interventions for IBD therapy as they reinforce the gut barrier (153). 
Another important epigenetic factor is the family of histone 
deacetylase (HDACs) and particularly ADACs inhibitors coming 
from diet components for example chrysin found in fruits, vegetables, 
olive oil and red wine (154, 155). Experimental studies present models 
with HDAC inhibitors for treating T-cell mediated autoimmune 
diseases (156). Yet, in IBD again particular diet compounds from 
MedDiet may regulate epigenetic changes to diminish inflammation 
and the cancer risk (157).

Moreover, the advantageous impact of prebiotics on host health 
comprises alterations in gut microbiota composition, immune host 
capacity, energy production, enhanced mineral absorption and better 
functions of the intestinal barrier (158). Administration of inulin or 
Fructo-oligosaccharides (FOS) on cancer patients demonstrated a 
positive impact of these components on gut populations of 
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Lactobacillus and Bifidobacteria (159). Ingredients in onions and garlic 
may have beneficial effect on particular gut microbial species 
populations, and, on the other hand, lethal effects on pathogens like 
E. coli and S. aureus (160).

Phytoestrogens include flavonoids, which regulate the intestinal 
barrier and own antimicrobial effect against pathogens, being 
characterized as alternative antibiotics (161). Anthocyanins and 
flavonoids, found in fruits like grapes and apples, may prevent a wide 
range of diseases (162). Polyphenols, as quercetin, found in apples, 
grapes, onions, tomatoes, nuts and seeds, alters the gut microbiota in 
overweight mice fed with high-fat sucrose diet (163). Resveratrol, 
another polyphenol taken as a food supplement regulates gut 
microbiota dysbiosis caused by high-fat diet, by enhancing growth of 
Lactobacillus and Bifidobacterium, raising the ratio of Bacteroidetes/
Firmicutes and by hampering growth of E. faecalis (164). Carvacrol 
and thymol, phenols in the aromatic plant Oregano vulgare, have 
antibacterial properties and ability to affect the gut microbiota and the 
immune status in animal models (165–167). Use of omega-3 and -6 
polyunsaturated fatty acids, as supplements, alter gut microbiota 
composition, by increasing Bacteroidetes/Firmicutes ratio, restrains 
growth of pathogenic bacteria like Helicobacter, Firmicutes, 
Pseudomonas sp., thus, avoiding immunological disturbances (165).

Conclusion

Taking together, there appears to be a strong correlation between 
dietary habits, whether in the form of foods or dietary supplements 
like nutraceuticals, the modulation of gut microbiota, and the critical 
role of human commensals in disease prevention and regulation. This 
extends to the onset and development of various immunological 
disturbances, including autoimmune and metabolic diseases. The 
Mediterranean diet is based on fruits, vegetables, seeds, nuts, fish, 
whose composition is rich in prebiotics, phytoestrogens as flavonoids, 
polyphenols and omega −3 and − 6 polyunsaturated fats. Several 
studies have established a correlation between Mediterranean dietary 
habits and favorable effects on gut microbiota composition. This 
association suggests a potential positive impact on the risk and 
progression of inflammatory diseases. Consequently, it could 
be critically important to advocate for the adoption or reinforcement 
of Mediterranean dietary habits. Such habits may contribute to the 
modulation of microbial homeostasis, mitigate the effects of pathogen 
invasions, and influence the inflammatory pathway, ultimately 

benefiting health. However, further studies, on its individual 
components and/or total/overall compounds of the Mediterranean 
diet “philosophy” on health’s benefit via microbiota homeostasis 
should be  conducted, to address the effect of the diet and its 
constituents in the prevention and clinical management of patients 
affect with specific autoimmune disorders.
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