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Chickpeas (Cicer arietinum L.) are used as a good source of proteins and energy 
in the diets of various organisms including humans and animals. Chickpea straws 
can serve as an alternative option for forage for different ruminants. This research 
mainly focussed on screening the effects of adding beneficial chickpea seed 
endophytes on increasing the nutritional properties of the different edible parts 
of chickpea plants. Two efficient chickpea seed endophytes (Enterobacter sp. 
strain BHUJPCS-2 and BHUJPCS-8) were selected and applied to the chickpea 
seeds before sowing in the experiment conducted on clay pots. Chickpea seeds 
treated with both endophytes showed improved plant growth and biomass 
accumulation. Notably, improvements in the uptake of mineral nutrients were 
found in the foliage, pericarp, and seed of the chickpea plants. Additionally, 
nutritional properties such as total phenolics (0.47, 0.25, and 0.55 folds), total 
protein (0.04, 0.21, and 0.18 folds), carbohydrate content (0.31, 0.32, and 0.31 
folds), and total flavonoid content (0.45, 027, and 0.8 folds) were increased in 
different parts (foliage, pericarp, and seed) of the chickpea plants compared 
to the control plants. The seed endophyte-treated plants showed a significant 
increase in mineral accumulation and improvement in nutrition in the different 
edible parts of chickpea plants. The results showed that the seed endophyte-
mediated increase in dietary and nutrient value of the different parts (pericarp, 
foliage, and seeds) of chickpea are consumed by humans, whereas the other 
parts (pericarp and foliage) are used as alternative options for forage and chaff in 
livestock diets and may have direct effects on their nutritional conditions.
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1 Introduction

World populations rely on obtaining the necessary amounts of essential micronutrients 
from their diets to support normal physiological functions and maintain health. Billions of 
people around the world do not receive sufficient amounts of several important micronutrients 
due to low concentrations of available nutrients present in the grain/staple/seeds of food crops. 
In developing countries, most children under the age of 5 suffer from nutrient deficiency, 
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which causes major health issues (1–3). Although the most 
conventional and fruitful strategies were mineral supplementation 
with food, dietary food diversification, and food fortification, the idea 
was not well spread due to a lack of social awareness and economic 
infrastructure (4, 5). To maintain the basic need for food supply, the 
production of legume seeds requires a very significant jump over time. 
In order to maintain the basic food supply and achieve such a huge 
target, current agriculture mostly depends on chemicals such as 
pesticides and fertilisers (6, 7). The application of chemicals as 
fertiliser directly and indirectly causes adverse effects on the 
environment and human health (8). Therefore, priority should 
be  given to the biofertiliser (green manuring, crop rotation, 
vermicompost, etc.). Amongst all the alternative options, the 
application of plant growth-promoting microbes (PGPMs) has been 
identified as the best option and least explored area of research that 
can be applied to improve agriculture production without affecting the 
environment or human health (9–11). The application of biofertilisers 
in the agriculture sector has been observed to improve mechanisms, 
grain host plant growth, health and defence mechanisms, grains yield, 
and nutrient content, as well as the signalling pathways related to 
stresses (12). Recently, organic fertiliser inputs have been 
recommended as one of the safe alternative options for maintaining 
soil health and thereby enhancing the organic nutrient management 
of agriculture fields (13).

Chickpeas are one of the most important legume grains, and they 
are used around the world as a rich source of nutrients (vitamins, 
minerals, proteins, carbohydrates, etc.) for daily use in diets (14). 
Usually, chickpea leaves are used as leafy vegetables to supply huge 
amounts of nutrients/minerals/proteins/vitamins to people in many 
countries. Chickpea pericarp and straw are the main by-products of 
the chickpea plant and also serve as high-nutrient dietary fodder for 
livestock (15). From the seed to the straw, all parts of chickpeas are 
consumed as a high-nutrient source for humans and livestock. 
Moreover, each part of chickpea plants is consumed by different 
animals at different stages.

PGPMs have been successfully used either as biofertilisers or as 
bio-pesticides for a very long time (16). However, the application of 
the seed endophytes to plant growth promotion (PGP) and their 
impact on the improving nutrient quality of the host plant are very 
poorly studied (8). However, we used two chickpea seed endophytes, 
Enterobacter sp. strains BHUJPCS-2 and BHUJPCS-8 (gene bank 
accession no. MN078044 and MN078047). In this study, our main 
objective is to (a) evaluate the impacts of the seed endophytes on the 
nutritional quality of the chickpea (edible part), (b) yield chickpeas 
after the application of these endophytes, and (c) grow plants under 
endophyte applications. We screened the nutritional values of different 
parts of chickpea plants, i.e., seeds, foliage, and pericarp (Figure 1). In 
this experiment, we have also compared the nutrient values of the seed 
endophyte-treated and non-treated plants. These experiments were 
conducted in control conditions by using clay pots to evaluate the 
effects of chickpea seed endophytes on host plants’ nutrient status.

2 Materials and methods

2.1 Isolation of endophytic microbes

Chickpea (Cicer arietinum L.) seed endophytes Enterobacter sp. 
BHUJPCS-2 (accession no MN078044) and Enterobacter sp. 

BHUJPCS-8 (accession no MN078047) were isolated from the 
chickpea seeds (Variety P-362) on the nutrient agar medium, 
according to Mukherjee et  al. (17). These seed endophytes were 
screened on the basis of their PGP biochemical activities and PGP test 
in in vitro conditions (plant hormone production such as indole 
3-acetic acid (IAA), mineral solubilisation, siderophore, hydrogen 
cyanide (HCN), protease productions, and showing antagonistic effect 
against Fusarium sp.). Seed endophytes Enterobacter sp. (BHUJPCS-2) 
and Enterobacter sp. (BHUJPCS-8) strains were identified through the 
16 s rDNA amplification process using the colony polymerase chain 
reaction (PCR) method (17).

2.2 Endophytic inoculum preparation for 
seed treatment and sowing

Chickpea seeds (Variety - P-362) were used for the experiment. 
The seeds were washed by running tap water to remove the dust 
particles. Surface sterilisation of chickpea seeds was conducted by 
using 0.1% mercury chloride and ethanol, as described by Mukherjee 
et al. (10). The sterilised chickpea seeds were put on a sterilised Petri 
plate with sterilised double-distilled water (DDW) soaked in sterilised 
cotton and placed in the BOD incubator for 2–3 days at 25°C. For 
microbial cell preparation, strains BHUJPCS-2 and BHUJPCS-8 were 
inoculated in nutrient broth (NB) and incubated at 27°C ± 2°C in a 
shaker BOD incubator at 120 rpm for 72 h. Seed endophytes were 
collected in pellets by centrifugation (10,000 rpm for 5–10 min at 4°C). 
The suspended pellets were washed with sterilised DDW three to four 
times and maintained at a final cell concentration of 109 mL−1 by 
measuring the absorbance of the bacterial suspension in a 
spectrophotometer. After maintaining the microbial cell 
concentration, the germinated seed and microbial cell of treatments 
T1 (Enterobacter sp. BHUJPCS-2) and T2 (Enterobacter sp. 
BHUJPCS-8) are mixed with the help of 1% carboxy methyl cellulose 
(CMC) (18) and C-(control) treatment without microbial cell. For 
seed sowing, we  have used microbial cell-inoculated, healthy 15 
germinated seeds in a pot. For this experiment, we have used 8 kg 
agricultural soil containing clay pots in triplicate.

2.3 Plant growth-promoting traits under 
clay pot condition

After observing the plant growth, three chickpea plants were 
randomly selected and uprooted from each clay pot after 110 days 
of planting. Plants and their roots were washed under tap water 
to remove soil and dust particles. The washed plants were air 
dried and then put into the oven at 50–55°C by wrapping the 
plant with blotting papers. Plants’ growth parameters (shoot and 
root length, fresh weight, and dry weight) were measured after 
110 days of plant germination from each replication. Chickpea 
seed, pericarp, and foliage production were also observed 
and recorded.

2.4 Plant sample preparation

To prepare the sample, we  collected the mature chickpea 
foliage, seed, and pericarp of each treatment from all the pots. 
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The samples were mixed gently and dried at 50–55°C by wrapping 
the plant with a blotting sheet. After oven drying, the dried 
samples were ground thoroughly to make fine powder, and the 
powdered form of the sample was kept in a freezer (4°C) for 
further analysis.

2.5 Essential nutrient analysis of chickpea 
plant after endophytic treatment

Approximately 200 mg of dried powder of plant samples were 
used to analyse the nutrient content of the chickpea plant. The 
powdered plant samples were mixed in 5 mL of AR-graded 
sulphuric acid (concentrated H₂SO₄) in the conical flask. The flask 
was put in the shaker for mixing properly and placed at the normal 
room temperature for approximately 30 min. Then the sample 
containing the flask was boiled very gently for 30 min by adding 
1 mL of perchloric acid (4% v/v). Then, the mixture was heated till 
it became transparent, and the samples were kept at room 
temperature for further use. This clear mixture of samples was 
further used for the analysis of phosphorus (P) by the colorimetric 
method (19). We have also analysed calcium (Ca), potassium (K), 
and sodium (Na) by inductively coupled plasma (ICP, PerkinElmer). 
In this study, we  have used a 2:1 ratio of nitric acid (65%) and 
perchloric acid (70%) for acid digestion of plant samples for ICP (20). 
Total nitrogen (N) and organic matter (OM) were measured (21, 
22). Proteins were estimated using the Bradford method, and 
carbohydrates in the plant sample were measured using the 
anthrone reagent (23, 24).

2.6 Detection of total phenol content (TPC) 
and total flavonoid content (TFC) of 
chickpea plants after endophytic bacterial 
inoculation

The TPC of the chickpea plant samples was measured by using the 
Zheng and Shetty (25) methods. From each sample (pericarp, foliage, and 
seed), 0.1 g was taken from all replications and incubated with 5 mL of 
95% ethanol at 0°C for 48 h. These plant samples were then homogenised 
and centrifuged at 15000 rpm for 15 min in a cooling centrifuge, 
specifically the Eppendorf-5430R. One millilitre (1 mL) of the supernatant 
sample was collected and to that, 1 mL of 95% ethanol was added along 
with 5 mL of sterilised DDW, and then 0.5 mL of 50% Folin–Ciocalteu 
reagent was added. This whole sample–reagent mixture was mixed 
properly. After 10 min of incubation, 1 mL of sodium carbonate (5% v/w) 
was added to the mixture, and the whole mixture was incubated at room 
temperature for 1 h. The absorbance of the colour change was recorded at 
725 nm (Genetix, Nabi Spectrophotometer, NB- 1-181007, Korea).

To detect flavonoids in plants, the sample was prepared by mixing 2 g 
of oven-dried powders of plant samples (pericarp, foliage, and seeds) 
separately in 10 mL of 50% methanol and incubating the mixed sample 
overnight at room temperature. The incubated samples were filtered with 
the help of sterilised Whatman’s No. 1 filter paper. The filtered samples 
were fractionated with C4H8O2 (ethyl acetate). After fractionation, the 
remaining fractionated residue was re-fractionated using an equal volume 
of ethyl acetate. Then, the fractionated samples were evaporated to 
dryness. Then, the dried samples were dissolved in 2 mL of HPLC-grade 
(Shimadzu LC-10A, Japan) methanol and used for further analysis (8). 
TFC was quantified in the plant samples by using 0.5 mL of sample 

FIGURE 1

Diagrammatic presentation of the application of the chickpea seed microbe in plant growth and nutrient management in chickpeas. (A) Chickpea seed 
(P-362), (B) isolated chickpea seed endophytes, (C) pure culture of the isolated strains, (D) re-inoculated chickpea seed endophytes in chickpea seed 
for pot trials, (E) effect of endophytes on the plant growth and development (C = control plant and T = Seed endophyte-treated plants), 
(F) improvement of the nutrient in the seed endophyte-treated plant parts (seed, foliage, and pericarp), (G,H) Nutrient-rich chickpea (seed, foliage, and 
pericarp) used for human consumption as well as fodder for improving health.
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extract. For the extract, 4 mL of sterilised DDW and 0.3 mL of 50% of 
NaNO2 solution were added and mixed. After 10 min of incubation, 
0.3 mL of AlCl3 (10%) solution was added to all the samples and mixed 
gently. After that, the samples were incubated for another 10 min. Then, 
2 mL of 1 M NaOH was added to that sample and the final volume was 
10 mL with 95% ethanol. Then, the solution was mixed properly and the 
absorbance was measured at 510 nm (26, 27). High-performance liquid 
chromatography (HPLC) of plant samples (seed) was performed to detect 
the phenolic compounds (28).

2.7 Statistical analysis

All experiments were conducted in triplicates, and the results were 
prepared as the mean ± standard deviation (SD) of the different 
independent replicates. In this study, we have used Duncan’s multiple 
range test (DMRT) for the statistical analysis in SPSS version 20.

3 Results

3.1 Chickpea plant growth, biomass, and 
yield after endophyte treatment

The microbes were isolated from the chickpea seeds (P-362), and the 
16 s rDNA sequencing reveals that the isolated bacteria belong to 
Enterobacter sp. BHUJPCS-2 (accession no MN078044) and Enterobacter 
sp. BHUJPCS-8 (accession no MN078047), which were previously 
discussed in our research article (17). The height of the chickpea plant in 
the clay pot experiment was increased by 0.18- and 0.21-folds in 
endophyte-treated plants than the untreated control plants. After 
harvesting the plant from the pot, we observed that the shoot fresh weight 
was increased by 0.41- and 0.57-folds, the shoot dry weight was increased 
by 0.59- and 0.75-folds, root fresh weight was increased by 0.54- and 0.61-
folds, and the root dry weight was increased by 0.70- and 0.02-folds in the 
endophyte-treated chickpea plant compared to the control plants. The 
grain yield was also observed, with a 0.47- and 0.56-fold increase in 
endophyte-treated plant compared to the control plant (Figure 2).

3.2 Effect of endophytic inoculum on plant 
nutrients and other important beneficial 
biochemical components

Important nutrients such as Na, Ca, N, P, K, protein, carbohydrate, 
flavonoid, and phenolic components in chickpea seed, pericarp, and 
foliage were checked both in the endophyte-treated and endophyte-
untreated plants. In this study, we observed that nutrient contents were 
improved in the treated plants. The influence of the endophytic microbes 
on protein, carbohydrates, total phenolics, and flavonoids was 
also observed.

3.3 Effect of endophytes on some 
macronutrients (N, P, Ka, ca, and Na) of 
chickpea edible part

Total phosphate (P) contained in pericarp (0.27- and 0.32-folds), 
seed (0.03- and 0.12-folds), and foliage (0.46- and 0.12-folds) was 

increased in the endophytes Enterobacter sp. BHUJPCS-2- and 
Enterobacter sp. BHUJPCS-8-treated chickpea plants, respectively, than 
control plants. In this study, maximum P content was observed in the 
chickpea foliage part of the plant, followed by the pericarp and seeds. A 
similar type of result was observed in the other two nutrients, K and N. K 
content was improved in pericarp (0.10- and 0.16-folds), foliage (0.054- 
and 0.11-folds), and seed (0.041- and 0.25-folds) in the BHUJPCS-2- and 
BHUJPCS-8-treated plant compared to the control. N content was also 
observed and found that in the pericarp, the N was 0.923- and 1.79-fold 
increase, where 0.27- and 0.44-fold increase, 0.36- and 0.69-fold increase 
in seed and foliage, respectively, in the BHUJPCS-2- and BHUJPCS-8-
treated plants than control plants (Figure 2).

Other important essential nutrients, such as Na and Ca, are also 
measured in the major edible parts of the chickpea, such as pericarp, seed, 
and foliage. We observed that 0.30- and 0.45-fold Na was increased in the 
pericarp, 0.17- and 0.40-fold increase in seed, and 0.40- and 0.62-fold 
increase in the foliage part of the endophytes BHUJPCS-2- and BHUJPCS-
8-treated plants than control plants. The Ca contain was increased 0.10 
and 0.16 fold in pericarp, 0.31 and 0.41 fold in seed and 0.19 and 0.29 fold 
in the foliage part in strains BHUJPCS-2 and BHUJPCS-8 treated plants, 
respectively as compared to the control plants (Figure 3).

3.4 Effect of endophytes on organic matter 
and phenols contained in chickpea plant

Total phenol content increased 0.25- and 0.07-folds in pericarp, 
0.33- and 0.55-folds in seed, and 0.30- and 0.47-folds in the foliage of 
BHUJPCS-2 and BHUJPCS-8 endophyte-treated plants compared to 
the control plants. OM of the pericarp was increased 0.11- and 0.12-
folds, 0.07- and 0.17-folds in seed, and 0.27- and 0.45-folds in the 
foliage of BHUJPCS-2 and BHUJPCS-8-treated chickpea plants 
compared to the control-untreated plants (Figure 3).

3.5 Effect of endophytes on protein, 
carbohydrate, and flavonoid content in 
chickpeas

Microbe-treated plants contain higher amounts of protein and 
carbohydrates in the edible part of the plant. Protein content of the 
pericarp was increased by 0.09- and 0.21-folds where 0.11-, 0.18-, and 
0.048-folds increased, respectively, in the seed and foliage parts of 
BHUJPCS-2 and BHUJPCS-8-treated plants compared to the control 
untreated plants. A similar type result was also observed in the 
carbohydrate. In this study, we found a 0.2- and 0.32 = fold increase in the 
pericarp, 0.19- and 0.31-fold increase in seed, and 0.25- and 0.31-fold 
increase in the foliage part of the BHUJPCS-2- and BHUJPCS-8-treated 
plant, respectively, compared to the control plant. In the flavonoid content, 
we measured 0.02- and 0.27-fold increase in pericarp, 0.06- and 0.08-folds 
in the seed, and 0.23- and 0.45-fold increase in the foliage part in 
endophyte-treated plants compared to the control plants (Figures 3, 4).

3.6 HPLC analysis of phenolic compounds 
in chickpea seeds

Different kinds of phenolic components were estimated through 
the HPLC in the chickpea seeds of endophyte-treated and 
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endophyte-untreated chickpea plants. We  mainly focussed on 
shikimic acid, gallic acid, syringic acid, ferulic acid, p-coumaric acid, 
and cinnamic acid. In HPLC, we found that only the p-coumaric acid 
concentration was higher in the control seeds than the 

endophytic-treated seeds, but other components were higher in the 
endophyte-treated seeds. In this study, shikimic acid was increased by 
0.24- and 0.30-folds, gallic acid increased by 0.27- and 0.41-folds, 
ferulic acid increased by 0.25- and 0.37-folds, cinnamic acid increased 

FIGURE 2

Effect of chickpea seed endophytes Enterobacter sp. BHUJPCS-2 and Enterobacter sp. BHUJPCS-8 on the (A) plant height, (B,C) shoot fresh and dry 
weight, (D,E) root fresh and dry weight, and (F) grain yields. *The data values are the mean  ±  SD; mean values in each column with the same 
superscript(s) do not differ significantly by Duncan’s multiple post-hoc test (p  =  0.05). Here, cm  =  centimetre, gm  =  gram, control (without microbial 
treatment) or C, Enterobacter sp. BHUJPCS-2 (T-1) and Enterobacter sp. BHUJPCS-8 (T-2).

FIGURE 3

Effect of chickpea seed endophytes Enterobacter sp. BHUJPCS-2 and Enterobacter sp. BHUJPCS-8 on the (A) phosphorus, (B) nitrogen, 
(C) potassium, (D) sodium, (E) calcium, and (F) organic matter (OM) content of different edible part such as pericarp, seed, and foliage of chickpea 
plants. *The data values are the mean  ±  SD; mean values in each column with the same superscript(s) do not differ significantly by Duncan’s multiple 
post-hoc test (p  =  0.05). Here, mg  =  milligram, g  =  gram, %  =  percent, ppm  =  parts per million, control (without microbial treatment) or C, Enterobacter 
sp. BHUJPCS-2 (T-1) and Enterobacter sp. BHUJPCS-8 (T-2).
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by 0.28- and 0.42-folds, syringic acid increased by 0.37-fold (only in 
BHUJPCS-2-treated plants), and p-Coumaric increased by 0.07-fold 
(only in BHUJPCS-8-treated plants) in BHUJPCS-2 and BHUJPCS-8 
endophytic-treated plants than the control plant (Table. 1).

4 Discussion

Chickpeas are one of the healthiest food commodities around 
the world, but to date, very little is known about chickpeas’ health 
benefits compared to other leguminous plants (29). Some earlier 
research studies suggested that chickpea consumption improves 
health by reducing the risk of different diseases (49), and it can also 
reduce the level of total cholesterol in the serum (30) and the risk 
of coronary heart disease (CHD) (31). Scientists are trying to 
improve the nutritional values of food products by improving plant 
breeding programmes, improving biotechnological interventions 
for different food products. Although the rhizosphere beneficial 
microbe-induced plant health and defence mechanisms are very 
well studied (47), the studies linked to seed endophytic bacteria-
induced growth and nutritional value in different parts of crops are 
still lacking. Therefore, in our present study, we checked the effects 
of the seed endophytic microbe Enterobacter sp. (BHUJPCS-2 and 
BHUJPCS-8) on enhancing the nutritional value of the edible parts 
of chickpeas.

Chickpea seeds are mostly consumed by humans, whilst the 
foliage and pericarp serve as fodder in many countries around the 
world. It has been shown that chickpeas are full of nutrients such as 
N, P, and K, which are the most important inorganic minerals that are 
essential for growth (14, 48). These are also the important constituents 
of several important components (proteins, enzymes, hormones, and 
amino acids) and genetic materials (32, 33). Host plant-competent 
endophytes play an important role in providing available forms of 
nutrients to the host plant (6, 11, 50). In our experiment, we noticed 
a direct correlation between increased dry weight and the nutrient 
content (proteins and carbohydrates) of the seeds, and the microbial 
treatments increased the total P and N content. As our endophytic 
microbes are able to solubilise the minerals and improve the nutrient 
uptake of the plant, it may influence the improvement of the nutrient 
condition in the edible parts of the plant.

We used endophytic Enterobacter isolated from chickpea seeds, 
these microbes are normally found in plants, soil, water, and in the 
gastrointestinal tracts of animals. Enterobacter sp. have been found 
to promote plant growth, and they have been studied for their 
potential as biofertilisers (34, 51). Enterobacter strains with PGP 
properties are thought to work through a variety of mechanisms 
(34, 52). The most important mechanism is the synthesis of PGP- 
hormones such as indole-3 acetic acid (IAA), which can stimulate 
root growth and enhance nutrient uptake by the plant (16). Another 
mechanism is through the production of enzymes such as 

FIGURE 4

Effect of chickpea seed endophytes Enterobacter sp. BHUJPCS-2 and Enterobacter sp. BHUJPCS-8 on the (A) phenolic content, (B) flavonoid content, 
(C) protein content, and (D) carbohydrate content in the pericarp, seed, and foliage of chickpea plants. *The data values are the mean  ±  SD; mean 
values in each column with the same superscript(s) do not differ significantly using Duncan’s multiple post-hoc test (p  =  0.05). Here, control (without 
microbial treatment) or C, Enterobacter sp. BHUJPCS-2 (T-1) and Enterobacter sp. BHUJPCS-8 (T-2).
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phosphate, K, and zinc solubilizing enzymes, which can release 
nutrients from organic sources in the soil and make them available 
to the host plants (12, 17, 35). In addition to producing PGP 
substances, Enterobacter also acts as a biocontrol agent against plant 
pathogens (51). Some strains of Enterobacter have been shown to 
produce antibiotics and siderophores that can inhibit the growth of 
plant pathogens (36). In our pot experiments, we observed that an 
increase in plant growth, OM, and mineral uptake was correlated 
with the carbohydrate and protein content of the endophyte-treated 
plant. Additionally, the total protein of seeds was directly correlated 
with the flavonoid and OM of the pericarp and seed, respectively. 
These positive correlations could be  directly attributed to the 
improved uptake of different important nutrients and minerals, 
including N, P, K, Ca, and Na, by host chickpea plants in endophyte 
treatments compared to the control plants. Interestingly, the host 
chickpea plants treated by the endophytes showed a maximum 
increase in the mineral and nutrient contents, showing the 
advantage of endophyte treatment. This type of study was conducted 
with white beans under stress conditions and observed similar 
results (37). Increased N content was also reported in the chickpea 
plants treated with Microbispora sp. (strain CP56), Actinomadura 
sp. (strain CP84B), and Streptomyces spp. (strain CP200B and strain 
CP21A) (38). Humans and other animals consume most of their 
nutrients from different food products. So, having a lot of nutrients 
in different plant parts is important because they have an impact on 
our daily diets (52). In our study, an increase in the total protein, 
carbohydrate, phenolics, and flavonoids in the microbial-treated 
chickpea plant (seed, pericarp, and foliage) compared to control 
plants is the real indication of improved nutrition in the endophyte-
treated plants.

Higher phenolic accumulation in endophyte-treated host plants 
is highly noteworthy from a beneficial perspective since phenols are 
the essential tool for plant defence against different invading 

pathogens and are directly related to the free radical scavenging 
property (53). Similarly, polyphenols are also directly involved in the 
signal transduction and perception processes of different pathways, 
and they also change the cellular redox potential conditions (39). 
Higher accumulation of the phenolics was studied in the fenugreek 
plant when the host plants were treated with endophyte seed 
microbes, Achromobacter sp. (40). Shikimic acid is also a very 
important component, as it acts as the precursor of most phenolic 
compounds (54). It is very interesting to note that the higher 
shikimic acid accumulation resulted from the enhanced 
phenylpropanoid activities. It is directly involved in higher phenolic 
synthesis. Gallic acid, ferulic acid, cinnamic acid, and syringic acid 
are all phenolic compounds found in plants. These compounds play 
important roles in the metabolism and physiology of plants and are 
also known for their various health benefits for humans (41). Gallic 
acid is a potent antioxidant found in many plant-based foods, such 
as grapes, blueberries, and tea. It is also found in some medicinal 
herbs, such as Terminalia chebula, which is used in Ayurvedic 
medicine (42). Gallic acid has been shown to have anti-
inflammatory/cancer/microbial properties (55). It is also known to 
help regulate blood sugar levels and improve cardiovascular health. 
Ferulic acid is an important component of the plant cell wall and is 
found in many grains, such as wheat, rice, and corn, as well as in 
fruits and vegetables. It is known to have antioxidant and anti-
inflammatory properties and has been shown to improve skin health 
and reduce the risks of certain chronic diseases, such as diabetes and 
heart-related disease (43). Cinnamic acid is found in many plants, 
including cinnamon, and is known to have anti-inflammatory as 
well as anti-microbial properties. It has also been shown to help 
regulate diabetes (blood sugar levels) and improve heart health (44). 
Syringic acid is found in many fruits and vegetables, including 
grapes, strawberries, and sweet potatoes. It is known to have 
antioxidant properties and has been shown to have 

TABLE 1 Detection of shikimic acid, gallic acid, ferulic acid, syringic acid, p-coumaric acid, and cinnamic acid of different parts (seed, foliage, and 
pericarp) of chickpea plant which were raised after endophytic microbial treatments.

Chickpea Seed (μg/ml)

Treatment Shikimic acid Gallic acid Ferulic acid Syringic acid p-Coumaric acid Cinnamic acid

Control 28.8 ± 1.07a 3.3 ± 0.30a 0.11 ± 0.03a 1.6 ± 0.05a 1.4 ± 0.23a 0.16 ± 0.02a

T-1 33.8 ± 3.23b 5.1 ± 0.61b 0.16 ± 0.05ab 2.0 ± 0.20b 0.9 ± 0.10b 0.19 ± 0.01b

T-2 36.9 ± 1.02b 5.4 ± 0.43b 0.23 ± 0.01b 1.2 ± 0.02b 1.7 ± 0.30b 0.21 ± 0.03b

Chickpea Pericarp (μg/ml)

Treatment Shikimic acid Gallic acid Ferulic acid Syringic acid p-Coumaric acid Cinnamic acid

Control 33.43 ± 4.22a 2.63 ± 0.25a 0.16 ± 0.05a 1.80 ± 0.11ab 1.71 ± 0.27a 0.16 ± 0.02a

T-1 34.13 ± 3.49a 5.13 ± 0.33b 0.17 ± 0.02a 2.00 ± 0.04b 1.32 ± 0.19a 0.12 ± 0.06a

T-2 38.65 ± 0.90a 4.71 ± 0.61b 0.23 ± 0.01b 1.37 ± 0.05a 2.03 ± 0.15a 0.21 ± 0.03b

Chickpea Foliage (μg/ml)

Treatment Shikimic acid Gallic acid Ferulic acid Syringic acid p-Coumaric acid Cinnamic acid

Control 29.43 ± 3.06a 3.3 ± 0.36a 0.40 ± 0.02a 2.2 ± 0.60a 1.51 ± 0.04a 0.17 ± 0.04a

T-1 30.13 ± 1.97ab 5.8 ± 0.02b 0.59 ± 0.03b 2.4 ± 0.09a 1.99 ± 0.09ab 0.22 ± 0.04ab

T-2 35.35 ± 3.07b 5.3 ± 0.54b 0.37 ± 0.01a 1.9 ± 0.09a 2.57 ± 0.05b 0.25 ± 0.02b

*The data values are the mean ± SD; mean values in each column with the same superscript(s) do not differ significantly using Duncan’s multiple post-hoc test (p ≤ 0.05). Here, Enterobacter sp. 
BHUJPCS-2 (T-1) and Enterobacter sp. BHUJPCS-8 (T-2).
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anti-inflammatory and anti-cancer effects. It may also have potential 
therapeutic applications for diabetes and cardiovascular disease (45). 
These types of flavonoids are also known to work as potential 
antioxidants and also improve the antioxidant properties of food by 
restricting the activity of other oxidases (46, 56). Due to erythrocyte 
membrane malfunction, various types of flavonoids in the diet 
diminish lipid peroxidation and the permeability of K (57). The 
increasing use of cereals as livestock feed creates a very competitive 
situation with human feed. Humans and livestock are growing 
rapidly around the world to meet the basic requirements of a proper 
diet, both for humans and livestock. The demand for food and 
fodder has continuously increased. Thus, additional resources of 
proper nutrients, such as chickpea seed and straw, have been 
accepted as feed for humans and livestock. Therefore, the use of 
chickpea seed, pericarp, and foliage is considered the best alternative 
food to overcome this major problem because of their high 
nutritional value. The current small experimental study thus suggests 
that the application of seed endophytes improves the nutrient 
content in the different parts of plants and also improves yield.

5 Conclusion

One of the significant global health problems affecting billions of 
people worldwide is nutrient deficiency in their diets. Due to low 
concentrations and poor bioavailability of vital micronutrients contained 
in their frequently consumed foods, the majority of populations in 
underdeveloped countries are deficient in one or more critical vitamins 
and minerals. Strategies to provide nutrient-dense diets and enhance 
nutrient concentrations and bioavailability are needed to reverse the 
epidemic of micronutrient malnutrition in emerging nations. Hence, 
chickpeas are one of the potential crops in terms of providing a complete 
nutritional remedy for micronutrient deficiencies in poor nations. In this 
study, we  provide evidence and demonstrate that chickpea seed 
endophytes have a high number of plant growth-promoting traits that can 
be potentially used to enhance the quality of chickpeas. In this context, 
the endophytes used in this study, upon re-introduction with the seeds, 
enhanced plant growth, yield, and nutritional values. Looking ahead, 
further research into harnessing the potential of chickpea seed endophytes 
holds promise for tackling global malnutrition. Future studies could delve 
deeper into understanding the mechanisms behind the enhanced 
nutritional qualities observed and explore broader applications of these 
findings in sustainable agriculture. Additionally, field trials and large-scale 
implementation of bio-inoculants derived from endophytes could offer 
practical solutions for improving food security and public health in 
regions prone to nutrient deficiencies. Therefore, these two bacterial 
isolates have some important characteristics for developing effective 
bio-inoculants that can be tested later for their activity in field conditions.
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