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Crop yield and quality has increased globally during recent decades due to 
plant breeding, resulting in improved food security. However, climate change 
and shifts in human dietary habits and preferences display novel pressure on 
crop production to deliver enough quantity and quality to secure food for 
future generations. This review paper describes the current state-of-the-art 
and presents innovative approaches related to alien introgressions into wheat, 
focusing on aspects related to quality, functional characteristics, nutritional 
attributes, and development of novel food products. The benefits and 
opportunities that the novel and traditional plant breeding methods contribute 
to using alien germplasm in plant breeding are also discussed. In principle, gene 
introgressions from rye have been the most widely utilized alien gene source 
for wheat. Furthermore, the incorporation of novel resistance genes toward 
diseases and pests have been the most transferred type of genes into the 
wheat genome. The incorporation of novel resistance genes toward diseases 
and pests into the wheat genome is important in breeding for increased food 
security. Alien introgressions to wheat from e.g. rye and Aegilops spp. have 
also contributed to improved nutritional and functional quality. Recent studies 
have shown that introgressions to wheat of genes from chromosome 3 in rye 
have an impact on both yield, nutritional and functional quality, and quality 
stability during drought treatment, another character of high importance for 
food security under climate change scenarios. Additionally, the introgression 
of alien genes into wheat has the potential to improve the nutritional profiles of 
future food products, by contributing higher minerals levels or lower levels of 
anti-nutritional compounds into e.g., plant-based products substituting animal-
based food alternatives. To conclude, the present review paper highlights great 
opportunities and shows a few examples of how food security and functional-
nutritional quality in traditional and novel wheat products can be improved by 
the use of genes from alien sources, such as rye and other relatives to wheat. 
Novel and upcoming plant breeding methods such as genome-wide association 
studies, gene editing, genomic selection and speed breeding, have the potential 
to complement traditional technologies to keep pace with climate change and 
consumer eating habits.
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1 Introduction

Wheat is one of the three major crops (together with rice and 
maize) across the globe as related to production (yield and area) and 
as a staple (1, 2). Of these three crops, wheat has a specific place as a 
food crop with a wide range of products, and it is also the most traded 
of the cereals (3). Wheat thereby contributes largely to food security 
in various areas worldwide, where wheat is an important or major 
component of the daily food consumption (1, 2). Due to the high 
intake of wheat, its nutritional content is of particular importance to 
secure human health and wellbeing (4–10). Traditionally, wheat has 
been used for a variety of baked goods, such as breads, chapatis, naan, 
pancakes, wafers, biscuits, crackers, cakes etc., while pasta and more 
“whole seed” (e.g., breakfast cereals) are also common wheat-based 
products (11). Currently, novel wheat-based products are emerging, 
such as wheat berries (whole grain wheat to be cooked and replace, 
e.g., rice), seitan (gluten used to replace meat), high moisture meat 
analogs (HMMA, to replace meat and in these products, wheat 
proteins are used as building blocks), to make pace with emerging 
consumer and societal needs (12–15).

As for all other crops, climate change, with increased spells of 
extreme weather, has a large impact on the production of wheat, 
affecting both yield and quality (16, 17). Plant breeding has resulted in 
wheat material adapted to the current prevailing cultivation conditions, 
which will be altered due to the predicted climate change, eventually 
resulting in a dramatic decrease in yield (18). The focus of plant 
breeding has been to increase yield, resistance and end-use quality, 
saving lines with the best performance in the present climate, which also 
might have affected the genetic diversity in crops (19–22). Furthermore, 
plant breeding of wheat might have contributed to a decrease in the 
nutritional quality, e.g., minerals and phytochemicals, of the wheat, and 
breeding toward improved bread-making quality may have resulted in 
an increase in components having a negative effect on human health 
(allergy, coeliac disease, non-coeliac gluten sensitivity, irritable bowel 
syndrome) (23). However, recent studies (24, 25) have found no 
evidence of a lower quality of modern wheat for human health as 
compared to ancient wheat genotypes. Instead, some studies have 
indicated the modern processing methods of wheat as a risk factor of 
their health impact (26). Despite this, the incorporation into adapted 
wheat of novel genes that contribute yield and quality under climate 
change conditions, is extremely important (8). Genes can 
be incorporated into adapted wheat from various sources, including the 
primary (species easily crossable with wheat), secondary (related species 
within the same genus), tertiary (wild relatives) gene pools.

The present review paper aims to increase the understanding on 
how alien (wild relatives of wheat; i.e., from the tertiary gene pool) 
genes have the potential to contribute to increased food security as 
well as to improved technological and nutritional quality for 
traditional and novel wheat products by the use of an increasingly 
wide array of emerging plant breeding methods. Thus, the paper starts 
with a description of the current status and needs for improvements, 
then follows a review of opportunities with the use of alien germplasm 
in wheat breeding, impact on food security, quality aspects and 
requirements for novel products, finalizing with an overview of 
benefits of traditional and novel methodologies for the transfer of 
alien genes into adapted wheat genotypes in relation to the demands 
described in the other sections. The conclusion section in the end 
summarizes the outcomes of the present review.

2 Wheat—current contribution to food 
security, human nutrition and food 
products, and needs for improvement

Wheat contributes one-fifth of the global food calories and protein 
to the human population and is therefore, extremely important for 
global food security (1, 2). Wheat is the main staple crop in temperate 
zones and is thereby produced in a range of areas across the globe, 
with major producing areas in Europe, East-, West-, Central- and 
South- parts of Asia, East-, Central- and North- parts of the USA, 
South part of Canada, South-Central part of South America and 
mainly in Ethiopia and South Africa in the African continent. The 
highest yield (4-5 tons per Ha) is found in Europe and East Asia. 
Almost 30% of the wheat produced comes from low- and middle-
income countries with production units of 1-3 Ha, where 80% of the 
production is used for food (1). Wheat is also the most traded cereal 
crop (3). These numbers show that wheat is extremely important for 
food security, feeding a large part of the human population, traded to 
meet requirements and needs in many areas, and also an important 
part for poor and small-scale farmers to supply their daily food intake.

Due to the high intake of wheat, its nutritional content has a high 
impact on human nutrition. Wheat is known as an important source 
of a number of health-related components such as protein, vitamins, 
dietary fiber and phytochemicals (8, 27). As an example, wheat is 
known to contribute 20% of the daily dietary fiber in the UK, thereby 
providing protection against cardio-vascular diseases, type 2 diabetes 
and colorectal cancer (28). Depending on genotypic differences, 1 L 
of wheat flour is also known to provide 100% of the daily required 
intake of tocopherols, carotenoids and phenolic compounds (9). 
Wheat genotypes with high levels of minerals, such as iron and zinc 
have also been reported (29, 30). The increased consumption of wheat 
in urban areas, together with an increase in unhealthy dietary patterns 
by part of the consumers in the Western world (31), calls for an 
increase in health-promoting components in wheat, one of the major 
staples worldwide. Furthermore, the predicted climate change will 
have an impact on both production opportunities and the quality of 
the wheat produced (32–34), indicating the need for the development 
of high-yielding and health-promoting wheat genotypes to be grown 
under new circumstances. Currently, we  also see a change in the 
number of food products developed from wheat, where more 
traditional ones, such as bread, still have a large share in the market, 
while novel products, such as vegan and meat analog alternatives, are 
gaining shares (35, 36). Thus, future wheat genotypes need to fulfill 
requirements in all these aspects.

3 Why alien germplasm for 
improvements?

Plant breeding is used as a tool to improve the yield, resistance and 
quality of crops (16). With the current climate change predictions, 
there is increasing requirements for genes with the ability to contribute 
to high performance independent of climate-related stresses and 
diseases (37). Thus, genes from alien germplasm might be an untapped 
resource of genetic diversity in this novel plant breeding landscape 
(38). The novel and emerging techniques within plant breeding, such 
as speed breeding, genomic and genetic tools, phenotyping and 
genotyping, together with improved opportunities to handle big data, 
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also contribute to the increased opportunities to tap and use alien 
germplasm in breeding programs (5). Thereby, rare and valuable gene 
combinations can be searched for in alien wheat lines, and modern 
plant breeding methods should then be  used for their transfer to 
adapted wheat (39).

The alien resource most commonly used in wheat breeding is rye, 
from which a number of genes have been transferred (40), while the 
most commonly utilized Aegilops species is A. tauschii (41). The 
transfer of genes from the rye gene pool has resulted in a great increase 
of the yield potential in wheat (42, 43). Besides the widely explored 
rye genome, a range of other alien sources have been explored for their 
opportunities to contribute genes for wheat improvement (40). Thus, 
Goatgrass (Aegilops spp.), i.e., the donor of the D genome to common 
wheat, has been used to widen the genetic diversity of wheat (44); tall 
wheatgrass (Agropyron elongatum) has been used in wheat breeding 
through distant hybridization (45); A. caudata (46), Thinopyron 
bessarabicum (47), Amblyopyrum muticum (48), Triticum timopheevii 
(49), and T. urartu (50) are additional alien species evaluated and 
found to carry potential interesting characters for introgressions into 
the wheat genome.

4 Food security despite climate 
change—opportunities from the use 
of alien germplasm

The predicted climate change is expected to have a large impact 
on food security for the global human population (18, 51). A global 
temperature increase is part of the prediction, which will result in 
fewer opportunities to grow crops in areas that are already hot and dry 
(52), while cold areas might be  increasingly beneficial for crop 
production. However, such a change in cultivation environments will 
require adaptation of plants to daylight changes and other 
environmental (e.g., soil) differences between current and future 
cultivation areas (53). Furthermore, the predicted climate change is 
expected to result in an increased number of events with extreme 
weather events (54). As a result, heat, drought and flooding will 
become more common, and the timing of these events might be more 
unpredictable (54). Such events of extreme abiotic stress will 
potentially induce massive yield loss in wheat and other crops (18, 
55–57), and especially drought is known as a major threat to food 
security due to its severe impact on wheat yield (55–57). Thus, for 
increased food security, alien genetic materials should be used in 
wheat breeding to fortify tolerance to abiotic stress (32) and to 
increase disease resistance (38, 58, 59), thereby securing high yield 
(Table 1).

Modern wheat usually demonstrates a high yield potential and 
performance, although, incorporation of alien chromosomes in the 
wheat genome, i.e., from rye, has in previous studies been shown to 
increase the yield potential of wheat (42, 43). Thus, 1R and 1RS 
translocation lines were found with a higher yield than 
non-translocated lines (43, 88), and 1RS has been reported to 
contribute to a lower yield reduction compared to non-translocation 
wheat under drought conditions (89). Furthermore, 1R and 1RS have 
been found to improve root length and biomass in wheat, benefiting 
better accessibility to water in deep layers when the surface soil dries 
up (32, 85, 90). In general, root traits are known to play a key role in 
drought tolerance (91, 92). Furthermore, chromosome 3R has recently 

been shown to contribute to drought tolerance in wheat at vegetative 
growth stages under climate chamber conditions (32).

In addition to the widely explored rye genome, there are other 
alien species exploited to enhance wheat resilience for dynamic 
climates, such as the D genome donor goatgrass (Aegilops spp.) (44). 
Several wheat-aegilops lines have been reported to hold increased 
drought (67, 93) and heat tolerance (94) as well as with improved 
nutrient use efficiency (95). A. tauschii have in several studies been 
found to contribute yield related traits when introgressed into wheat 
(68, 69). Furthermore, tall wheatgrass (Agropyron elongatum) is a 
perennial crop known to withstand different abiotic stresses. Several 
wheat cultivars developed through distant hybridization with tall 
wheatgrass showed increased tolerance to heat, strong light, and 
hot-dry wind (45). The introgression of the Lr19 gene from tall 
wheatgrass has been reported to be responsible for a significant yield 
increase in wheat (73). A summary of the incorporations of various 
alien chromosomes into wheat and their effect on wheat improvement 
is shown in Table 1.

5 Functional and nutritional aspects—
rooms for improvement by the use of 
alien germplasm

Quality is a concept describing how good or bad something is, 
and for wheat it attributes to (i) the end-use quality, (ii) health and 
wellbeing through consumption, and (iii) how the wheat is produced 
(96). The present review is focusing on the functional and nutritional 
aspects, where the functionality is directly related to the end-use 
quality, while the nutritional aspects are directly connected to health 
and wellbeing. A few of these characters are encoded by major genes 
(as described below), but the majority are encoded by quantitative 
traits loci (QTL) (38). In general, the use of alien introgressions for 
transfer of improvements of a trait will be more complicated when the 
trait is determined by QTL instead of major genes. Previous work has 
shown the success of the transfer of resistance genes encoded by a 
single major gene, into an adapted genetic background [e.g., (39)]. The 
fact that introgression of single major genes are easier and more 
common are depicted in Table  1, showing examples of disease 
resistance genes transferred as major genes, while introgressions 
effecting quality is often the result of QTL and impact on several traits.

End-use quality requirements of wheat differs, as wheat is consumed 
in various forms around the world, e.g., as bread, pasta, noodles, biscuits 
and pastries, and type of product and processing conditions is largely 
affecting the functional aspects (16, 97). Several characteristics, such as 
grain size and hardness, hue, and, to a large extent, protein content and 
composition, especially of the gluten proteins, determine the functional 
quality of wheat (8, 98). The gluten proteins, i.e., the glutenins and 
gliadins, accounting for 80% of the grain proteins in the mature wheat 
seed, have a significant impact on the bread-making quality as they 
confer the viscoelastic properties (99, 100). The gluten proteins have 
been largely studied, they have been found encoded by major genes and 
the encoding genes have been determined and designated (101). 
However, the ability of the gluten proteins to polymerize, in the wheat 
grain and during processing, has also been found a major determinant 
of the functionality (97) and this character is most likely determined by 
QTL as it correlates with weather aspects and developmental stages of 
the wheat plant (102). Several studies have reported that baking and 
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bread-making qualities of wheat flour is affected by the introgression of 
rye chromosomes into wheat. The most well-known transfer is the 
1BL/1RS translocation, known to contribute a yield increase in wheat but 
also sticky dough performance due to the exchange of some high 
molecular weight (HMW)-glutenin subunits (GS) encoded on the 1B 
wheat chromosome to some secalins encoded on the 1R rye chromosome 
(103). Thus, to retain the functional quality of wheat, introgressions that 
includes the deletion of major gluten protein genes should be avoided. 
However, recent studies have shown improved functionality when 
1BL/1RS translocation lines where used and gluten protein genes were 
restored in these (65). Additionally, introgressions from the 3R 
chromosome has been shown to contribute positively to baking quality 
stability across various drought treatments (33). Major genes with 
positive effects on functional quality have been transferred to wheat from 
other species than rye, e.g., Aegilops sharonensis (82), T. timopheevii (84), 
and Aegilops triuncialis (104). Additionally, introgressions from Aegilops 
spp., Agropyron spp., Thinopyrum spp., and Leymus spp., contributing 
major genes or quantitative traits loci (QTL), have been found to 
contribute positive effects to the functional properties of wheat (38, 
105–108).

Nutritional quality of wheat encompasses the content of a range of 
different elements including protein, micronutrients such as iron (Fe) 
and zinc (Zn), as well as various vitamins and phytochemicals (8, 9). 
Micronutrient deficiency (hidden hunger), especially of Fe and Zn, is 
a major challenge for more than 3 billion people, with women and 
children mostly affected (7, 109–111). This problem is present in all 
countries, but with the highest share in developing countries, where the 
daily diets for most people are cereal crops, often without any additions 
(111–113). In developed countries nutrient deficiency is instead often 
related to the intake of a diet high in sugar and fat and low in essential 
nutrients (114). Considering economics and sustainability, one of the 
best strategies to address food nutrient deficiency is through 
biofortification, i.e., increase of nutrient density in food crops (115–
118). As for nutritional characters, much less is known than for the 
gluten proteins in relation to encoding genes and several of them are 
encoded by QTL and not by major genes. Alien germplasm has been 
found to harbor a wealth of essential genes associated with levels of 
these elements (5, 79, 109, 110, 119). The grain protein content (GPC) 
is known determined by QTL in wheat and also influenced by e.g., 
starch accumulation in the grain and stressors (abiotic and biotic) 

TABLE 1 Examples of the utilization of alien germplasm to improve (a) quality and yield related traits and (b) resistance traits

Alien species Genetic input Phenotypic improvements References

Quality and yield related improvements

Rye Chromosome 1RS
Early root vigor, root length, root biomass, spike 

density, grain yield, drought tolerance
(32, 60)

Rye Chromosome 3R
Early drought tolerance, aluminum tolerance, grain 

protein concentration
(32, 33, 61)

Rye
1R, 7R, 1AL.1RS, 2R, 4R, 5R, 6RS, 

Sec-1− and Glu-B3+
Zn, mixing quality, Arabinoxylan, breadmaking (62–65)

Aegilops triuncialis Chromosome 5U Grain softness, biscuit-making quality (66)

Aegilops tauschii D-genome
Water use efficiency, antioxidant capacity, drought 

tolerance
(67)

Aegilops tauschii Alleles on D-genome Yield-related traits (68)

Aegilops tauschii QTL allele on 4DL Grain yield (69)

Aegilops tauschii QTL alleles Yield-related traits (70)

Alleles on 3D and short arm of 7D Preharvest sprouting resistance, grain size (71)

Wild emmer wheat Ancestral QTL alleles Deep-rooting ability (72)

Agropyron elongatum Gene Lr19 Grain yield, radiation use efficiency (73)

Aegilops spp.
Chromosomes 2S, 2U, 7S, 7U, 1M 

and 4M, Genome U, S, and D

Zn, Fe, Protein, HMW-GS (Gluten strength, baking 

quality) and dietary fiber
(74–82)

Synthetic wheat with introgressions 

from Triticum carthlicum × Aegilops 

tauschii

QTLs on 2D, 3A, 4A, 5A, 6A End use quality in terms of gluten strength parameters (83)

Triticum timopheevii 2A Grain protein and gluten content (84)

Disease and pest resistance related improvements

Rye Chromosome 1RS Resistance to strip rust, stem rust, powdery mildew (43, 58, 85)

Rye Chromosome 2R Resistance to Stem rust (39, 59)

Rye Chromosome 4R, 5R, 6R Resistance to stripe rust (38)

Leymus mollis Gene TaFBN and Ta_Pes_BRCT Resistance to stripe rust (86)

Leymus racemosus Chromosome 7Lr#1 Resistance to Fusarium head blight (87)

Rye Chromosome 1R, 2R, 6R Resistance to Syrian Hessian fly (38)
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during the grain accumulation (8). However, wild wheat relatives have 
been identified with high GPC values (120, 121). Furthermore, major 
genes, e.g., NAM-B1 and Gpc-2, have been identified and introgressed 
into wheat from T. dicoccoides (122), and T. timopheevii (84), 
respectively. Also, through the development of synthetic lines, QTL was 
transferred from A. tauschii which contributed increased GPC (105). 
Elevated Fe and Zn concentrations have been reported in wheat grains 
with introgressions of 1R, 2R, 3R and 5R (34, 38). Also, in some wheat 
genotypes bred through hybridization between the wheat landrace 
Chinese Spring and Aegilops kotschyi a significant increase in grain Fe 
and Zn concentration were reported as a result of the presence of the 
A. kotschyi chromosomes 2S and 7U (77). Similarly, grain Fe and Zn 
concentration enhancements have been reported in wheat lines 
carrying genes from chromosome groups 4 and 7 of A. peregrina (78). 
A recent mega QTL analysis (123) have, correspondingly to previous 
results using recombinant inbred lines [RILs; (124)], identified 
candidate areas from T. turgidum ssp. dicoccoides, with genes positively 
impacting quality traits such as mineral content and abiotic 
stress tolerance.

Alien germplasms are also reported to have elevated levels of 
phenolic compounds, beta-glucans and vitamins, compounds that 
have been reported to have positive effects on human health (80, 107). 
Dietary fiber, which is an important food component that enhances 
digestion and regular movement of the bowl has significant variability 
in alien germplasms that can be exploited and introduced into elite 
cultivars (75). Similarly, alien material with a high content of bioactive 
compounds can be  selected and used in breeding to increase the 
nutritional value of wheat (125).

6 Quality aspects of novel products 
and the need for structures—can alien 
germplasm contribute?

Wheat, with its gluten protein (glutenins and gliadins), holds 
certain quality attributes, which makes it outstanding as a food 
ingredient and quality contributor. The wheat gluten can easily 
be texturized e.g., by the use of high moisture extrusion processing 
(≥40%), resulting in elastic, tough and uniform textures of 
significance for a variety of food products with different flavors 
(126). Twin-screw extrusion is commonly used in the process to 
create novel products such as palatable meat analogs, of value as 
replacers of animal-based products in the recent food market (127). 
These products are especially demanded by flexitarians, i.e., 
consumers who wants to reduce their meat consumption due to 
environmental or health concerns (128). These consumers often do 
not want to give up the special taste and texture of meat products. 
Thus, proteins that are fibrous and highly ordered in elongated 
structures, along with juiciness, tenderness and attractive flavor, are 
characters needed in these products (129, 130), as well as a desired 
nutrient profile. The importance of the fibrous structure formation 
of plant proteins in meat analogs and their contribution to 
functionality on different length scales has been highlighted in 
several studies (131–135) and is summarized in Figure  1. Also, 
amino acid composition with a high content of essential amino acids 
for human consumption and a high degree of protein digestibility as 
well as of other health-promoting components, are of great 
importance in these products (136).

In addition to wheat, a range of different plant proteins, including 
soy, pea, peanut and less explored rapeseed (137), rice (138), oat (139), 
and a few legume crops (mung bean, lupin, faba bean, and chick pea) 
(126), have been evaluated and are used as a component in texturized 
meat analogs products. In such products, the matrix is primarily 
formed through denaturation, aggregation, cross-linking and phase-
separation of proteins, and until now, soy, pea and wheat gluten are 
the most commonly used plant sources (140). The gluten proteins 
contribute specific and unique qualities, as they have the ability to 
form network and cross-links on a larger scale than any other plant 
protein (141). Thus, the gluten proteins of wheat have a special role in 
the meat analogs as a matrix and structural builder (142). Other 
sources, such as the legume proteins, or other less explored protein 
sources such as algal- and fungal-based ingredients (127), and edible 
insect powder (143) should then be added to contribute nutritional 
aspects (136).

Alien germplasm has the potential to contribute a range of quality 
attributes of interest for the production of meat analogs, including 
improved structural properties of the proteins, increased content of 
essential amino acids in wheat, increased content of minerals and 
nutritional elements in wheat, and improved taste performance of the 
products. Previous studies have indicated a high gluten strength in 
some alien wheat introgression lines with Leymus spp. and 3R (33, 38). 
Gluten strength is the most important quality criteria for baking and 
is measured by a range of instruments, among others, by the 
alveograph (144). Furthermore, multiple introgressions of alien 
segments into cultivated wheat from Thinopyrum ponticum, Aegilops 
longissima and Triticum aestivum were found to improve gluten 
quality characteristics and semolina yellow index in dual-purpose 
durum wheat (145). As described above, high levels of Fe and Zn and 
other nutritional components have also been reported in alien 
germplasm, which could be beneficial in relation to the production of 
meat analog, to replace the intake of such elements from meat 
products (34).

7 Benefits of traditional and modern 
breeding methodologies for transfer 
of alien genes of importance for 
quality and food security

Alien genes have been transferred into wheat during the 20th 
century, with several positive outcomes, especially in the area of disease 
resistance genes (146). Traditionally, such a transfer has included a 
range of different techniques used, where the inclusion of crosses 
utilizing genetic material lacking the Ph1 gene has been an essential 
part (147). The Ph1 gene is a key regulator of chromosome pairing 
during meiosis in wheat, preventing recombination between 
homoeologous chromosomes, which results in that wheat behaves like 
a diploid during meiosis despite the crop being a hexaploid (148). 
Mutations induced in Ph1 (ph1b) allele by radiation allowed increased 
recombination between the homoeologous chromosomes of wheat and 
rye (149). Another way of inducing recombination has been the use of 
nullisomic lines, lacking the chromosome containing the Ph1 locus 
(150). However, independent of the methodology used, the procedure 
has been rather tedious and unprecise, and because of that, the number 
of commercial varieties containing alien chromosome fragments is 
rather limited (40). Additionally, the transfer of alien genes into adapted 
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wheat often also results in linkage drag, i.e., the genetic transfer includes 
a larger piece of the alien chromosome than only the desired gene of 
interest (151). One of the most well-known examples of such a transfer 
is the 1BL/1RS translocation that resulted in the variety Petkus, which 
contributed higher yield and tolerance to abiotic stresses but 
simultaneously reduced the gluten strength and gave sticky doughs 
(152, 153). Another example is the transfer of the stem rust resistance 
gene Sr22 from T. boeoticum to wheat which caused a yield penalty and 
additional efforts were needed to reduce the linkage drag (152).

However, novel techniques such as whole genome sequencing and 
platforms with genetic data, as well as high-throughput phenotyping 
methodologies and large data set handling opportunities and speed 
breeding techniques have resulted in novel opportunities for a quicker 
and more specific transfer of alien genes into adapted wheat lines. 
Thus, recent advances show good opportunities for quick and precise 
transfer of alien genes using, e.g., genotyping-by-sequencing both for 
determination of the gene of interest (153), for the development of 
competitive allele-specific PCR (KASP) markers (154, 155) and for the 
selection of adapted wheat material containing the transferred gene 
(39, 156). Thus, the use of these novel technologies will most likely 
result in increased use of alien germplasm to transfer genes of interest 
both as related to quality traits (end-use, structure, nutrition) and 
resistance and yield, thereby targeting food security.

Additionally, precision genome editing, using the CRISPR-Cas9A 
technique is rapidly becoming popular. In wheat, it has been used to 
improve drought tolerance (157) and herbicide tolerance (158). As the 
acceptance of the use of CRISPR-Cas9 increases, it can become the 
method of choice for mirror alien genes of interest to have in wheat. 
CRISPR-mediated gene editing can facilitate the replacement of 
endogenous alleles with desired alien alleles carrying beneficial traits. By 
introducing precise mutations or sequence modifications using CRISPR, 
it can be possible to replace target gene variants in the crop genome with 

those from wild or related species, thereby introducing novel traits or 
improving agronomic performance. CRISPR systems can be multiplexed 
to simultaneously target multiple genomic loci, allowing for the 
introgression of multiple alien genes or alleles in a single transformation 
event. This enables the rapid introgression of complex trait combinations 
from wild or exotic germplasm into elite crop varieties, accelerating the 
breeding process. But to succeed with it, deeper knowledge of the 
functioning of causative alien genes is needed, followed by introducing 
similar mutations in the corresponding wheat alleles. CRISPR-Cas9 was 
used in a study that targeted α-gliadin genes to produce low gluten 
containing wheat lines with reduced immune reactivity. Upto 35 
different genes were mutated in one of the lines and immunoreactivity 
was reduced by 85% (159). Thus, precision genome editing can become 
a promising alternative to homoeologous recombination between alien 
and wheat chromatin. With developments in next generation sequencing 
and comparative genomics key genes can be  identified in the alien 
genomes to later on mirror those in the wheat genome.

8 Conclusion

The predicted climate change calls for more resilient, stable and 
robust crops, which is important not least as related to the staple crops 
such as wheat, feeding a large proportion of the human population. 
Plant breeding has resulted in a large increase in yield, resistance 
toward diseases and pests, and quality in crops currently under 
cultivation, although it has also narrowed the genetic base. Widening 
of the gene pool in the cultivated crops and the introduction of new 
genes that allows future cultivation of high yielding and stable cultivars 
is becoming more important than ever with the growing world 
population and changes in cultivation environments. Here, alien 
resources, holding genes contributing to novel resistances toward 

FIGURE 1

Plant protein fibrous structures at different scales and their suitability for meat substitutes.
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diseases and pests, tolerances to e.g., heat, drought and flooding, and 
qualities are becoming increasingly important. Alien genetic material 
have been shown to have potential to contribute genes targeting 
improved functional and nutritional qualities in wheat, as summarized 
in Figure 1. Furthermore, stability and resilience to various climatic 
conditions have been demonstrated in wheat material containing alien 
chromosome fragments. Novel eating habits and the transition toward 
a replacement of animal-based products with plant-based alternatives 
paves the way for unique quality desires of the plants for these products. 
The wheat proteins are unique, with the ability to form large polymers 
through cross-linking of the proteins. Thus, the wheat proteins are 
needed to form the matrices in many of these novel products. The 
incorporation of alien genes in wheat may contribute certain qualities 
of relevance for these new products, both in terms of functionality, e.g., 
matrices that resembles more meat, and nutrition, e.g., higher mineral 
levels or lower levels of phytases. Novel plant breeding methods, 
including whole genome sequencing, platforms with genetic data, high-
throughput phenotyping, large data set handling and speed breeding 
techniques, but also emerging CRISPR techniques, contribute 
opportunities to use alien resources in wheat breeding in ways that are 
more precise and with a higher speed (Figure 2).
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