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Background: Previous studies on the liner associations between serum 25-
hydroxyvitamin D [25(OH)D] levels and lipid profiles revealed ambiguous
findings. The current study therefore tried to elucidate the possible non-linear
associations between 25(OH)D and lipid profiles.

Methods: This study involved 8,516 adult participants (aged 18–74 years, males
N = 3,750, females N = 4,766) recruited from the Dalian health management
cohort (DHMC). The risk (OR) for specific dyslipidemias was estimated across
the serum 25(OH)D levels and the cut-o� value for serum 25(OH)D were
determined by using logistic regression, restricted cubic spline, and piecewise
linear regression methods, adjusted for age, sex, season, and ultraviolet index.

Results: In this study, a high prevalence of 25(OH)D deficiency was observed
in the participants (65.05%). The level of 25(OH)D showed the inverse U-
shaped correlations with the risks (ORs) of abnormal lipid profile, with
inflection points observed at 23.7 ng/ml for hypercholesterolemia, 24.3 ng/ml
for hypertriglyceridemia, 18.5 ng/ml for hyper-low-density lipoprotein
cholesterolemia, 23.3 ng/ml for hypo-high-density lipoprotein cholesterolemia,
23.3 ng/ml for hyper-non-high-density lipoprotein cholesterol, and 24.3 ng/ml
for high remnant cholesterol. The stratified analyses showed that the risk for
most dyslipidemias related to deficiency of 25(OH)D was particularly increased
among females aged 50–74 (except for hypertriglyceridemia, where the
highest risk was among men aged 50–74 years), during winter/spring or under
low/middle ultraviolet index environments.

Conclusions: Nonlinear inverse U-shaped associations were observed between
25(OH)D levels and abnormal lipid profile. The risk was particularly increased
among females aged 50-74, during winter/spring period or under lower
ultraviolet index environments. In vitamin D deficient subjects [25(OH)D
<20ng/ml], a positive association of serum vitamin D levels with the risk for
dyslipidemia was observed, which needs a further.
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1 Introduction

The lipid profile includes cholesterol and other lipids present in the bloodstream, such
as total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-
C), low-density lipoprotein cholesterol (LDL-C), and remnant cholesterol (RC) (1–5).
Abnormal lipid profile is a characteristic of dyslipidemia and significantly increase the
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susceptibility to cardiovascular disease (6, 7). Previous studies
have consistently shown that elevated plasma levels of low-
density lipoprotein particles, triglyceride-rich lipoproteins, and
cholesterol-rich remnants significantly heighten the prevalence of
atherosclerotic cardiovascular disease (8, 9).

25-hydroxyvitamin D [25(OH)D], a steroid hormone, plays
a crucial role in regulating mineral (Ca and P) metabolism
in the body and is essential not only for bones but also
for other tissues (10). Deficiency of 25(OH)D is not only
associated with musculoskeletal disorders, hypertension, and
diabetes, but also has gained attention in relation to atherosclerotic
dyslipidemia (11–13). Previous research has indicated that a
higher serum level of 25(OH)D significantly reduces the likelihood
of abnormal lipid profile (14, 15). The prevalence of its
deficiency has raised interests among individuals, ranging from
30% to 70% (16–18). Studies have shown that deficiencies in
25(OH)D can be compensated for by exposing the skin to
ultraviolet radiation from sunlight and maintaining a balanced
diet (19). The concentration of 25(OH)D that can cause
25(OH)D poisoning is 224 ng/ml, while for healthy individuals,
the concentration of 25(OH)D should not exceed 150 ng/ml
(20, 21). However, the optimal threshold value of 25(OH)D
for lipid profile remains uncertain, necessitating further research
to establish.

The purpose of this study is to examine the association of serum
25(OH)D levels with abnormal lipid profile among adult Chinese
population in Dalian Health Management Cohort (DHMC) and to
determine the optimal 25(OH)D concentration associated with the
improved lipid status of this population.

2 Methods

2.1 Study population

This study used the data from the DHMC
(ChiCTR2300073363), which was established in 2014 at the
Second Hospital of Dalian Medical University. The DHMC
encompasses the entire population of Dalian, China. Dalian City is
situated between 38◦43′-40◦12′ north latitude and 120◦58′-123◦31′

east longitude. The average temperature in winter plunges below
−0.5 degrees Celsius.

The study was approved by the Ethics Committee of the Second
Hospital of Dalian Medical University (Grant number: 2022064).
For this cross-sectional study, 16,409 participants aged 18–74 years
were recruited to test 25(OH)D from 2020 to 2023. The study
began only after all participants had provided written consent.
All the participants underwent a comprehensive examination that
included physical, laboratory, imaging tests, and questionnaires.

Participants were excluded based on the following criteria:
oncologic patients (n = 50), infectious diseases (n = 280), thyroid
dysfunction or disease (n = 3,346), liver and kidney disease (n
= 3,302), cardiovascular disease (n = 631), history of operation
(n = 54), using antilipemic drugs (n = 107) and supplements
containing vitaminD (n= 123). Finally, a total of 8,516 participants
were included (The specific exclusion process is illustrated in
Supplementary Figure S1).

2.2 Assessment of 25(OH)D

In this study, after a 12-h fasting period, venous blood
samples were collected for analysis of serum 25(OH)D using liquid
chromatography-mass spectrometry [Instrument: LCMS-8050 CL
(Shimadzu), Kit: 25(OH)D assay kit (liquid chromatography-
tandem mass spectrometry)]. The classification of 25(OH)D
levels was as follows: sufficiency (>30 ng/ml), insufficiency
(20–30 ng/ml), deficiency (10–20 ng/ml), and sever deficiency
(≤10 ng/ml) (22).

2.3 Assessment and definition of lipid
profile

After a 12-hour fasting period, venous blood samples
were collected for analysis of TC, TG, HDL-C, LDL-C using
the Cobasc501 automatic biochemical analyzer from Roche
Diagnostics in Germany. The calculations of nonHDL-C and RC
were performed using the following formula: nonHDL-C=TC-
HDL-C, RC=TC-HDL-C-LDL-C.

In this study, hypercholesterolemia (HTC) was defined as TC
≥5.2 mmol/L, hypertriglyceridemia (HTG) was defined as TG≥1.7
mmol/L, hyper-low-density lipoprotein cholesterolemia (HLDL-
C) was defined as LDL-C ≥3.4 mmol/L, and hyper-nonHDL-C
(HnonHDL-C) was defined as nonHDL-C≥4.1 mmol/L (1), hypo-
high-density lipoprotein cholesterolemia (LHDL-C) was defined as
HDL-C <1.0 mmol/L in males or HDL-C<1.3 mmol/L in females
(23), and high RC (HRC) was defined as the upper quartile of
RC levels.

2.4 Assessment of covariates

The physician-qualified conducted measurements of
abdominal circumference (AC), height, and weight. Body
mass index (BMI) was calculated as weight in kilograms divided
by height in meters squared. Diastolic blood pressure (DBP)
and systolic blood pressure (SBP) were measured using an
automatic medical electronic sphygmomanometer (Omron
HBP-9020). During the measurement, the interval between the
two measurements was 1 to 2min, and the average value of the
two readings was recorded. After a 12-h fasting period, venous
blood samples were collected for analysis of serum uric acid (UA),
fasting blood glucose (FBG), alanine aminotransferase (ALT),
aspartate aminotransferase (AST), γ-glutamyl transferase (GGT),
globulin, alkaline phosphatase (ALP), and total bilirubin (TBil)
using the Cobasc501 automatic biochemical analyzer from Roche
Diagnostics in Germany.

Hypertension was defined as SBP ≥140 mmHg and/or DBP
≥90 mmHg, medical history of hypertension or self-reported
hypertension (24). Type 2 diabetes mellitus (T2DM) was diagnosed
as FBG≥7 mmol/L, use of antidiabetic medication, or self-reported
diagnosis of T2DM (25). Hyperuricemia was defined as serum
UA levels ≥360 µmol/L in female and ≥420 µmol/L in male, or
the administration of urate-lowering agents (26). Daily ultraviolet
index data from 2020 to 2023 were collected from National
Meteorological Information Center and Liaoning Meteorological
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Service. We calculated each participant’s month average ultraviolet
index according to time (months) of their blood collection. It was
categorized into four groups: low (0–2), middle (3–6), high (7–9)
and very high (≥10).

2.5 Statistical analysis

In this study, the normality of the data was assessed
using normal Q-Q plots. Normally distributed continuous
variables were described as means and standard deviation, and
nonnormally distributed continuous variables were described
as median and interquartile range. Categorical variables were
described as frequencies and percentages. Continuous variables
were compared using one-way ANOVA or the Kruskal-Wallis test,
and categorical variables were compared using the chi-square test.
For normally distributed continuous variables, we used Bonferroni
in post hoc analyses to indicate differences in variables between
groups. For continuous variables that did not fit the normal
distribution, we used Dunn test in post hoc analyses to indicate
differences in variables between groups (Supplementary Tables S2,
S3). In addition, we used ANCOVA to analyze the effect of
25(OH)D on lipid profiles, controlling for age, sex, and BMI
(Supplementary Table S4).

Logistic regression model was used to explore the association
between 25(OH)D and lipid profile, while calculating odds
ratio (OR) and 95% confidence intervals (CI). Model 1 did
not account for covariates. Model 2 was adjusted for sex
(categorical), age (continuous), and the season (categorical). Model
3 was adjusted for covariates including sex (categorical), age
(continuous), season (categorical), and BMI (continuous). The
additional model 4 was adjusted for covariates including sex
(categorical), age (continuous), season (categorical), hypertension
(categorical), diabetes (categorical), hyperuricemia (categorical),
BMI (continuous), AC (continuous), ALT, AST, Globulin, GGT,
ALP, Tbil, Urea, and UA (all continuous). In this study, the
variance inflation factor (VIF) was used to measure the degree
of multicollinearity in multiple linear regression models, and the
regression models all had VIFs <4, indicating that there was not a
high degree of multicollinearity in the covariates of the regression
model (Supplementary Table S6). The high multicollinearity was
shown between season and UV index (VIF > 4), therefore
only season was used as a covariate in the adjusted models.
Dose-response relationship between 25(OH)D and lipid profile
was analyzed using restricted cubic spline (RCS) fitting logistic
regression. The application of RCS, which are smooth functions,
has been extensively employed in academic research for analyzing
nonlinear associations between variables and outcomes (27, 28).
The selection of nodes is the most crucial aspect in RCS, and the
optimal fitting degree would be 4 nodes (29). We placed the nodes
at the 27.5th, 50th, 67.5th, and 95th percentiles of 25(OH)D levels
based on the data situation, without setting any reference points.
The 27.5th, 50th, 67.5th, and 95th percentile values of vitamin D
levels were 12.92 ng/ml, 16.87 ng/ml, 20.55 ng/ml, and 31.22 ng/ml.
The piecewise linear regression model was used to establish a
smooth curve, aiming to enhance the precision of determining
appropriate 25(OH)D cut-off points corresponding to lipid profile.

The statistical analyses were conducted using STATA SE
(version 15.0) and R software (version 4.2.3). The statistical
significance was determined when the two-sided P < 0.05.

3 Results

3.1 Characteristics of the participants

The characteristics of the study participants were presented in
Table 1. Among the 8,516 participants, slightly more were women,
about 2/3 (65.0%) in total were 25(OH)D deficient (25(OH)D
<20 ng/mL), and mean vit D levels were in the range of deficiency.
Among women, 39.4%, 26.3%, 27.8%, 56.8%, 51.6%, and 20.2% had
abnormal levels of TC, TG, HDL-C, LDL-C, nonHDL-C, and RC,
respectively. Among men, 41.9%, 45.6%, 21.7%, 72.3%, 68.4%, and
29.3% had abnormal levels of TC, TG, HDL-C, LDL-C, nonHDL-
C, and RC, respectively. Interestingly, we found that when there
was a deficiency (10–20 ng/ml) or severe deficiency (≤10 ng/ml)
of 25(OH)D, the levels of TC, TG, LDL-C, nonHDL, RC, AC,
BMI, ALT, AST, Globulin, GGT, ALP, Tbil, and Urea were lower
than those in the participant population with 25(OH)D >20 ng/ml
(P < 0.001), while the levels of HDL-C were higher than that in
the participant population with 25(OH)D >20 ng/ml (P < 0.001)
(Table 1). Post hoc ANOVA analysis showed that compared with
vitamin D sufficient group, vitamin D severely deficient group had
a better lipid profile, vitamin D insufficient group had mostly a
worse lipid profile, while vitamin D moderately deficient subjects
were not different. Post hoc ANCOVA analysis showed that after
adjustment for age, sex, and BMI, compared with vitamin D
deficient group, the differences in lipid levels were still significant
for vitamin D severely deficient group. In addition, the 25(OH)D
concentrations were higher in males, 50–74 years old participants,
during summer/autumn and high/very high UV index (in Table 1,
Supplementary Tables S1–S3, Supplementary Figure S2).

3.2 25(OH)D deficiency was associated
with an increased prevalence of abnormal
lipid profile

In the model adjusted for sex, age, season, and BMI (Model 3,
Table 2), compared to individuals with sufficient levels of 25(OH)D
(>30 ng/ml), those with insufficient or deficient 25(OH)D levels
(30–20 ng/ml, 10–20 ng/ml, or <10 ng/ml) had significantly higher
risks (ORs) for all examined dyslipidemia types (Table 2). The non-
significant but still increased risk was only shown for HTG and
HRC among those with severe vitamin D deficiency (<10 ng/ml)
(Table 2). In the adjusted model (Model 3), which accounted for
sex, age, season and BMI, the highest risk was noted among
vitamin D moderately deficient, then among vitamin D insufficient
subjects, while those with severe vitamin D deficiency had the
least increased significant risk, which is an interesting finding.
Interestingly, in the non-adjusted model (Model 1), only the lower
risk for all dyslipidemia types was shown among those with vitamin
D severe deficiency, while inModel 2, adjusted only for sex, age, and
season, only among those with vitamin D insufficiency/moderate
deficiency the risk was increased and only for some dyslipidemia

Frontiers inNutrition 03 frontiersin.org

https://doi.org/10.3389/fnut.2024.1388017
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Wang et al. 10.3389/fnut.2024.1388017

TABLE 1 Characteristics of the participants according to 25(OH)D concentrations.

Variables 25(OH)D concentrations (ng/ml) F/H/χ2

value
P value

Total >30 20–30 10–20 ≤10

N (%) 8,516 (100) 560 (6.6) 2,416 (28.4) 4,478 (52.6) 1,062 (12.4)

Sex ∗∗∗ ∗∗∗ ∗∗∗ 6.8 <0.001

Female N (%) 4,766 (56.0) 177 (3.7) 979 (20.6) 2,761 (57.9) 849 (17.8)

Male N (%) 3,750 (44.0) 383 (10.2) 1,437 (38.3) 1,717 (45.8) 213 (5.7)

Age (years) 41 (34–50) 49 (38–56) 44 (36–52)∗∗∗ 40 (34-49) ∗∗∗ 35 (29-42) ∗∗∗
6.3 <0.001

Age (years) ∗∗∗ ∗∗∗ ∗∗∗
4.3 <0.001

18–50N (%) 6,360 (74.7) 292 (4.6) 1,593 (25.1) 3,514 (55.2) 961 (15.1)

50–74N (%) 2,156 (25.3) 268 (12.4) 823 (38.2) 964 (44.7) 101 (4.7)

Season ∗ ∗∗∗ ∗∗∗ 9.5 <0.001

Spring N (%) 1,186 (13.9) 43 (3.6) 197 (16.6) 716 (60.4) 230 (19.4)

Summer N (%) 2,911 (34.2) 231 (7.9) 1,043 (35.8) 1,440 (49.5) 197 (6.8)

Autumn N (%) 2,903 (34.1) 261 (9.0) 987 (34.0) 1,460 (50.3) 195 (6.7)

Winter N (%) 1,516 (17.8) 25 (1.6) 189 (12.5) 862 (56.9) 440 (29.0)

Ultraviolet index ∗ ∗∗∗ ∗∗∗ 9.4 <0.001

Low N (%) 1,899 (22.3) 49 (2.6) 297 (15.6) 1,109 (58.4) 444 (23.4)

Middle N (%) 1,197 (14.1) 40 (3.3) 169 (14.1) 699 (58.4) 289 (24.2)

High N (%) 2,509 (29.4) 240 (9.6) 907 (36.1) 1,230 (49.0) 132 (5.3)

Very high N (%) 2,911 (34.2) 231 (7.9) 1,043 (35.8) 1,440 (49.5) 197 (6.8)

25(OH)D (ng/ml) 18.0± 7.1 33.7± 2.8 24.1± 2.8 15.0± 2.8 8.3± 1.2 17.8 <0.001

AC (cm) 83.1± 0.1 86.2± 0.4 85.8± 0.2 82.5± 0.15∗∗∗ 78.7± 0.3∗∗∗ 14.9 <0.001

BMI (kg/m2) 23.7± 0.1 24.4± 0.2 24.4± 0.1 23.6± 0.1∗∗∗ 22.2± 0.2∗∗∗ 7.4 <0.001

TC (mmol/L) 5.04± 0.01 5.10± 0.04 5.12± 0.03∗∗∗ 5.02± 0.01# 4.89± 0.02∗∗∗### 11.3 <0.001

TG (mmol/L) 1.37 (0.96–1.97) 1.46 (1.06–2.03) 1.47 (1.05–2.08) 1.34 (0.94–1.93)∗∗ 1.20 (0.87–1.89)∗∗∗### 9.0 <0.001

HDL-C (mmol/L) 1.38± 0.01 1.35± 0.01 1.33± 0.01∗∗∗ 1.39± 0.01∗ 1.45± 0.01∗∗∗### 13.5 <0.001

LDL-C (mmol/L) 2.90± 0.01 2.97± 0.03 2.98± 0.02∗∗∗ 2.88± 0.01## 2.76± 0.02∗∗∗### 6.8 <0.001

nonHDL-C (mmol/L) 3.66± 0.01 3.76± 0.04 3.79± 0.02∗∗∗# 3.64± 0.01∗∗## 3.44± 0.02∗∗∗### 7.3 <0.001

RC (mmol/L) 0.76± 0.01 0.79± 0.01 0.81± 0.01### 0.76± 0.01# 0.68± 0.01∗∗∗## 8.8 <0.001

ALT (U/L) 18.6 (13.5–28.2) 21.1 (15.9–30.7) 20.7 (15.2–31.0) 18.0 (13.1–27.4) ∗∗∗ 15.3 (11.2–22.3) ∗∗∗ 8.3 <0.001

AST (U/L) 19.7 (16.7–23.8) 21.2 (18.2–25.7) 20.7 (17.6–25.0) 19.3 (16.4–23.4) ∗∗∗ 18.4 (15.9–21.5) ∗∗∗ 12.4 <0.001

Globulin (g/L) 27.7± 0.0 27.9± 0.1 27.6± 0.1∗ 27.8± 0.1∗∗∗ 27.8± 0.1∗∗ 6.6 <0.001

GGT (U/L) 16.7 (11.5–26.9) 20.7 (14.4–30.9) 19.5 (13.4–30.7) 15.8 (11.2–25.7)∗∗∗ 12.9 (9.7–19.7)∗∗∗ 8.9 <0.001

ALP (U/L) 64.0 (53.0–77.8) 68.0 (57.0–81.0) 66.8 (55.7–80.0) 63.5 (52.3–76.7)∗∗∗ 60.1 (50.1–72.7)∗∗∗ 11.9 <0.001

Tbil (µmol/L) 13.8 (11.0–17.6) 14.1 (11.3–18.3) 14.5 (11.6–18.5) 13.6 (10.9–17.3)∗ 12.9 (10.1–16.5)∗∗∗ 10.5 <0.001

Urea (mmol/L) 4.9 (4.1–5.7) 5.3 (4.6–6.1) 5.0 (4.4–5.9)∗∗∗ 4.8 (4.1–5.6)∗∗∗ 4.4 (3.7–5.1)∗∗∗ 5.4 <0.001

Hypertension ∗∗∗ ∗∗∗ 8.5 <0.001

Yes N (%) 1,229 (14.4) 112 (9.1) 428 (34.8) 581 (47.3) 108 (8.8)

No N (%) 7,287 (85.6) 448 (6.1) 1,988 (27.3) 3,897 (53.5) 954 (13.1)

Diabetes ∗∗∗ ∗∗∗ 9.8 <0.001

Yes N (%) 381 (4.5) 36 (9.5) 151 (39.6) 170 (44.6) 24 (6.3)

(Continued)
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TABLE 1 (Continued)

Variables 25(OH)D concentrations (ng/ml) F/H/χ2

value
P value

Total >30 20–30 10–20 ≤10

No N (%) 8,135 (95.5) 524 (6.4) 2,265 (27.8) 4,308 (53.0) 1,038 (12.8)

Hyperuricemia ∗∗∗ ∗∗∗ 16.6 <0.001

Yes N (%) 2,440 (28.7) 205 (8.4) 874 (35.8) 1,180 (48.4) 181 (7.4)

No N (%) 6,076 (71.3) 355 (5.8) 1,542 (25.4) 3,298 (54.3) 881 (14.5)

25(OH)D, 25-hydroxyvitamin D; AC, Abdominal circumference; BMI, Body mass index; DBP, Diastolic blood pressure; FBG, Fasting blood glucose; TC, Total cholesterol; TG, Triglyceride;

HDL-C, High density lipoprotein cholesterol; LDL-C, Low Density Lipoprotein; nonHDL, non-high-density lipoprotein cholesterol; RC, Remnant cholesterol; ALT, Alanine aminotransferase;

AST, Aspartate aminotransferase; GGT, γ-glutamyl transferase; ALP, Alkaline phosphatase; Tbil, Total bilirubin.

Bold font indicates statistically significant differences (P < 0.05).
∗ , ∗∗ , ∗∗∗ used to label the significant comparisons with vitamin D sufficient group (> 30 nmol/L), meaning p<0.05, p<0.01, p<0.001, respectively.
# , ## , ### used to label the significant comparisons with vitamin D sufficient group (> 30 nmol/L) after adjustment for sex, age, and BMI, meaning p < 0.05, p < 0.01, p < 0.001, respectively.

types (HTC, LHDL-C, HnonHDL-C, HRC). The correction for
BMI, therefore, strengthened the level of association of vitamin D
deficiency/insufficiency with dyslipidemia, and further correction
for other cardiometabolic traits in the fully adjusted additional
model (Model 4) additionally strengthened the level of association
(Supplementary Table S7).

3.3 Nonlinear relationship between
25(OH)D and lipid profile and the
determination of cut-o� points for
25(OH)D

Figure 1 showed the associations between 25(OH)D
concentration and lipid profile after adjustments for sex, age,
season, and BMI. The prevalence of HTG initially decreased,
followed by an increase and subsequent decrease with increasing
25(OH)D concentration. Conversely, the prevalence of HTC,
HLDL-C, HnonHDL, and HRC showed an initial increase followed
by a decrease. The prevalence of LHDL-C showed a more linear
decrease. Further, we discovered that falling below the cut-off
points for 25(OH)D resulted in abnormal lipid profile. The
inflection points were 23.7 ng/ml for HTC, 24.3 ng/ml for HTG,
18.5 ng/ml for HLDL-C, 23.3 ng/ml for LHDL-C, 23.3 ng/ml for
HnonHDL, and 24.3 ng/ml for HRC. Below the cut-off point,
for every one-unit decrease in 25(OH)D level, there was a
corresponding decrease of 2.0% in the risk for elevated HTC, 1.6%
in HTG, 2.8% in HLDL-C, 4.6% in HnonDL-C, and 4.1% in HRC
(in Table 3). For vitamin D levels below these inflection points,
the risk is significantly increased for dyslipidemia, except LHDL-C
(Table 3).

3.4 The stratified analyses of the nonlinear
relationships between 25(OH)D and lipid
profile

The stratified analyses (Figures 2–6) showed that a higher
risk of abnormal lipid profile under equivalent 25(OH)D
concentrations was observed among males (Figure 2), 191
individuals aged 50–74 years (Figure 3), during the winter/spring

period (Figure 5), and under low/middle ultraviolet index
environments (Figure 6). More importantly, further stratification
of sex categories by age has shown that the risk for dyslipidemia
was the highest in women aged 50–74 years, except for HTG,
which was the highest among men aged 50–74 years (Figure 4).
The lowest risk was noted in women aged 18–50 years, except
for LHDL-C, where the risk was still higher compared to men.
The results were not very different if model 4 was applied
(Supplementary Figures S3–S7).

4 Discussion

In this study, nonlinear inverse U-shaped associations were
observed between 25(OH)D levels and abnormal lipid profiles,
except for LHDL-C, where more an inverse linear association was
observed. The level of 25(OH)D below the inflection points showed
positive correlations with the risks of abnormal lipid profile, with
inflection points observed at 23.7 ng/ml for HTC, 24.3 ng/ml for
HTG, 18.5 ng/ml for HLDL-C, 23.3 ng/ml for LHDL-C, 23.3 ng/ml
for HnonHDL-C, and 24.3 ng/ml for HRC. The stratified analyses
showed that the risk for most dyslipidemias related to deficiency
of 25(OH)D was particularly increased among females aged 50-74
(except for hypertriglyceridemia, where the highest risk was among
men aged 50–74 years), during winter/spring or under low/middle
ultraviolet index environments.

The prevalence of vitamin D deficiency in adults varies due
to regional and ethnic differences. The incidence of vitamin D
deficiency ranges between 20% and 60% in various European
countries (30). In Asia, the overall prevalence of vitamin D
deficiency among the general population is estimated at 75% (31).
In China, the incidence of vitamin D deficiency among residents is
estimated to be 87.1% (32).

Previous studies have demonstrated that maintaining 25(OH)D
concentrations between 25 and 60 ng/ml significantly decreases all-
cause mortality rates, lowers the risk of cancer, and reduces the
incidence of diseases such as T2DM and hypertension (33, 34).
The evidence indicated that the body should maintain a minimum
level of 30 ng/ml of 25(OH)D in order to support musculoskeletal
health (22, 35). Several studies have shown that vitamin D
supplementation may be beneficial in improving dyslipidemia in
individuals with vitamin D deficiency (36–39). In investigating the
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TABLE 2 The associations between 25(OH)D and lipid profile.

Model 1 Model 2 Model 3

OR (95%CI) P value OR (95%CI) P value OR (95%CI) P value

HTC

25(OH)D suffciency 1 1 1

25(OH)D insufficiency 1.111 (0.922, 1.339) 0.267 1.240 (1.024, 1.501) 0.027 1.305 (1.103, 1.545) 0.002

25(OH)D deficiency 0.937 (0.784, 1.120) 0.476 1.154 (0.957, 1.393) 0.134 1.356 (1.189, 1.673) <0.001

Severe 25(OH)D deficiency 0.659 (0.533, 0.814) <0.001 0.934 (0.741, 1.176) 0.562 1.219 (1.050, 1.415) 0.009

HTG

25(OH)D suffciency 1 1 1

25(OH)D insufficiency 1.039 (0.859, 1.256) 0.694 1.154 (0.949, 1.402) 0.151 1.196 (1.003, 1.726) 0.025

25(OH)D deficiency 0.822 (0.686, 0.986) 0.035 1.048 (0.865, 1.270) 0.632 1.263 (1.057, 1.438) 0.006

Severe 25(OH)D deficiency 0.762 (0.615, 0.944) 0.013 1.086 (0.857, 1.377) 0.493 1.089 (0.859, 1.382) 0.376

HLDL-C

25(OH)D suffciency 1 1 1

25(OH)D insufficiency 1.034 (0.851, 1.257) 0.734 1.177 (0.964, 1.437) 0.109 1.193 (1.002, 1.438) 0.049

25(OH)D deficiency 0.880 (0.731, 1.060) 0.179 1.207 (0.993, 1.466) 0.059 1.226 (1.097, 1.536) 0.012

Severe 25(OH)D deficiency 0.608 (0.491, 0.752) <0.001 0.986 (0.782, 1.245) 0.908 1.331 (1.018, 1.740) 0.037

LHDL-C

25(OH)D suffciency 1 1 1

25(OH)D insufficiency 1.045 (0.824, 1.325) 0.717 1.229 (0.981, 1.539) 0.073 1.308 (0.998, 1.769) 0.057

25(OH)D deficiency 1.138 (0.902, 1.437) 0.274 1.298 (1.041, 1.618) 0.021 1.323 (1.109, 1.684) 0.004

Severe 25(OH)D deficiency 1.218 (0.922, 1.609) 0.165 1.294 (0.995, 1.682) 0.055 1.380 (1.107, 1.753) 0.023

HnonHDL

25(OH)D suffciency 1 1 1

25(OH)D insufficiency 1.128 (0.932, 1.364) 0.216 1.339 (1.100, 1.630) 0.004 1.478 (1.132, 1.983) <0.001

25(OH)D deficiency 0.831 (0.693, 0.996) 0.045 1.243 (1.026, 1.506) 0.026 1.356 (1.174, 1.892) <0.001

Severe 25(OH)D deficiency 0.530 (0.430, 0.653) <0.001 1.021 (0.811, 1.285) 0.861 1.089 (1.007, 1.498) 0.048

HRC

25(OH)D suffciency 1 1 1

25(OH)D insufficiency 1.168 (0.949, 1.437) 0.142 1.378 (1.115, 1.704) 0.003 1.398 (1.174, 1.793) <0.001

25(OH)D deficiency 0.842 (0.689, 1.029) 0.093 1.249 (1.012, 1.542) 0.038 1.425 (1.203, 1.841) <0.001

Severe 25(OH)D deficiency 0.497 (0.387, 0.640) <0.001 0.996 (0.759, 1.308) 0.977 1.013 (0.769, 1.333) 0.929

Model 1 did not account for variables. Model 2 was adjusted for sex (categorical), age (continuous), and the season (categorical). Model 3 was adjusted for covariates including sex (categorical),

age (continuous), season (categorical), and BMI (continuous).

25(OH)D, 25-hydroxyvitamin D; OR, odds ratio; CI, confidence interval. HTC, hypercholesterolemia; HTG, hypertriglyceridemia; LHDL-C, hypo-high-density lipoprotein cholesterolemia;

HLDL-C, hyper-low-density lipoprotein cholesterol cholesterolemia; HnonHDL, hyper-non-high-density lipoprotein cholesterol; HRC, high remnant cholesterol.

Bold font indicates statistically significant differences (P<0.05).

association between 25(OH)D and blood lipid, it was observed that
a 25(OH)D level below 20 ng/ml increased the risk of dyslipidemia
(33, 40–43), which is consistent with our findings (represented as
ORs in Table 3). Above this value, the risk gradually decreased
in our study. The results of our study indicated an inverse U-
shaped relationship between 25(OH)D and abnormal lipid profile.
The 25(OH)D levels above 20 ng/ml appeared to have a protective
effect on lipid profile. The positive correlation between 25(OH)D

and the risk of dyslipidemia in the range of 25(OH)D<20 ng/ml
found by RCS curves cannot be easily explained, but logistic
regression models showed that there is still an increased risk
compared with the vitamin D sufficient group, even in those with
severe deficiency. We also found that the risk of abnormal lipid
profile was lower in participants with severe 25(OH)D deficiency
(≤10 ng/ml) compared to those with deficiency (10–20 ng/ml) and
insufficiency (20–30 ng/ml). The reason for such findings can be
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FIGURE 1

Dose-response relationship between 25(OH)D and lipid profile. Adjusted for covariates including sex (categorical), age (continuous), season
(categorical), and BMI (continuous). 25(OH)D, 25-hydroxyvitamin D; CI, confidence interval; HTC, hypercholesterolemia; HTG, hypertriglyceridemia;
LHDL-C, hypo-high-density lipoprotein cholesterolemia; HLDL-C, hyper-low-density lipoprotein cholesterol cholesterolemia; HnonHDL,
hyper-non-high-density lipoprotein cholesterol; HRC, high remnant cholesterol.

TABLE 3 The cut-o� value for 25(OH)D in an abnormal lipid profile.

25(OH)D change point, ng/ml
(95%CI)

OR below change point
(95%CI)

OR above change point
(95%CI)

HTC 23.7 (21.7, 25.7) 1.020 (1.006, 1.033)∗ 0.989 (0.969, 1.001)

HTG 24.3 (22.5, 26.1) 1.016 (1.011, 1.023)∗ 0.974 (0.945, 1.004)

HLDL-C 18.5 (18.2, 18.8) 1.028 (1.022, 1.034)∗ 0.991 (0.971, 1.011)

LHDL-C 23.3 (17.3, 29.3) 0.988 (0.971, 1.005) 0.976 (0.953, 0.997)∗

HnonHDL 23.3 (21.4, 25.2) 1.046 (1.033, 1.059)∗ 0.977 (0.958, 0.997)∗

HRC 24.3 (22.4, 26.2) 1.041 (1.035, 1.047)∗ 0.963 (0.936, 0.991)∗

25(OH)D, 25-hydroxyvitamin D; OR, odds ratio; CI, confidence interval; HTC, hypercholesterolemia; HTG, hypertriglyceridemia; LHDL-C, hypo-high-density lipoprotein cholesterolemia;

HLDL-C, hyper-low-density lipoprotein cholesterol cholesterolemia; HnonHDL, hyper-non-high-density lipoprotein cholesterol; HRC, high remnant cholesterol.

Adjusted for covariates including sex (categorical), age (continuous), season (categorical), and BMI (continuous).
∗used to mean p<0.05, respectively.

the lower BMI and abdominal circumference in this group of
participants. Additionally, there can be other possible explanations,
which require further exploration.

In the synthesis of cholesterol from acetyl-CoA, the rate-
limiting step is the conversion of HMG-CoA to mevalonate by
HMG-CoA reductase, after which follow series of reactions that
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FIGURE 2

Dose-response relationship between 25-hydroxyvitamin D and the risk for specific dyslipidemias stratified by sex. Adjusted for covariates including
sex (categorical), age (continuous), season (categorical), BMI (continuous). CI, confidence interval; HTC, hypercholesterolemia; HTG,
hypertriglyceridemia; LHDL-C, hypo-high-density lipoprotein cholesterolemia; HLDL-C, hyper-low-density lipoprotein cholesterol cholesterolemia;
HnonHDL-C, hyper-non-high-density lipoprotein cholesterol; HRC, high remnant cholesterol.

involve >20 steps. The final step in the Kandutsch-Russell pathway
of cholesterol synthesis is a conversion 7DHC to cholesterol by
7-dehydrocholesterol reductase (DHCR7) through the reduction
of the C (7, 8) double bond, and this can occur ubiquitously
in the body. However, in the skin, previtamin D3 is formed
from 7DHC by the cleavage of the C (9, 10) bond through
exposure to photons of ultraviolet B (UV-B) light, thus reducing
the substrate for cholesterol synthesis (44). Therefore UV-B light,
by conversion of 7DHC to vitamin D, may reduce the substrate for
skin cholesterol synthesis. Additionally, UV-B light stimulates the
production of the active form of vitamin D, 1,25(OH)D in human
skin keratocytes (keratinocytes express both 25-hydroxylase and
1α-hydroxylase, and UV-B stimulates 1α-hydroxylase expression)
and reduces expression of DHCR7 (45). It was also shown in
human keratinocytes that cholesterol and its precursors induce
proteasomal degradation of DHCT7, thus reducing its activity

and causing the increase in vitamin D synthesis (46). It was
shown in cultured human skin fibroblasts, transformed human
liver cells, mouse intestinal epithelial cells, and mouse peritoneal
macrophages, that vitamin D and its hydroxylated metabolites
inhibited cholesterol synthesis. All hydroxylated derivatives (but
not vitamin D) inhibited 14a-lanosterol demethylase. Additionally,
vitamin D and 25(OH)D, but not 1,25(OH)D, inhibited HMG-
CoA reductase activity in a concentration-dependent manner.
Interestingly, in cultured human skin fibroblasts, 1,25(OH)D
had a biphasic effect on HMG-CoA reductase, with inhibiting
at low concentrations and restoring to control values at high
concentrations, while in transformed human liver cells it strongly
stimulated HMG-CoA reductase activity, which opposed the effect
of 25(OH)D. Additionally, it was shown in human glioma cell
lines that vitamin D3 but not 1,25(OH)D inhibits the expression
of DHCR7, which leads to the inhibition of cholesterol synthesis
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FIGURE 3

Dose-response relationship between 25-hydroxyvitamin D and the risk for specific dyslipidemias stratified by age. Adjusted for covariates including
sex (categorical), age (continuous), season (categorical), BMI (continuous). CI, confidence interval; HTC, hypercholesterolemia; HTG,
hypertriglyceridemia; LHDL-C, hypo-high-density lipoprotein cholesterolemia; HLDL-C, hyper-low-density lipoprotein cholesterol cholesterolemia;
HnonHDL-C, hyper-non-high-density lipoprotein cholesterol; HRC, high remnant cholesterol.

and the accumulation of 7-DHC and other sterol intermediates.
Therefore the effect of vitamin D and its metabolites can
vary between different tissues, and the effect of vitamin D,
25(OH)D, and its active form 1,25(OH)D can be significantly
different (47).

Interestingly, in an epidemiological study of 307 apparently
healthy 40–60 years old Indian men (48), serum DHCR7 levels
were significantly lower in subjects at higher daily sun exposure,
and there was a negative association between serum 25(OH)D and
DHCR7 levels at moderate and higher sunlight exposure (but not at
lower sunlight exposure). At the same time, it was shown that while
at moderate sunlight exposure (1–2 h/d), there was no significant
association between serum 25(OH)D and HDL-C levels, at lower
sunlight exposure (<1 h/d), there was a positive association, and, in
contrast, at higher sunlight exposure (>2 h/d), there was a negative
association (48), which is in alignment with our findings that the

risk for LHDL-C was the highest during summer/autumn and very
high and high UV index.

However, some experimental data did not manage to confirm
the significant effect of UV light on the serum lipid levels: the
whole body UV-A and UV-B radiation twice weekly for 12 weeks
with suberythemal doses did not make significant differences in
any lipoproteins or apolipoprotein levels between the treated and
control, despite increasing significantly vitamin D levels in the
treated group (49). Nevertheless, in another experimental study in
Indian men, there was a decrease in TC, HDL-C, and LDL-C with
moderately increasing daily sunlight exposure, while, in contrast,
vitamin D supplementation with oral cholecalciferol 1,000 IU/day
led to the opposite effect (particularly on TC and HDL-C) (50).
Both interventions significantly increased the vitamin D serum
levels compared with the control group, indicating that there can
be a difference between the effect of exogenous and endogenous
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FIGURE 4

Dose-response relationship between 25-hydroxyvitamin D and the risk for specific dyslipidemias stratified by sex + age. Adjusted for covariates
including sex (categorical), age (continuous), season (categorical), BMI (continuous). CI, confidence interval; HTC, hypercholesterolemia; HTG,
hypertriglyceridemia; LHDL-C, hypo-high-density lipoprotein cholesterolemia; HLDL-C, hyper-low-density lipoprotein cholesterol cholesterolemia;
HnonHDL-C, hyper-non-high-density lipoprotein cholesterol; HRC, high remnant cholesterol.

vitamin D levels on different cholesterol subfractions. In general,
the studies on the effect of vitamin D supplementation on lipid
levels revealed inconsistent findings (41).

25(OH)D was found to inhibit the expression of adipogenic
transcription factor genes, thereby significantly reducing lipid
accumulation and promoting adipocyte apoptosis. Nevertheless,
adipose tissue has the capacity to sequester vitamin D, thereby
exerting an additional cumulative effect that results in a reduction
in the amount of vitamin D entering the circulation (51).
Additionally, there is an interplay between vitamin D and cortisol,
with vitamin D downregulating cortisol receptors and thus
diminishing its activity (52, 53). Moreover, there is an interaction
with other steroid hormones and nuclear receptors involved in
metabolism (54). 25(OH)D enhances lipoprotein lipase activity
and gene expression in muscle and adipose tissue, accelerating
clearance of lipoprotein particles in the circulation and lowering in

TG concentrations (55–59). 25(OH)D also enhances intracellular
calcium ion levels in hepatocytes, which contributes to reverse
cholesterol transport (60, 61).

The people aged 50–74 years had higher levels of 25(OH)D
compared to those aged 18–50 years (which is in contrast with
other studies, which show lower levels of vitamin D in older adults,
connected with lower exposure to sun, decreased skin production
of vitamin D, and lower intake) (62). However, they were more
likely to have dyslipidemia at the given serum concentration of
vitamin 25(OH)D. This is in accordance with the higher prevalence
of dyslipidemia in general with aging and related changes in
metabolism, insulin sensitivity hormones, hormonal and body
composition. Another potential explanation is that with aging
the activation and function of 25(OH)D decrease (connected
with a lower concentration of vitamin D receptor and lower
kidney 21-hydroxylation), which further decreases the regulation
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FIGURE 5

Dose-response relationship between 25-hydroxyvitamin D and the risk for specific dyslipidemias stratified by season. Adjusted for covariates
including sex (categorical), age (continuous), season (categorical), BMI (continuous). CI, confidence interval; HTC, hypercholesterolemia; HTG,
hypertriglyceridemia; LHDL-C, hypo-high-density lipoprotein cholesterolemia; HLDL-C, hyper-low-density lipoprotein cholesterol cholesterolemia;
HnonHDL-C, hyper-non-high-density lipoprotein cholesterol; HRC, high remnant cholesterol.

of lipid metabolism and leads to an increased prevalence of
dyslipidemia (63).

Although 25(OH)D levels were higher in men than in women
in the present study, the risk of dyslipidemia at given vitamin
D serum concentrations was higher in men, when the whole
sample was stratified only by sex, with the exception of LHDL-
C and HRC (“nonLDL/nonHDL-cholesterol”), where the risk was
higher in women. Nevertheless, when the sample was stratified
by sex and age simultaneously, the risk was shown to be the
highest among females aged 50–74 years, except for HTG, which
was higher in older males. The lowest risk was shown among
females aged 18–50, except for LHDL-C. These findings can
be explained by the direct effect of menopause, which strongly
influences changes in lipid metabolism (particularly HDL-C) with
a lack of estrogens and progesterone, as well as the disturbed ratio
of estrogens and progesterone to androgens and corticosteroids

(64). There is an interplay between vitamin D and other steroids,
including estrogens, androgens, and corticosteroids, and there is a
similarity and synergy in the effects of vitamin D and estrogens in
many metabolic pathways: vitamin D can potentiate the effect of
estrogen and vice versa, and estrogen may increase 1,25(OH)D in
postmenopausal women (30, 54, 65–69).

One of the reasons for the higher risk of LHDL-C among
both post- and premenopausal women could be the usage
of inadequate cut-offs for LHDL-C among the studied female
population. The selected cut-offs for LHDL-C may not be
appropriate for the Asian female populations. For example, in the
Korean female population, which in general has lower average
levels of HDL-C but without metabolic risk, and the cut-offs
are set at lower values of HDL-C (70). Using the cut-offs
of other populations may erroneously classify the majority of
the studied female population as “dyslipidemic”, while in fact,
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FIGURE 6

Dose-response relationship between 25-hydroxyvitamin D and the risk for specific dyslipidemias stratified by ultraviolet index. Adjusted for covariates
including sex (categorical), age (continuous), season (categorical), BMI (continuous). CI, confidence interval; HTC, hypercholesterolemia; HTG,
hypertriglyceridemia; LHDL-C, hypo-high-density lipoprotein cholesterolemia; HLDL-C, hyper-low-density lipoprotein cholesterol cholesterolemia;
HnonHDL-C, hyper-non-high-density lipoprotein cholesterol; HRC, high remnant cholesterol.

they are just in the normal range. However, there can also be
other explanations.

As we all know, the concentration of 25(OH)D can be
enhanced by exposure to ultraviolet irradiation (71, 72), and the
epidemiological studies have proven that ultraviolet irradiation has
a positive impact on cardiovascular diseases, obesity and metabolic
syndrome (33). We observed a dose-response relationship between
vitamin D and lipid profiles across UV indices and seasons. At
the same concentration of 25(OH)D, we found that lower UV
indices and winter were associated with a higher prevalence of
abnormal lipid profiles. Themechanism involves low endogenously
synthesized vitamin D levels due to low UV exposure, which
hinders the utilization of 25 (OH) D and increases the incidence
of lipid profile abnormalities (72–75). Also lifestyle changes due to
the cold season (physical inactivity, high calorie diet) contribute
to the increased prevalence of dyslipidemia. More interestingly,

we found that the rates of HDL-C and RC abnormalities were
higher in summer + fall and at higher UV indices. Previous
studies have found the association between vitamin D and lipid
profiles to be seasonal. Vitamin D levels were strongly correlated
with HDL-C and TC levels in the summer/fall, and there was a
weak correlation with HDL-C in the winter/spring (76). Vitamin D
showed a negative correlation with HDL-C and DHCR7 at higher
UV indices (48, 77). In the skin, high UV-B induces reduction of the
DHCR7 expression and decreases its substrate 7DHC, which leads
to a decrease in cholesterol synthesis, and increases 1α,25(OH)2D3

production (45).
In this study, we conducted a comprehensive analysis using

a large sample size from the general population and a specific
threshold for 25(OH)D concentration in relation to lipid profile
has been determined. Furthermore, the study investigated the
nonlinear relationships between 25(OH)D and lipid profile across
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different ultraviolet index and seasons. However, the present study
is subject to certain limitations. The cross-sectional nature of the
study prevents us from drawing conclusions about the causal
relationship between 25(OH)D and lipid profile, future analysis of
follow-up cohort data is needed to further investigate causality.
The RC concentration was not directly measured, which may
deviate from the true level. Additionally, some parameters (e.g.,
parathyroid hormone, insulin), for which significant roles in the
relationship between 25(OH)D and dyslipidmia are described, were
not assessed. In addition, these participants came from a single
center, with a limited sample size, and all were Asian. Therefore,
the generalization of the results in different racial or ethnic groups
may require further validation of the corresponding large samples.
In addition, the optimal HDL-C cutoff to predict CVA-IHD was
43 mg/dL and 48 mg/dL for Korean men and women, respectively,
and 41 mg/dL and 56 mg/dL for US men and women, respectively
(70). We, therefore, question if the cut-offs used in general
(Eurupoid population) are relevant for our population, which
could have distinctive cut-offs for HDL-C (more similar as in the
Korean population). Finally, we did not asses the concentration of
1,25(OH), which can have an opposite effect compared to 25(OH)D
on cholesterol synthesis in the liver (47), and the imbalance between
two metabolites can influence cholesterol synthesis in the liver and
other tissues.

5 Conclusion

Nonlinear inverse U-shaped associations were observed
between 25(OH)D levels and abnormal lipid profile. The risk was
particularly increased among females aged 50-74 years, then males,
during the winter/spring period. In vitamin D deficient subjects
[25(OH)D <20 ng/ml], a positive association of serum vitamin D
levels with the risk for dyslipidemia was observed, which data is
needed to further investigate causality.
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