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Intermittent protein restriction
before but not after the onset of
diabetic kidney disease
attenuates disease progression in
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Yan Kong?, Yajin Liu?, Xuejiao Zhang!, Chunyan Shan'*,
Haipeng Sun®?* and Yanhui Yang*

!NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases,
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Background: High dietary protein intake exacerbates proteinuria in individuals
with diabetic kidney disease (DKD). However, studies on the impacts of low
protein diet (LPD) on DKD have yielded conflicting results. Furthermore, patient
compliance to continuous protein restriction is challenging.

Objective: The current study aims to investigate the effects of intermittent
protein restriction (IPR) on disease progression of DKD.

Methods: Diabetic KK-Ay mice were used in this study. For the IPR treatment,
three consecutive days of LPD were followed by four consecutive days of normal
protein diet (NPD) within each week. For early intervention, mice received IPR
before DKD onset. For late intervention, mice received IPR after DKD onset.
In both experiments, age-matched mice fed continuous NPD served as the
control group. Kidney morphology, structure and function of mice in different
groups were examined.

Results: Intermittent protein restriction before DKD onset ameliorated
pathological changes in kidney, including nephromegaly, glomerular
hyperfiltration, tubular injuries and proteinuria, without improving glycemic
control. Meanwhile, IPR initiated after DKD onset showed no renoprotective
effects despite improved glucose homeostasis.

Conclusion: Intermittent protein restriction before rather than after DKD onset
protects kidneys, and the impacts of IPR on the kidneys are independent of
glycemic control. IPR shows promise as an effective strategy for managing DKD
and improving patient compliance.
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1 Introduction

Diabetic kidney disease (DKD), which progresses from an
initially elevated glomerular filtration rate (GFR) to albuminuria
and reduced GFR, is the leading cause of end-stage renal disease
(ESRD) and the strongest predictor of mortality in diabetic patients
(1-4). It is estimated that 783 million adults worldwide will have
diabetes by 2045. With up to 40% of individuals with type 2 diabetes
developing DKD, the incidence of DKD will continue to be an
unmet clinical need (5, 6).

High protein intake is a well-established risk factor for the
progression of DKD. In DKD, high protein intake can lead to
significant increases in renal blood flow and GFR, which are
thought to precede the loss of nephron units (7-12). Such increases
can be prevented by protein restriction (PR) (13-16). In individuals
with DKD, low protein intake may slow the progression of DKD,
delay the initiation of renal replacement therapy and reduce urinary
albumin excretion (17-28). It has been suggested that people with
stage 3 to 5 of DKD should aim for a reduced dietary protein intake
(DPI) of 0.6 to 0.8 g/kg body weight (BW) per day (29, 30).

Despite the potential benefits, patient compliance with
continuous PR limits its application (19). There was an inverse
relationship between patient compliance and urinary albumin
excretion (28). More than a third of individuals do not have good
compliance with continuous PR (20, 24). This brings intermittent
protein restriction (IPR) intervention into consideration. An
intermittent protein-restricted, calorie-restricted diet, known as
the fasting mimicking diet (FMD), improved patient compliance
and reduced dietary fatigue (31, 32). IPR has been shown to
benefit insulin sensitivity similarly to continuous PR (33). It
remains unclear whether IPR can provide beneficial effects on the
progression of DKD.

Early intervention of DKD is crucial for improving renal
outcomes. The rate of progression to ESRD in diabetic individuals
with macroalbuminuria is about 14 times faster than that in
those with other kidney diseases. The risk of all-cause mortality
increases significantly as DKD progresses (34). Medication initiated
after stage 3 or 4 of DKD may not slow disease progression as
effectively as that started at the onset of microalbuminuria (35-37).
Furthermore, in diabetic individuals, PR yields better results when
implemented in the early stages of kidney disease or even before
its onset (38, 39). Therefore, early detection and intervention is
urgently needed to delay the onset and progression of DKD.

In this study, we used the KK-Ay mice, which closely mimic
type 2 diabetic kidney disease, to investigate the effects of IPR
on renal morphology, structure and function in DKD. The results
showed that IPR before but not after the onset of DKD attenuated
DKD progression.

2 Materials and methods

2.1 Mice

The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Committee on
Ethics in the Care and Use of Laboratory Animals of Chu Hsien-
I Memorial Hospital, Tianjin Medical University (Approval No.
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DXBYY-IACUC-2022070, approved on 1 March 2022). Nine-week-
old male KK-Ay mice, which spontaneously develop diabetes, were
obtained from HFK Bioscience Co. Ltd., Beijing. The animals
were maintained in specific-pathogen-free, temperature-controlled
(23 £ 1°C) facilities with optimal humidity, and a 12-h light/dark
cycle at the Tianjin Key Laboratory of Metabolic Diseases, Chu
Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology,
Tianjin Medical University.

2.2 Mouse diet and intermittent protein
restriction (IPR)

The normal protein diet (NPD) and the specialized low protein
diet (LPD) based on the NPD were obtained from HFK Bioscience
Co. Ltd., Beijing (Table 1). The NPD provided 16.46% of calories
from protein, 37.89% of calories from carbohydrates, and 45.65%
of calories from fat. The LPD provided 5% of calories from protein.
The reduced calories from protein in LPD were replaced by calories
from carbohydrates, while calories from fat were held fixed, making
the two diets isocaloric (4.25 kcal/g). In the IPR group, mice were
fed LPD for three consecutive days followed by NPD for four
consecutive days in each week, as previously described (33). For
early intervention, mice were randomized to receive immediate
intervention before the onset of DKD. For late intervention, mice
received intervention after the onset of DKD when their urinary
albumin to creatinine ratio (ACR) exceeded 300 mg/g in the
absence of elevated serum creatinine levels. In both experiments,
age-matched mice fed continuous NPD served as controls. All mice
had ad libitum access to water and food except as indicated in the
procedures below.

2.3 Measurement of blood glucose and
insulin

Mice were fasted for 6 h before blood glucose was measured.
Plasma insulin levels were measured using a murine enzyme-linked
immunosorbent assay (ELISA) kit from Jiangsu Meimian Industrial
Co., Ltd., Jiangsu, China. The homeostasis model assessment of
insulin resistance (HOMA-IR) was calculated.

2.4 Intraperitoneal glucose tolerance
testing (IPGTT)

After overnight fasting, a single dose of 1 g/kg BW glucose was
injected intraperitoneally and blood glucose levels were measured

TABLE1 Comparing the nutritional and caloric composition of two diets.

Normal Low protein
protein diet diet

Protein (%) 16.46 5

Carbohydrate (%) 37.89 49.35
Fat (%) 45.65 45.65
Energy value (kcal/g) 425 425
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at various times. The area under the curve (AUC) is then developed
to quantify the overall increase in blood glucose during the test.

2.5 Biochemical measurements

Immediately after anesthesia, whole blood was collected from
the hearts of mice and placed in EDTA-K2-treated tubes. The blood
was then centrifuged at 3,500 rpm for 10 min to separate the plasma
supernatant, which was stored at —80°C for further experiments.
The levels of plasma urea nitrogen, albumin, triglycerides (TG),
total cholesterol (TC) and urinary retinol binding protein (RBP)
were measured. Plasma levels of low-density lipoprotein cholesterol
(LDL-C), creatinine and cystatin C were determined using murine
ELISA kits (Jiangsu Meimian Industrial Co., Ltd.). The levels of
urinary albumin, creatinine, Kim-1, NGAL, podocin and nephrin
were also measured using ELISA Kkits from Jiangsu Meimian
Industrial Co., Ltd.

2.6 Body composition analysis

Body composition analysis in mice was performed using
quantitative magnetic resonance (QMR).

2.7 Glomerular filtration rate
measurement

Mice were weighed and anesthetized with isoflurane. They were
then injected retro-orbitally with FITC-labeled inulin (2 pL/g of

10.3389/fnut.2024.1383658

BW). Blood samples were taken from the tail vein at various times.
After centrifugation, the plasma supernatant was transferred to EP
tubes and diluted with HEPES buffer (pH 7.4). The fluorescence
intensity of the diluted plasma samples was measured using a
microplate reader. Glomerular filtration rate (GFR) was calculated
using GraphPad Prism software version 9.4.1.

2.8 Morphological analysis

After sacrifice, unilateral mouse kidney tissues were fixed in
4% paraformaldehyde and embedded in paraffin. Tissue sections
were stained with hematoxylin and eosin (HE), Masson’s trichrome
(MT) and periodic acid-Schiff (PAS). Tissue morphological changes
were observed under an inverted microscope and photographed
with the attached camera. Each staining was performed on 5
independent slides.

2.9 RNA-seq

High-throughput RNA sequencing (RNA-seq) method was
used by LC Bio Technology CO., Ltd. (Hangzhou, China) to obtain
gene expression profiles in our study. Total RNA was extracted
from kidney tissues and subjected to mRNA enrichment, cDNA
library construction and Illumina sequencing. The resulting reads
were aligned to the reference genome and gene expression levels
were quantified using Fragments Per Kilobase of exon model per
Million mapped fragments (FPKM). Differential gene expression
analysis was performed to identify significant changes. Pathway and
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FIGURE 1

The beneficial metabolic effects of intermittent protein restriction (IPR) after the onset of diabetic kidney disease (DKD). (A) Protocol for investigating
the influence of IPR after the onset of DKD on the renal outcomes in KK-Ay mice. (B) Lean mass adjusted by body weight (BW). (C) Serum albumin
change after a 6-h fasting. (D) Changes of body weight during the experiment period. (E) Daily food consumption of every mouse during the
experiment period. (F) Changes in blood glucose levels over time following intraperitoneal glucose injection. And area under the curve (AUC) of the
intraperitoneal glucose tolerance test (IPGTT) was calculated. (G) Graphical representation of the homeostasis model assessment of insulin
resistance (HOMA-IR) index. Data are represented as mean = SEM (n = 6). ¥p < 0.05, ns indicates a non-significant p-value. Two groups of mice
were included: diabetic male KK-Ay mice receiving a continuous normal protein diet (CONa), and mice receiving IPR intervention (IPRa). IPRa versus

CONa, by unpaired t-tests.
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functional enrichment analyses were performed using the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) databases in R, with statistical significance determined
using the hypergeometric test (p-value < 0.05).

2.10 Antibodies and immunoblotting

The antibody against E-cadherin was purchased from
Proteintech (Wuhan, China). Antibodies to ZO-1 and occludin
were purchased from Abmart (Abmart Shanghai Co., Ltd,
Shanghai, China). The antibody against TGF-f was purchased

10.3389/fnut.2024.1383658

from PTMab (Jingjie PTM BioLab Co., Ltd., Hangzhou, China).
The immunoblotting protocol used in this study has been described
previously (40). Image] software was used for image analysis.

2.11 Immunohistochemistry

For ZO-1 immunohistochemical staining, kidney sections were
incubated in a humidified chamber with anti-ZO-1 antibody
(catalog number ab221546, Abcam) and secondary antibody. The
sections were then stained with a chromogenic substrate and
hematoxylin (Beijing Solarbio Science & Technology Co., Ltd.).
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IPR after the onset of DKD did not improve renal outcomes. (A) Kidney weight and kidney index calculated as the kidney weight adjusted for BW
after 22-week dietary intervention. (B) Concentrations of serum FITC-labeled inulin at various time points after retro-orbital injection. And
glomerular filtration rate (GFR) was calculated based on the clearance of serum FITC-labeled inulin. (C) Representative images of PAS and MT

staining in renal tubules (scale bar, 100 um). (D) Representative images of H&E and PAS staining in glomeruli (scale bar, 50 wm), and quantitative
analysis of glomerular size (25 glomeruli per mouse were analyzed, n = 6). (E) Urinary podocin and nephrin excretion levels. (F) Urinary albumin to
creatinine ratio, immunoglobulin G (IgG) and transferrin (TF) excretion levels. (G) Levels of urinary neutrophil gelatinase-associated lipocalin (NGAL),
kidney injury molecule-1 (Kim-1) and retinol binding protein (RBP) excretion. (H) Plasma cystatin C, urea nitrogen and creatinine levels after IPR

intervention. Data are represented as mean + SEM (n = 6). #p < 0.05, ##p < 0.01, ns indicates a non-significant p-value. IPRa versus CONa.
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Multiple images (3 to 13) per section were captured using an
Olympus BX51 microscope (Olympus Corporation, Tokyo, Japan).

2.12 Statistical analysis

All data are expressed as mean =+ standard error of the mean
(SEM). Statistical analysis was performed using an unpaired t-test
where appropriate. Data that did not follow a normal distribution
were tested by the nonparametric Mann-Whitney U test.

3 Results

3.1 IPR after the onset of DKD improved
metabolic health

We first investigated the effects of IPR intervention after
the onset of DKD (IPRa). Seventeen-week-old KK-Ay mice with
elevated urinary albumin excretion above 300 mg/g creatinine
without elevated serum creatinine levels (not shown) were treated
with either continuous NPD or IPR for 22 weeks (Figure 1A).
Relative lean body mass and serum albumin levels were not reduced
after IPR intervention. These results suggested that IPR did not
cause malnutrition in mice (Figures 1B, C). Interestingly, while
calories from carbohydrates were used to replace calories from

10.3389/fnut.2024.1383658

protein in LPD with a higher glycemic index, IPR initiated after
the onset of DKD reduced body weight gain and improved glucose
tolerance and insulin resistance (Figures 1D-G).

3.2 IPR after the onset of DKD did not
improve renal outcomes

Despite the beneficial metabolic effects, kidney weight,
kidney index and GFR measured by serum FITC-labeled inulin
in IPRa
mice, compared with those in control group (Figures 2A, B).

concentrations were increased but not decreased
Mesangial matrix expansion and interstitial collagen deposition
were more evident in IPRa mice than those in the control
group (Figures 2C, D). Glomerular size was not significantly
changed (Figure 2D). Podocin and nephrin are major protein
components of the podocyte slit diaphragm, an important part
of the glomerular filtration barrier (GFB). The urinary levels
of podocin and nephrin were not reduced by IPR (Figure 2L).
The excretion of urinary albumin, immunoglobulin G (IgG) and
transferrin (TF) was not reduced following IPR (Figure 2F).
Tubular injury markers including urinary neutrophil gelatinase-
associated lipocalin (NGAL), kidney injury molecule-1 (Kim-1)
and retinol binding protein (RBP) in the urine were not changed
by IPR (Figure 2G). Serum cystatin C, urea nitrogen and creatinine
levels were not decreased (Figure 2H). Together, these results
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FIGURE 3

IPR before the onset of DKD improved renal outcomes. (A) Protocol for investigating the influence of IPR before the onset of DKD on the renal
outcomes in KK-Ay mice. (B) Weight of kidneys. (C) Kidney index. (D) Urinary albumin to creatinine ratio after 22-week diet intervention. (E) Serum
cystatin C, urea nitrogen and creatinine levels at the end of intervention. Data are represented as mean + SEM (n = 6). *p < 0.05, ns indicates a
non-significant p-value. Two groups of mice were included: mice fed a continuous normal protein diet (CONb), and mice fed IPR (IPRb) before DKD
onset. IPRb versus CONDb, by unpaired t-tests.
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showed that IPR starting after the onset of DKD failed to improve
renal outcomes, regardless of improved glycemic control.

3.3 IPR before the onset of DKD
improved renal outcomes

To determine whether IPR starting before the onset of DKD
(IPRb) could slow DKD progression, KK-Ay mice at nine weeks
of age that did not develop proteinuria were treated with either
continuous NPD or IPR for 22 weeks (Figure 3A). In IPRb
mice, kidney weight, kidney index and urinary albumin excretion
(Figures 3B-D) were significantly reduced, compared with those
in NPD-treated mice. Notably, despite the reduction in kidney
volume, serum urea nitrogen and creatinine levels did not increase
significantly (Figure 3E). Similarly, there was no difference in serum
cystatin C levels between the IPRb group and the control group
(Figure 3E). Together, these results demonstrated the protective
effects of initiating IPR before the onset of early DKD.

10.3389/fnut.2024.1383658

3.4 |IPR before the onset of DKD
protected both glomeruli and tubules

Given that the impairment of glomerular filtration barrier,
manifested by protein leakage from the bloodstream into the
urine, is a strong risk factor for the progression of DKD to
ESRD, we investigated the effects of IPRb on the glomeruli. The
clearance of serum FITC-labeled inulin, the gold standard of kidney
function, was used to measure GFR. In IPRb mice, measured
GFR, glomerular volumes and mesangial matrix expansion were
reduced compared with those in control mice (Figures 4A, B).
Urinary podocin, nephrin, IgG, and TF levels were decreased by
IPR started before the onset of DKD (Figures 4C, D). In the tubules,
pathological changes such as infiltration of inflammatory cells and
deposition of collagen fibers in the peritubular region were evident
in the DKD mice (Figure 4E), which were attenuated by IPRb.
The excretion of NGAL and RBP in the urine was reduced in
IPRb group as well (Figure 4F). Together, these results highlighted
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excretion. Data are represented as mean + SEM (n = 6). *p < 0.05, **p < 0.01, ns indicates a non-significant p-value. IPRb versus CONb.
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the beneficial effects of IPRb in attenuating both glomerular and
tubular damages.

3.5 IPR before the onset of DKD did not
improve glycemic control

Given the importance of glycemic control in slowing the
progression of DKD, we tested whether the renoprotective effects
of IPR before DKD onset resulted from glycemic control. IPR
initiated before DKD onset did not result in decreased lean body
mass or serum albumin levels (Figures 5A, B). Glucose tolerance
and insulin resistance were not improved by IPRb (Figures 5C, D).
Furthermore, IPR started before DKD onset did not reduce body
weight gain or food intake (Figure 5E). Taken together, these
findings suggested that the beneficial effects of IPRb on the kidneys
were independent of glycemic control.

3.6 Cell-cell junction was improved
before but not after DKD onset

To investigate the potential mechanism underlying early
IPR’s beneficial effects, we performed transcriptomic analysis of
kidney tissues. Differentially expressed genes were particularly
enriched in cell-cell junction assembly (GO: 0007043), cadherin
binding (GO: 0045296), and adherens junction (GO: 0005912)
(Figure 6A). Thyroid hormone synthesis (mmu04918) and TGF-
beta signaling pathway (mmu04350) were identified as significantly
differentially expressed pathways by KEGG pathway enrichment
analysis. All genes mapped to these KEGG pathways were

10.3389/fnut.2024.1383658

upregulated in the IPRb group, compared with those in the
control group (Figure 6B). Selected results from the profile analyses
were verified by Western blot, confirming the upregulation of
Z0O-1, occludin and E-cadherin, and the suppression of TGF-
B (Figure 6C). ZO-1 upregulation was further supported by
immunohistochemical staining (Figure 6D). On the other hand,
IPR started after the onset of DKD did not alter the protein
expression of ZO-1, occludin, E-cadherin, and TGF-§ (Figure 6E).
Immunohistochemical staining for ZO-1 in kidney tissues showed
no significant differences. Together, these results suggested that
early IPR intervention before DKD onset improved renal outcomes
through protection of cell-cell junction.

4 Discussion

In the current study, we found that IPR before but not
after DKD onset attenuated its progression. IPR before DKD
onset ameliorated pathophysiological changes of DKD without
improving glycemic control. On the other hand, IPR administered
after the onset of DKD showed no significant renal protection
despite the improved glucose homeostasis.

A study by Kitada et al. (41) showed improved kidney function
when IPR was administered in advanced DKD. In contrast, the
levels of serum creatinine and cystatin C were not significantly
increased in mice when IPR started after DKD onset in the current
study, but GFR was elevated, suggesting that different stages of
DKD were involved. And in that study, the intervention was
performed with an alternation between a high protein diet and
LPD, different from the transition from NPD to LPD used in the
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current study. This diet difference may contribute to the different
effects of IPR on renal outcomes.

Age-related protein absorption may play a role in the different
effects of IPRa and IPRb on DKD. Despite the consensus that
LPD benefits stages 3 to 5 DKD, our results showed that IPR
started after DKD onset at the age of 17 weeks did not improve
renal outcomes, in agreement with a study by Meloni et al.
(39). IPR initiated at 9 weeks of age before the onset of DKD
ameliorated the pathophysiological changes of DKD. This is
consistent with a previous report suggesting that people under
65 years of age may benefit from LPD, whereas the older groups
may not (42). Age-related malabsorption of proteins and amino
acids can lead to malnutrition (43). The benefits of LPD may
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potentially be compromised by the adverse effects of malnutrition
in older animals.

The lack of protection against DKD in the IPRa group could
also be due to the short duration of the intervention. Studies have
shown that the short-term effects of treatments, including PR, may
differ from the long-term benefits on the progression of kidney
disease (44). In the modification of diet in renal disease (MDRD)
trial, long but not short LPD treatment showed a significant
effect of PR in slowing GFR decline (45, 46). It is possible that
extending the duration of IPRa intervention could show protective
effects on DKD. Further research is needed to assess the long-term
effects of IPRa.

The pathological changes of DKD at early or late stage may
also attribute to the different effects of IPRa and IPRb. In the
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early stages of DKD, albuminuria is likely resulted from a local
intrarenal hemodynamic effect rather than structural changes in
the kidney. Early dietary intervention may reduce albuminuria
and delay disease progression. In the late stages of DKD, the
progressive structural damage becomes irreversible. Interventions
at this advanced stage are less effective than early interventions
(36, 47). This may partly explain the differences observed in the
current study between early and late IPR intervention. Levels of
albuminuria were significantly higher when IPRa was initiated than
those when IPRb was initiated.

The amount of food taken by the control group and the IPR
group showed no significant differences during LPD and NPD
feeding periods, supporting lower total protein intake in the IPR-
treated group. The reduced protein intake was further supported
by the reduction in serum urea nitrogen levels in IPR group.
Of note, there was no decrease in plasma albumin levels or lean
mass after long-term IPR. These results suggested that the IPR
approach effectively reduces protein intake while mitigating the
risk of malnutrition associated with prolonged implementation
of LPD (48).

IPR has been proposed as a potential strategy to improve
glucose homeostasis (33), which is crucial for the treatment of
DKD. Interestingly, our results showed that implementation of
IPR before the onset of DKD slowed DKD progression without
improving glycemic control. On the other hand, IPR after DKD
onset showed no protective effect on DKD progression while
improving glucose homeostasis. The improvement in glycemic
control occurred despite the higher glycemic index of LPD.
These results suggested that the effects of IPR on renal outcomes
and glucose homeostasis were not correlated (49) and early IPR
protected kidney through glycemia-independent mechanism.

Cell-cell junctions are important components for the integrity
of GFB to prevent serum protein leakage into the urine (50). The
upregulated expression levels of intracellular junction proteins ZO-
1, occludin, and E-cadherin may partly contribute to the improved
renal outcomes after IPR initiated before DKD onset. IPR initiated
after DKD onset did not improve intracellular junctions, which
may partly explain the lack of improvement of renal outcomes.
The TGEF-f signaling pathway is closely associated with intracellular
junctions (51). The decrease in TGF-f expression levels was
observed in the mice treated with IPR before the onset of DKD,
suggesting that the TGF-f signaling pathway may be involved in
the beneficial effects.

In conclusion, our research suggested that IPR held great
promise as an effective strategy for the management of DKD
independently of glycemic control. Importantly, early rather than
late IPR intervention provided significant renal protection while
mitigating the risk of malnutrition. The different renal outcomes
of IPR intervention started at different time underscored the
importance of bringing forward the timing of PR intervention to
slow the progression of DKD.
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