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There has been a sea of change in our understanding of the contribution of 
food to both our well-being and disease states. When one addresses “food as 
medicine,” the concept of oxidative stress needs to be  included. This review 
interconnects the basic science findings of oxidative stress and redox balance 
with the medicinal use of food, emphasizing optimization of the redox balance. 
To better illustrate the impacts of oxidative stress, the concept of the “triple 
oxidant sink” is introduced as a theoretical gauge of redox balance. Utilizing the 
concept, the true importance of dietary and lifestyle factors can be emphasized, 
including the limitations of supplements or a handful of “superfoods,” if the 
remainder of the factors are pro-oxidant. The effects of a whole plant food diet 
compared with those of dietary supplements, processed foods, animal based 
nutrients, or additional lifestyle factors can be visually demonstrated with this 
concept. This paper provides an overview of the process, acknowledging that 
food is not the only mechanism for balancing the redox status, but one that 
can be strategically used to dramatically improve the oxidative state, and thus 
should be used as medicine.
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1 Introduction

Oxidative stress has been defined by the National Institutes of Health (NIH) in the U.S. as 
“a condition that may occur when there are too many unstable molecules called free radicals 
in the body and not enough antioxidants to get rid of them. This can lead to cell and tissue 
damage.” (1) There is a growing body of evidence that oxidative stress is heavily involved with, 
and responsible for, disease onset and progression, but can potentially be mitigated—at least 
partially—by whole plant foods. Whole plant foods can be defined as minimally processed 
plant foods such as fruits, vegetables, grains, legumes, nuts and seeds, and herbs and spices 
(2). Understanding the interplay of nutrients supplied by whole plant foods and oxidative 
stress pathways, both systemically and at the cellular level, is a frontier that is still only partially 
understood. In this paper we explore these important functions.

1.1 Oxidative stress/redox imbalance

Oxidative stress creates an imbalance of pro-and antioxidants in an organism which has 
both intrinsic and extrinsic compensatory mechanisms driving homeostasis (3). The most 
recognized pro-oxidants include free radicals and hydrogen peroxide (H2O2) (4). An excess 
of pro-oxidants, especially free radicals, contributes to cellular injury. As free radicals, 
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including reactive oxygen species (ROS) and reactive nitrogen 
species (RNS) are extremely reactive and cause chain reactions 
impacting many cellular functions, extensive cellular injury can 
result. Cell wall phospholipids, DNA, enzymes, other proteins, and 
other cellular components can be damaged by the free radicals and 
altered by the other pro-oxidants. The redox (reduction–oxidation) 
imbalance generated is one of the originators of the 
pro-inflammatory cytokine cascades producing the characteristic 
IL-1β, 4, 6, 8, 18, HIF, and TNF-ɑ (4). Redox imbalance also inhibits 
progenitor cells (5, 6). Oxidative stress also induces epigenetic 
alterations in DNA methylation, histones, and non-transcriptional 
miRNAs which alter transcription, translation, and ultimately, 
cellular physiology which leads to disease states (7, 8). Cellular 
homeostasis is then disrupted and physiology is altered by the 
oxidative stress.

Oxidative stress is strongly and broadly associated with many and, 
possibly, all chronic diseases. There are those that are tightly linked to 
oxidative stress including type 2 diabetes (9), heart disease (10–12), 
and cancer (13, 14). Other associations noted in the literature include 
congenital defects (not from genetic causes) (15), autism (16), ADHD 
(17), neurodegenerative disorders (18), rheumatologic diseases (19), 
psychiatric diagnoses (20), kidney diseases (21), liver diseases (22), 
asthma/COPD and idiopathic pulmonary fibrosis (23). Even less 
common conditions have an oxidative stress link including chronic 
regional pain syndrome-1 (24), sickle cell crisis (25), exacerbations of 
muscular dystrophy (26), and liposomal storage diseases (27). It is 
unclear if there are any diseases or medical conditions that would 
be completely independent of oxidative stress.

All organisms appear to have intrinsic defense mechanisms to 
combat the redox imbalance of the pro-oxidants and antioxidants 
causing oxidative stress. Endogenous/intrinsic enzymatic antioxidants 
(host) neutralize free radicals like superoxide dismutases and others. 
Other enzymes break down pro-oxidants including hydrogen 
peroxide such as peroxidases and catalase (20). These enzymes are 
located throughout the cell and provide a surveillance system to 
address oxidative stress.

Intrinsic non-enzymatic antioxidant defense is based on free 
radical scavengers (20). Glutathione is thought to be one of the most 
important non-enzymatic antioxidants (28). Albumin, the most 
common circulating protein in the body, serves as an abundant and 
important roving free radical scavenger, utilizing disulfide bonds to 
neutralize the dangerous free radicals (29, 30). Estrogen is another 
powerful antioxidant through both direct scavenging and stimulating 
increased expression of endogenous antioxidant enzymes (31, 32).

1.2 Whole plant antioxidants

Extrinsic methods of oxidative stress neutralization come from 
dietary sources. There are three main categories: free radical 
scavengers, immunomodulators, and stimulators of the ARE 
(antioxidant related element, or upregulation of the production of 
antioxidants and antioxidant enzymes) (33, 34). Dietary sources of 
free radical scavengers have characteristically been compared by their 
ORAC value—oxygen radical absorption capacity (35). Each ORAC 
unit is defined as having the capacity to absorb one free radical. Thus, 
the higher the ORAC value, the greater the ability to absorb oxygen or 
nitrogen-based free radicals.

Immunomodulators are molecules that downregulate the 
production of downstream inflammatory cytokines, leukotrienes, 
complement, and prostaglandins (4). The ARE (antioxidant related 
element) is the section of DNA that encodes antioxidant enzymes and 
free radical scavengers (3), and is often stimulated through the enzyme 
NF-E2-related factor 2 (Nrf2) (36). Immunomodulation and/or ARE 
stimulation is found from sulforaphane, found in broccoli and other 
cruciferous vegetables (34), quercetin, found in many fruits and 
vegetables, vitamin D and B12, and others. Many of the antioxidants 
supplied by whole plant foods act as free radical scavengers, 
immunomodulators, and ARE stimulants which include polyphenols 
and flavonoids (4).

Though not technically classified as an immunomodulator, the gut 
microbiome is another source of immunomodulation for oxidative 
stress. Short chain fatty acids (especially butyrate) formed by pro-health 
gut bacteria have been shown to serve a significant role in lowering 
oxidative stress (37). In addition, it has been found that many 
antioxidants found in dietary sources, especially polyphenols, are bound 
to fiber. These fiber bound polyphenols are only accessible to the 
organism when the appropriate gut microbes break down the fiber and 
release the antioxidants (38). Antioxidants and fiber, on the background 
of a supportive gut microbiome, appear to be  a crucial/critical 
component for deactivating free radicals and other pro-oxidants. This 
allows for suppression or extinguishing the downstream cytokines, other 
inflammatory molecules, boosting endogenous antioxidant enzymes, 
and in general restoring the redox balance of the entire organism.

While there are low levels of antioxidants in animal products 
residual in the tissue from their plant food ingestion, the concentration 
of antioxidants is exponentially greater in whole plants, relative to 
intake volume (39). In addition, fiber occurs exclusively in plant-
derived foods, not animal products.

The immunomodulatory effects of antioxidants typically act by 
suppressing the production and effect of inflammatory cytokines 
(IL-6, IL-1β, IL-4, IL-18, TNF-α, NFκB, etc.) and increasing anti-
inflammatory cytokines (Nrf-2, IL-10, and others) production (4, 33, 
40). In addition there is inhibition of lipid peroxidation, oxidation of 
LDL, and leukotriene and complement production (33).

Sulforaphanes (from cruciferous vegetables) are among the most 
potent immunomodulators (34), and have been shown to have 
multiple effects including:

 1. Activation of Nrf2-mediated phase II enzymes. Upregulating 
Nrf2 induces the antioxidant response element DNA sequence 
transcription, encoding for increased endogenous antioxidant 
enzymes (34, 41, 42). Sulforaphane may be the most potent 
natural stimulator of Nrf2 (43).

 2. Downregulation of NfκB which plays an important role in the 
production of the oxidative stress cytokines (44).

 3. Upregulation of glutathione production (an endogenous 
non-enzymatic antioxidant) (45).

 4. Increased production of heat shock proteins further promoting 
cell stability (46).

 5. Decrease in secretory leukocyte protease inhibitor which 
inhibits proteases like cathepsin G and neutrophil elastase 
(which are both associated with lung damage) (47, 48).

Quercetin, a flavonoid, is abundant in fruits and vegetables and 
has been shown to suppress NLRP3 inflammasomes with a subsequent 
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downstream suppression of IL-1β, and IL-18 (49). Additionally, 
glutamine, found in sorghum, walnuts, kale, kidney beans, and red 
cabbage has been shown to decrease inflammatory markers IL-1β, 
TNF-α and hs-CRP in COVID patients (50). These compounds, so 
prevalent in plants, provide a significant anti-inflammatory substrate 
to bolster antioxidant reserves.

Fiber, in addition to ferrying bound antioxidants, produces short 
chain fatty acids, including butyrate, when in the presence of health 
promoting gut microorganisms. Butyrate has been shown to 
significantly lower oxidative stress (37) and decrease TNF-α mediated 
immune responses including mitochondria derived inflammasomes 
such as NLRP3 (51). Additionally, it has been shown to have an anti-
inflammatory effect on the bone marrow derived macrophages 
strongly decreasing IL-6 and inducible nitric oxide (iNO) in a dose-
dependent fashion (51, 52). The mitochondrial induced oxidative 
stress is also decreased through communication with a healthy gut 
microbiome (51).

Specific foods that have been studied include spices, which have a 
significant effect on the gut microbiome stimulating the growth of 
beneficial bacteria and inhibiting the growth of the pathogens (53–55). 
A number of spices have also been shown to be immunomodulators, 
decreasing TNF-ɑ, IL-1ɑ, and decreasing DNA damage (56). 
Additionally, herbs and spices have very high ORAC values giving 
very good free radical scavenging ability.

Garlic, in different models, has been shown to decrease 
phosphorylation of ERK1/2 to induce inflammation in adipocytes to 
LPS stimulation. Decreased histamine release by basophils has been 
noted in another model of garlic supplementation. Decreases in IL-6, 
TNF-α, and NK-κB have also been shown (40). There is a growing 
body of literature focused on the therapeutic effects of garlic in many 
different diseases as reviewed by Majewski (57). Though there is some 
debate about clinical efficacy of garlic as a nutraceutical rather than a 
whole plant food (58).

Fruits and vegetables influence oxidative stress through a host of 
bioactive compounds including the following examples. Vitamin C, a 
strong free radical scavenger, protects cells from inflammatory 
dysfunction and neurodegenerative diseases (33). Vitamin E is a fat 
soluble chain breaking antioxidant protecting DNA and 
polyunsaturated fatty acids. Polyphenols improve gut mucosal 
immunity and inflammation, promote IL-10 generation (anti-
inflammatory IL), along with many other antioxidant functions. 
Flavonoids possess antioxidant, anticancer, and antimutagenic 
properties (33). One of the carotenoids, lycopene, is a powerful free 
radical scavenger, in low concentrations. Lycopene stimulates Nrf2 as 
well as the rest of the ARE, stimulating endogenous antioxidant 
enzyme production (59). Salicylic acid, sometimes known as vitamin 
S, is usually known for its inhibition of cyclo-oxygenase. Though this 
is a part of its action in suppressing prostaglandin formation, other 
activities include MAPK and NfKb inhibition, binding of iron leading 
to prevention of lipid peroxidation, and appears to inhibit production 
of inducible nitric oxide (pro-inflammatory) (60).

1.3 Antioxidant supplements vs. plant 
derived antioxidants

When considering diseases or conditions exacerbated by oxidative 
stress, or an overabundance of pro-oxidants, the obvious solution 

would seem to be supplementing with antioxidants to reverse the 
disease process (43, 61–64). Physiologic doses of exogenous 
antioxidants are required to maintain or re-establish redox 
homeostasis (65). Attempts to utilize isolated components in the form 
of antioxidant supplements have often not produced the desired result 
of disease prevention or reduction, and at times were actually harmful 
(66–71). For example, manufactured antioxidant supplements for 
occlusive heart disease has been harmful rather than helpful (71–73). 
However, there is data showing that consuming whole plant foods 
which naturally contain antioxidants are successful in disease 
modification (72, 74). So the synergistic effects of eating whole plant 
foods outweighs the current trend of providing an isolated supplement 
in pill form to serve as stand-alone drug.

A working hypothesis is that there is synergy between the 
antioxidants contained within each whole plant likely indicating that 
isolated antioxidants do not fulfill their characteristic role without 
synergistic partners. Antioxidant supplements do not provide 
physiological benefit in higher doses (75–77). The studies performed 
with antioxidant supplementation do not take into account the usual 
low concentration of nutrients as well as the synergistic actions of the 
phytochemicals and other nutrients. This could explain the variable 
and almost always disappointing results of most human 
supplementation studies (65). It is also likely, though not studied to 
our knowledge, that fiber along with the pro-health gut microbiome 
acts synergistically with whole plant derived antioxidants to multiply 
the antioxidant effect.

Thus, returning to the hypothesis that food is medicine, it could 
be further argued that the ideal dietary intake of whole plant foods 
combined with a healthy gut microbiome contribute to the ability of 
an organism to better manage the oxidative stress contributing to 
disease states by optimizing the antioxidant capacity of the organism 
(43, 61, 62, 64, 65, 78). These exogenous, plant derived antioxidants 
would serve as free radical scavengers and immunomodulators, as 
they have accomplished in the chronic inflammatory diseases of 
diabetes and heart disease.

2 Processed foods

Altering plant-foods from their original forms is not a new 
concept, as humans have preserved foods through methods such as 
cooking, drying, salting, fermenting and freezing for centuries. 
Modern introduction of food processing strips away or extracts 
components of the whole food, transforming the original into a 
manufactured “food-like” substance, something that is potentially 
unrecognizable to the organism or its gut microbes. Altering whole 
plant foods potentially removes fiber, and destroys antioxidants, 
diminishing the nutritional value of the final products from a 
perspective of oxidative stress reduction. Processing of foods can 
be done to varying degrees, such as refining grains to create flour. If 
the whole grain is used, the flour may retain many of the benefits of 
the original, but when a grain is separated into component parts of 
endosperm, germ and bran, and only the endosperm portion is used 
to create flour, nutrients and fiber are stripped away. Other examples 
of processing include removing sugar from beets, or extracting oil 
from peanuts. Many of the antioxidant and trace elements obtained 
from fruits and vegetables can be found in the skin which is typically 
removed in the course of processing, with much of the fiber. The 
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processed food is left with calories, but without antioxidants to reverse 
the oxidative stress induced by manufacturing of ATP. During electron 
transport a 1–5% rate of errors occurs in transferring the electrons 
between cytochromes causing formation of a superoxide free radical, 
most commonly at cytochrome I  and III. When the organism 
experiences greater stress, this error rate and additional pro-oxidant 
production in the mitochondria increases significantly (22). In a redox 
balanced organism there is sufficient superoxide dismutase (SOD) and 
other free radical scavengers to neutralize the impact of errors in 
electron transfer so they do not cause ongoing problems in 
management of free radicals. But when the supply of antioxidants has 
been depleted injury can occur. Thus, foods with calories but without 
antioxidants push an organism’s normal physiology towards a 
pro-oxidant, pathophysiological state that can result in cellular and 
organ damage.

3 Animal based foods

Energy production through metabolism of the fats, proteins, and 
carbohydrates contained within ingested animal products (which 
lack fiber and significant amounts of antioxidants) creates a 
pro-oxidant environment, similar to what occurs after ingestion of 
processed foods (39). Unfortunately, with regular consumption of 
animal products, there are deleterious alterations to the gut 

microbiome and other mechanisms in place that increase oxidative 
stress in the consuming human. Examples include the production of 
TMAO [trimethylamine N-oxide (79)], higher concentration of 
branched chain amino acids (80), contamination of the meat/fish 
with PCBs (81), and harmful heavy metals such as lead and mercury 
(14), in addition to other toxins that contribute to a heavily 
pro-oxidant state.

4 Non-dietary lifestyle factors 
influencing oxidative state

There are a host of other non-dietary factors that positively or 
negatively affect one’s oxidative state. Positive factors include, but are 
not limited to exercise (82), sleep (83), hydration (84), vitamin D level 
and mode of delivery (85), and loving relationships (86, 87). Negative 
lifestyle choices influence levels of toxin intake through smoking (88) 
and ethanol use (89), as well as prescription drug use or other 
substances activating the liver’s P-450 enzymes (22), psychological 
stress (90), severe life stressors (91), fasting (92), and other mild 
stressors (hormetic stress) which induce vitagenes resulting in 
increased endogenous antioxidants, as well as others (93).

We propose a “Triple Oxidant Sink” framework for addressing 
oxidative stress that uses an analogy of a triple basin sink with a 
faucet or inlet that fills one sink with water (78) (Figure 1). In this 

FIGURE 1

Triple Oxidant Sink. Reproduced with permission from IJDRP, licensed under CC BY-NC-ND 4.0.
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model, water represents oxidants that are produced or provided to 
an organism. These oxidants include free radicals of reactive oxygen 
species (ROS) and reactive nitrogen species (RNS), pro-oxidants of 
H2O2 and others. The triple oxidant sink theory has previously been 
described (78). Using the sink analogy, the sinks may all start at 
empty or low levels—representing a balanced and healthy organism. 
If there is a small amount of oxidant introduced, the sink can contain 
the water/oxidant easily, especially if the drain is functional. But if 
the drain is not working, and either the slow trickle continues 
indefinitely or the water inflow volume is increased, the first sink may 
fill and then start to overflow into the second. In this analogy, when 
the water flows into the second sink, disease occurs. The disease that 
develops depends upon genetic predisposition, much like type 2 
diabetes or Parkinson’s disease. If the water overflow continues into 
the second sink and it does not drain, the second sink fills and 
overflows into the third sink. At this point complications of disease 
occur and ramify. Various factors influence how quickly the sinks fill, 
for example, the depth, size of the drains, and the amount of water 
flowing into the system. In the organism’s case, the depth of the first 
sink—where the oxidants are dumped—is determined by the 
endogenous antioxidant capacity (enzymatic and non-enzymatic) 
and the available exogenous antioxidant capacity. This endogenous 
level can differ between individuals based on the amount of 
genetically-determined antioxidant capacity. The oxidative state, at 
any given time, may be different based on variables which affect 
redox balance including the factors mentioned above affecting the 
oxidative state.

When a severe stressor presents in the form of infection (such as 
COVID-19), severe trauma, or life threatening sepsis, the oxidative 
sinks fill significantly. If the sinks are already fairly full of oxidants and 
a new oxidative stressor fills each succeeding sink, the likely result is an 
overflow of the sinks onto the floor. The organism is overwhelmed with 
pro-oxidants that cannot be  fully eliminated and a cytokine storm 
ensues and the organism may end up on the floor as well!

This concept may explain why those with comorbidities have 
poorer outcomes with COVID-19 and with trauma. The prefilled 
oxidant sinks are overwhelmed with the inflammatory fallout of the 
infection or trauma and severe consequences ensue with acute 
respiratory distress syndrome (ARDS), multiple organ dysfunction 
syndrome (MODS), and systemic inflammatory response syndrome 
(SIRS). It also could explain differential outcomes in both COVID-
19, trauma, and other oxidatively stressing occurrences. Similar age 
patients may have totally different outcomes from the infection or 
similarly severe traumatic event. This may even explain why a late 
teen-aged college student could develop SIRS when the expected 
outcome would be benign due to their relative youth. Picture the 
quintessential college student who stays up multiple nights in a row 
studying for finals, eating only low-quality junk food and drinking 
only caffeinated sodas. Then they go on Spring Break and experience 
additional lack of sleep, significant alcohol (and possibly other 
pro-oxidant substance) intake along with a continued low quality 
diet and poor healthy fluid intake. The gut microbiome is shifted to 
an unbalanced, compromised state, leading to oxidant sink filling. 
An untimely exposure to COVID-19 could potentially result in 
severe sickness and even SIRS. In this situation, lifestyle factors 
compound the impact of infection to compromise redox balance 
and resilience.

A similar inflammatory situation occurs when a patient undergoes 
surgery. There is an inevitable increase in oxidative stress from the 
tissue injury during surgery leading to activation of IL-33 with 
subsequent mast cell activation. There are pro-oxidants that are added 
from the medications used for anesthesia. If this triple oxidant sink 
theory is correct, in a setting of a high baseline oxidative state adding 
to this additional stress, complications of surgery would be expected 
to skyrocket.

The goal is to empty the oxidative sink so that disease does not 
occur due to a redox imbalance and then, if another oxidative stressor 
should occur, the oxidative sink has capacity to stem an overflow and 
prevent the cytokine storm seen in severe COVID-19, sepsis, and 
trauma. Questions about this theoretical model include: how fast 
could the redox state be changed in an ideal situation? Is it possible to 
reverse the systemic inflammatory response by emptying the sinks? 
Is it possible to reverse the diseases and the complications of disease 
by emptying their respective sinks if permanent damage has not 
occurred? Obviously an antioxidant based whole plant food diet is not 
the only factor in helping achieve redox balance, but it is a major 
factor that can be  altered in one’s lifestyle (78). More research is 
needed to address these questions and provide evidence for 
our model.

The majority of known mechanisms for determination of health 
and longevity involve oxidative stress and the improvement of the 
organism’s redox balance. These mechanisms include FGF21 (94, 95), 
mTOR signaling (96), telomere length (97, 98), TMAO (79), increased 
proportion of branched chain amino acids (80), and others.

5 Conclusion

Based on the evidence we have discussed in this review, oxidative 
stress appears to be a major contributor to disease processes. Whole 
plant food derived antioxidants and fiber (in the background of a 
healthy gut microbiome) serve as significant mediators in the ability 
of the body to maintain redox balance. Thus, using whole plant foods 
as medicine along with maximizing positive lifestyle behaviors, and 
minimizing foods and activities depleting antioxidant reserves should 
lead to a balanced redox state. When redox balance is achieved, 
oxidative stress related diseases can be  avoided, ameliorated, and 
possibly reversed. There is still a need for research to better understand 
how diet and lifestyle impact redox balance. Areas of research focusing 
on the triple oxidant sink and food as medicine could include redox 
balancing in infection, such as COVID-19 and other viral or bacteria-
induced illnesses. Trauma and ICU settings have severe oxidatively 
stressed patients who would likely benefit greatly from redox 
balancing with appropriate medicinal whole plant foods. Almost every 
patient entering an emergency department (ED) has redox imbalance 
problems. Would it be reasonable to treat a patient coming into the 
ED with lung disease and COPD exacerbation with a breathing 
treatment and whole plant antioxidants and fiber (rather than a 
cheeseburger, fries, and a milkshake)? How might outcomes change if 
patients receiving a stent for a myocardial infarction were introduced 
to a whole plant food diet? We suggest that understanding the value 
and interplay of redox balancing, using food medicinally and 
incorporating other antioxidant behaviors, is key for optimizing 
nutrition and health.
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