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Signals of energy availability in
sleep: consequences of a
fat-based metabolism

L. Amber O’Hearn*

Independent Researcher, Boulder, CO, United States

Humans can flexibly switch between two primary metabolic modes, usually

distinguished by whether substrate supply from glucose can meet energy

demands or not. However, it is often overlooked that when glucose use is limited,

the remainder of energy needs may still be met more or less e�ectively with fat

and ketone bodies. Hence a fat-based metabolism marked by ketosis is often

conflated with starvation and contexts of inadequate energy (including at the

cellular level), even when energy itself is in ample supply. Sleep and satiation

are regulated by common pathways reflecting energy metabolism. A conceptual

analysis that distinguishes signals of inadequate energy in a glucose-dominant

metabolism from signals of a fat-based metabolism that may well be energy

su�cient allows a reexamination of experimental results in the study of sleep

that may shed light on species di�erences and explain why ketogenic diets have

beneficial e�ects simultaneously in the brain and the periphery. It may also help

to distinguish clinically when a failure of a ketogenic diet to resolve symptoms is

due to inadequate energy rather than the metabolic state itself.
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1 Introduction

Ketogenic diets (KDs) result in a metabolic state distinct from that of non-ketogenic

diets: regardless of caloric intake or exact composition, by definition a diet is ketogenic

when it leads to a fat-based metabolism marked by sustained ketosis (1). The terms “fat-

based metabolism” and “glucose-based metabolism” refer to the primary metabolic fuel

in use, which can be measured by respiratory quotient (2). The process of shifting from a

glucose-based metabolism to a fat-based one is referred to as “keto-adaptation” (3). The

full complement of physiologic and metabolic differences between these states are many

and still being elucidated; those most pertinent to energy signaling will be discussed below.

Although some studies and applications of KDs entail hypocaloric energy supply or

even starvation, this attribute is not necessary for sustained ketosis in humans, which

can be achieved in eucaloric or even hypercaloric conditions provided carbohydrate

intake, and to a lesser extent protein intake, are restricted (4). The terms hypo-,

hyper-, and eucaloric have an implicit assumption we would clarify, however. Typically

when using these terms, experimenters establish a baseline level of intake per

individual over a period of weight stability, and then assume for simplicity that this

value is a fixed one for the individual. This is, of course, an oversimplification,

because of metabolic adaptations, and can lead to absurdities if not phrased carefully.
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For example, in a recent study of low carbohydrate, high fat

diets (LCHFD) in mice (5), mice given an ad libitum obesogenic

diet ate more and gained more weight than those on a standard

control diet. Hence they were deemed “hypercaloric”. However,

some of them were then switched to an ad libitum LCHFD. Those

mice continued to eat the same level of calories, but ceased to gain

weight and reversed pathological symptoms. Although they were

still eating food with caloric value roughly equal to the amount

that was previously hypercaloric, they were technically no longer

hypercaloric, but rather eucaloric at a higher caloric value than

before. Critically, these isocaloric conditions both occurred ad

libitum. That is, depending on the dietary composition, the mice

ate to the point of extensive weight gain and metabolic disease in

one case, but to weight stability and improved health in another.

This distinction is key for discussing satiation, since

physiologically driven satiation can be determined, ultimately,

only by observation of ad libitum intake. This means that satiation

can occur independently of caloric balance, and has important

implications for the success of dietary interventions. There

are competing models for how food intake is regulated. The

energostatic model for the control of food intake places the

parameter of regulation on the cellular production of energy. As

we will discuss, this model has been used to explain observations

in obesity (6, 7) and further to explain connections between

metabolism and sleep (8, 9). While a hypothesis directly linking

satiation signals to sleep has been carefully described by Nicolaidis

(10) (detailed below), what has been less explored before is the

potential function of that connection. In this conceptual analysis,

we attempt to show how sleep regulation by energy signals may fit

into a functional theory of sleep.

Because low glucose availability implies low energy availability

in the context of a glucose-based metabolism, but not in that

of a fat-based metabolism, the biochemical signals corresponding

to low glucose are sometimes mistaken for signals of inadequate

energy despite the context of an energy adequate fat-based

metabolism. The first aim of this article is therefore to describe

the often overlooked differences between hypocaloric diets and

eucaloric KDs, and to illustrate this with effects on sleep. Further,

the model is used to reframe questions about the differential effects

of sleep restriction and total sleep deprivation in human and

non-human animal studies.

2 Ketosis and the “metabolic switch”

The phrase “metabolic switching” has been used to describe

“the body’s preferential shift from utilization of glucose from

glycogenolysis to fatty acids and fatty acid-derived ketones” during

fasting as a specialized mode that’s beneficial to periodically turn

on (11). Likewise, “the ‘glucose switch’ profile” is a description of a

hysteresis-like mechanism in which hypoglycemia induces a more

lipid-oxidation dependent state by reducing expression of genes

that stimulate glucose use in mitochondria (12). This is argued to

be beneficial for reducing or reversing the burden of diseases of

aging if induced often enough to significantly reduce the lifetime

exposure to glucose metabolism. However, switches by nature have

multiple positions, and we might equally call a transition from a

ketogenic metabolism to glucose utilization a “metabolic switch".

That is, while the authors above portray a fat-based metabolism as

a switch away from an implicit default, both modes are arguably

valid defaults, as hysteresis works in both directions.

One reason that a glucose-based metabolism has been

considered a default, is that much of what we know about the

metabolic state of ketosis comes from studies in fasted humans

or other animals, which makes fat-metabolism appear to be by

necessity transient. While the basic biochemical profile is the

same whether or not fat is being eaten, ketosis depends on a

combination of low available glucose and glucose production

substrate on the one hand, and high available fat on the other.

In contrast to most other animals, humans have a high base

level of body fat that perpetuates a ketogenic metabolism longer

under starvation conditions than would otherwise occur before

phase III starvation (see Box 1), characterized by higher rates of

protein catabolism, sets in O’Hearn et al. (13). Nonetheless, many

of the most informative current studies and reviews focus on the

fasted state or otherwise calorically restricted ketogenic diets (KDs).

An oft acknowledged drawback to this approach is that keto-

adaptation, the full transition from glucose-based into fat-based

metabolism, typically takes 2–5 days, and so conclusions drawn

after only a few days of intervention may not fully characterize a

ketogenic metabolism. A second disadvantage is that observations

may result from low energy availability that would differ under fully

fed ketogenic states.

2.1 Energy signals characterizing a
fat-based metabolism

The biochemical profile associated with a fat-based metabolism

includes, among many other differences relative to a glucose-

based metabolism, elevated ketone bodies, adenosine, orexin,

AMP-activated protein kinase (AMPK), and homeostatic responses

to mitochondrial reactive oxygen species (ROS), including

uncoupling proteins. Each of these participates in energy

partitioning and signaling.

Ketone bodies have been described in different ways based

on origin and function. For example, from an origin perspective,

they’ve been called “byproducts of fat metabolism” [e.g., (14, 15)].

From a functional perspective, they are often though of as an

“alternative fuel” to glucose for the brain [e.g., (16, 17)]. While

these are accurate descriptions, it is more neutral to describe them

as a transport form of fat able to cross the blood-brain barrier

such that it can be used as an energy substrate complementarily

to glucose. From a signaling perspective, ketone bodies inhibit

muscle catabolism (18). When fat metabolism is high, as in phase

II, endogenous glucose production can rely more on its byproducts

glycerol and acetone for substrate, and lactate recycling from the

Cori cycle (19). They also homeostatically regulate lipolysis (20).

Adenosine, AMKP, and orexin are considered energy sensors.

Adenosine accumulates from the breakdown of adenosine

triphosphate (ATP), but it is also a source of ATP (21, 22). Hence,

high levels can indicate ATP being used faster than it is generated

(23). Similarly, AMPK is activated by an increase in the ratio of

AMP (adenosine monophosphate) to ATP, where AMP is another

result of the utilization of ATP. Orexin is a neuropeptide. As
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BOX 1 Phases of starvation.

The process of starvation has been divided into phases based on the primary fuel substrate: as repositories of each fuel type run out, metabolism shifts to catabolize

the next. Assuming we start with ample glycogen stores, animals normally go through three phases: phase I, corresponding to a glucose-based metabolism; phase II,

corresponding to a fat-based metabolism; and phase III, which is also glucose-based, but for which the primary source of fuel is protein from muscle catabolism.

This categorization based on primary substrate is useful even when there is no starvation. To avoid further conflation of energy inadequate and energy adequate

very-low-carbohydrate conditions, we will sometimes use the hybrid terms phase I/II/III metabolism, which are agnostic about the whether the source is endogenous or

exogenous, and have no implication of malnourishment, but still recognize the substrate type in use.

These distinctions highlight the lack of specificity of “fasting-mimicking” as a characterization of KDs.

suggested by its name, it is associated with hunger, and it is

implicated in appetite, wakefulness, and energy expenditure (24).

It is activated by low glucose levels (25–27). Mitochondrial ROS is

a byproduct not of ATP use, but its generation, and so it also signals

energy availability (see Section 6 below).

2.2 Mixed states

These two metabolic states, or modes, have biochemical

signatures that generally reflect their complementary functions

of building (anabolism) and clearing (catabolism), such that one

stimulates and benefits the other. For example, brain-derived

neurotrophic factor (BDNF) and fibroblast growth factor 21

(FGF21) have names and structures suggesting they are trophic

factors, even though they are more expressed under a fat-based

metabolism or catabolic states (28–30). In the case of BDNF,

this has mechanistically been attributed to the ketone body beta-

hydroxybutyrate, which increases BDNF when administered in

various forms and which has also been implicated as the mediator

of exercise-induced BDNF (31–35). FGF21 is more controversial

in mechanism; there are mixed findings depending on species,

tissue, and health of the subject (36–38). But FGF21 is consistently

increased in prolonged fasting and protein insufficiency (38, 39) So

these substances are stimulated by catabolic states, but functionally

appear to be trophic or at least anti-catabolic (40). It has been

argued that the growth itself is more stimulated by an anabolic

switch, after their upregulation (11).

In general, a glucose-basedmetabolism reflects amore anabolic,

or growth promoting phase, whereas a fat-based metabolism tends

to reflect energy release from the breakdown of materials. But it

must be emphasized that energy can be released from a baseline

glucose-basedmetabolism (one does not have to be ketogenic to use

fat stores, for example) and growth can happen while maintaining

chronic ketosis, as evidenced by children on ketogenic diets for

epilepsy or babies prior to weaning (41). This is because there can

be signals of one mode within the other that don’t persist long

enough to fully change modes. This hysteresis is characteristic of

bistable biochemical systems, which typically result from positive

feedback loops or substrate inhibition cycles (42, 43). In particular,

this is true of fatty-acid oxidation and glucose metabolism (43, 44).

Signatures of one mode in the context of the other mode are

normally transient, because if the stimulus persists, metabolism

enters the other mode. Middle states are generally avoided, because

metabolic regulation of gene expression exhibits hysteresis, such

that states tend to attract their full expression and persist (12).

Part of this is attributable to the Randle cycle, in which cellular

uptake of glucose and fat tend to mutually inhibit each other

(45). However, if signals remain mixed, this can be an indication

of pathology. With a glucose-centric view of metabolism, this

pathological mixed state is often erroneously identified with the

signatures of a fat-based metabolism even when in context the

signature is appropriate. Examples of this include ketosis conflated

with keto-acidosis, or glucose intolerance with pathological insulin

resistance (IR). Blagosklonny (46) refers to this latter phenomenon

by describing fat metabolism as “benevolent pseudodiabetes”.

2.3 Fat oxidation: low energy or high
energy?

Metabolic processes associated with fatty acid oxidation (FAO)

sometimes have opposing implications for energy status depending

on metabolic mode. In the context of a glucose-based metabolism,

relying mainly on fat oxidation is a marker of low energy status,

because in order for FAO to gain prominence, the contextually

primary substrate for energy, glucose, must be reduced. Relatedly,

due to the fact that (long chain) fatty acids have longer carbon

chains, they require more oxygen for their complete oxidation than

glucose does. This is sometimes considered less efficient. When

mitochondrial ATP ismeasured by oxygenation rate, as inDonohoe

et al. (47), the spurious conclusion may be drawn that cells are

in an energy deprived state, even when there is simultaneous

evidence to the contrary, such as increased energy expenditure from

voluntary locomotor activity. Similarly, the ratio of the oxidized

and reduced forms of nicotinamide adenine dinucleotide, NAD+

and NADH, can be used as an indication of cellular energy-

deprivation-derived stress (IBID.), even though it is also consistent

with a switch to long chain fatty acids as a primary source of

energy, with or without energy scarcity. Yet another example comes

from the “energy sensor” AMPK, which increases in response to

low energy availability (48). Yet under a fat-based metabolism,

higher fat oxidation, ie. higher energy, is also associated with higher

AMPK (49). This is further understood by noting that FGF21

stimulates AMPK (50), and FGF21 in turn can be stimulated by

a variety of nutritional factors including ethanol, sucrose, and fat

(51–54). Because these signals appear mixed, there have been calls

for research to discover how KDs can be satiating, despite inducing

hunger signals (55).

All of these examples can be reconciled by taking into

account the background state. Glucose scarcity in a glucose-

based metabolism stimulates signals that, if perpetuated, induce a
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fat-based metabolism. The reverse is also true. As succinctly put

by Mobbs et al. (12), “a general feature of metabolic regulation is

that substrates typically induce the metabolic machinery necessary

for their own metabolism.” But this also implies that high levels of

circulating fat will induce features of a fat-based metabolism even

when glucose remains high. This creates an important asymmetry,

because the presence of glucose prevents full fat adaptation,

resulting in discordant signals sometimes indicative of type 2

diabetes.

3 Common pathways in satiation and
sleep

3.1 Measures vs. functions

It turns out there many common pathways in the regulation of

hunger and satiation on the one hand, and sleep and waking on

the other. To discuss these, it will be helpful to distinguish between

a biological state, its measurable markers, and the functions that

use these markers as signals (Box 2). In particular, many competing

theories of hunger and of sleep differ in their proposed variable of

regulation. It matters, for example, whether our theory presupposes

that sleep duration is homeostatically regulated, or whether sleep

duration is a consequence of some other homeostatically regulated

variable. In this section, we will review evidence that the primary

regulated variable in both satiety and sleep is energy availability,

and that this commonality underlies their overlapping pathways.

3.2 Satiation, satiety, and the energostatic
model

Satiation is the component of cessation of desire to continue

eating attributable to physiological signals– as opposed to desires

based on external factors that could supersede attention to such

signals, for example, the desire to escape a predator, or the desire

to curtail a meal based on belief that reduced eating will improve

physical fitness. Satiety is the analogous absence of desire to begin

eating again, and thus can be thought of as the persistence of

satiation signals across time.

The energostatic (or ischymetric) model of satiety, originally

introduced by Booth (56), uniquely acknowledges satiety regulating

effects of energy production at the cellular level agnostic of source.

For an in-depth explanation of this model [see Friedman (6)]. A key

insight of the energostatic model is that of locating the parameter

of regulation to energy production rather than body fat or energy

balance per se. Hence, for example, obesity is seen not as a result

of dysregulation of the homeostatic control of a fat mass set point,

but of adaptation to energy production challenges. Accordingly,

sensed energy, not fuel, stores, or other “potential energy” (which

may or may not actually become ATP), is the mechanism leading to

satiation. An important result of the focus on energy sensing is that

it helps elucidate tight, bidirectional links between sleep and energy

homeostasis.

3.3 Measures and functions of sleep

While there are many measurable aspects of sleep, we will

focus on duration for each of the two main sleep stages, rapid eye

movement (REM) and non-REM (NREM), and the intensity of

slow wave activity (SWA) during the latter. REM is characterized

by brain activity strongly resembling that of waking, and it was

therefore originally called “paradoxical” sleep by Michel Jouvet

in 1959 (57), whereas brain activity is reduced and differently

patterned in slow wave sleep (SWS).

The drive to sleep has primarily been associated with SWA,

such that its absence creates pressure for sleep that is relieved only

by SWA. Increased sleep pressure leads to higher intensity of SWA,

rather than longer duration. Sleep is therefore normally considered

to be homeostatically regulated via SWA. Although there are at least

a dozen published theories describing the relationships between

NREM and REM (58), much data supports a dependence of REM

on NREM suggesting that REM is at least partially homeostatically

regulated by SWA (58–60) However, REM is also subject to

increased drive when suppressed independently of NREM. Unlike

the case with NREM, it is REM duration that appears to be

regulated, such that there is a rebound of increased duration after

suppression (61). The mechanisms of REM drive are not known,

but there is evidence that BDNF is required to stimulate it (IBID).

However, BDNF expression also increases SWA in NREM sleep

(62) leaving the possibility of common causes in the regulation of

both stages.

While the full complement of the functions of sleep is yet

to be elucidated, the basic intuition that sleep is restorative and

anabolic is at best incomplete, partly because the functions of REM

and NREM evidently differ, and partly because some consequences

of sleep are clearly more catabolic than anabolic. On the one

hand there is evidence of protein synthesis (63). On the other,

for example, during NREM sleep there is clearance of metabolites

and toxins (64). There is also extensive synaptic pruning, leading

to the synaptic homeostasis hypothesis (65), which proposes that

continuous learning during waking periods make the brain too

expensive to operate, such that synapses must be regularly pruned

to allow learning to continue. Hence there is a “restoration”, but the

restoration is not only one of rebuilding lost tissue, but also tearing

tissue down.

BOX 2 Markers and signals.

Amarker of a biochemical process is just a consistently detectable output that thereby reliably indicates the presence or degree of that process. However, any such reliable

indication can therefore carry information to other processes, hence becoming a signal. For example, the presence of high levels of ketone bodies in the bloodstream

contains the information that protein derived frommuscle is less required than under the same low glucose condition with lower fat oxidation as in phase III metabolism

(see main text).
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Benington and Heller (66) first suggested that NREM sleep may

function to restore brain energy. They reasoned that the increased

release of adenosine synthesized from AMP that is associated

with increasing sleep intensity must either reflect compromised

metabolic supply or increased metabolic demand. The latter was

rejected as unlikely due to the observation that neurons are

quiescent during slow wave sleep. While it is true that energy

use does thus decrease, it is also notable that the onset of NREM

is accompanied by a surge in ATP generation from a variety of

substrates including glycogen, lactate, and adenosine accumulated

during waking (67). Moreover, wakefulness and low energy supply

are strongly linked, as discussed below. This link is so reliable that

the following hypothesis was formed.

3.4 Nicolaidis’ hypothesis of satiation and
sleep

Based on multiple lines of experimental evidence, Nicolaidis

(10) proposed the following hypothesis: “Whenever a

neurosubstance is shown to induce satiety, it may also be

somnogenic, and it should also increase the background metabolic

rate. Conversely, whenever a neurosubstance is shown to be

orexigenic, it should also promote wakefulness and, at the same

time, decrease the background metabolic rate.” The hypothesis is

motivated by the following observations on energy balance and

sleep.

4 Energy balance in sleep

4.1 Duration relationships

While short sleep is considered a risk factor in obesity (68),

many studies have found a direct relationship between weight gain

and sleep duration: animal studies have found increases in NREM

and in some cases REM proportionate to induced weight gain (but

not energy intake per se), and decreases during loss (69–72). In

humans, it has been noted that anorectics sleep less than non-

anorectics, that this reduction is rescued in recovery, and that

obese people losing weight also have reductions in sleep (73). This

reduction appears to effect mainly REM sleep, suggesting that while

SWS is promoted by energy use, REM has a stronger requirement

for energy availability. This is supported by the fact that other high

REM situations are associated with fat gain, such as in infancy (74)

and after high carbohydrate meals (75). It is also part of the basis

of the energy allocation model of sleep (76), which posits that REM

requires so much energy that it shuts down peripheral energy use,

such as thermoregulation, in order to reallocate that energy for its

functions while minimally affecting total expenditure.

Sleep duration is also positively related to energy intake of the

previous meal (8, 9), but, importantly, this effect was not observed

by these authors in fat animals under the initial days of starvation.

This suggests that it is not the weight loss itself that causes short

sleep, but rather the low availability of energy; animals that are able

to provide adequate energy from stores do not have reduced sleep

duration.

Along the same lines, a group of 80 overweight humans with

chronic short sleep spontaneously ate less and lost weight when

subjected to sleep extension from <6.5 to 8.5 h time in bed (77).

As energy expenditure was not changed, the implication is that

mild sleep restriction would likewise increase energy intake without

increasing energy expenditure. Spontaneous reduction of intake is

particularly interesting because it implies that there has been an

increase in energy use from body stores contributing to earlier

satiation. This contrasts with weight loss from caloric restriction,

which may take place in the absence of physiological satiation,

suggesting that energy needs are not fully compensated for by fat

stores, and total energy is inadequate. Thus, Tasali et al.’s results

are consistent with sleep restriction reducing the ability to use

glucose via inducing a ‘mixed state", hence reducing available

energy from food which then must be “lost" to fat storage. These

concepts are illustrated in Figures 1A–D. Like the case above in

which over-fat animals did not lose sleep during the initial days

of starvation because using their fat mass made up the difference

in energy, in these subjects, sleep extension was associated with

continued satiation, even though they ate less. These apparent

counter-examples to the general association between weight loss

and reduced sleep reveal a refined association by taking into

account energy use: weight loss is associated with shorter sleep

when it is accompanied by low energy access, but may accompany

normal duration of sleep when energy access is adequate.

4.2 The e�ects of a fat-based metabolism
on sleep

The effects of fasting and KDs on sleep have been reviewed

previously (78). While there have been normalizations of

pathological REM duration, the primary effect of a ketogenic

metabolism is an increase in SWS. O’Hearn hypothesized that

increased brain energy as a result of the KD is responsible for

the increased SWA, and that this may be a contributing factor

to the cognitive and neurological benefits of KDs. An important

observation in that discussion is that orexin signals hunger and

wakefulness in the context of a glucose-based metabolism, because

it is a marker of low glucose, but in the context of an energy

adequate KD, it is high despite satiety and normal sleep duration.

Increases in adenosine were also noted (IBID). Accordingly, it

was further suggested that the simultaneous increases in adenosine

and orexin, which are normally in signaling opposition—adenosine

signals satiety and sleep, whereas orexin signals hunger and

wakefulness—permit higher levels of adenosine to accumulate with

less sleep pressure, which could contribute to the anti-convulsant

(79–84) and anti-depressant (85) properties of adenosine without

compromising wakefulness.

5 Sleep deprivation and metabolism:
apparently conflicting data

Sleep restriction (SR) is a form of partial sleep deprivation

characterized by reduced sleep duration. SR has often been

compared with total sleep deprivation (TSD). For example,
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FIGURE 1

Simplified schematic of fuel partitioning components: (A) weight stable; (B) weight loss, energy inadequate; (C) weight loss, energy adequate; (D)

higher intake, weight gain; (E) higher intake, weight loss.

Van Dongen et al. (86) compared impairment from accumulated

SR to that from TSD. As those authors show, at least in some

ways sleep deficit may produce a dose-response effect, with TSD

inducing the most extreme rate of accumulation. This approach

has been followed by others, for example, Lim et al. (87) compare

them for resulting sleepiness and risk taking, Groeger et al. (88)

compare them for positive and negative affect changes, and Dennis

et al. (89) compare them in resulting compensatory eating. These

kinds of similarities and the practical importance of SR as well

as sleep fragmentation and circadian desynchrony in modern

society has spurred more research comparing these types of sleep

disturbances (90).

However, it is important to recognize that there can be

qualitative differences between SR and TSD. For example, SR

disproportionately affects REM compared to SWA (91–93). This

architectural difference implies that SWA takes some priority, a

finding with important implications for sleep homeostasis, as well

as for the cause of behavioral and physiological impairments under

SR (94). For this reason, SR and TSD must be compared with

care. Also, because of this cumulative property, predictions of

performance based on TSD do not translate with equal accuracy

to SR without taking sleep history into account (95).

In the context of studying the potentially causal relationships

between sleep deprivation (SD) and obesity, previous authors have

observed the puzzling contrast between the negative energy balance

in rats induced by TSD, despite the positive correlation between

short sleep and obesity in human populations (96, 97). On the one

hand, as mentioned above, short sleep is considered a risk factor for

obesity. This is based partly on evidence from observational studies,

such as from (68, 98, 99). The latter form part of the basis of the

oft-cited recommendation on healthy sleep duration: obesity has

the lowest prevalence at somewhere between 7 and 8 h per night.

Longer sleep is also more correlated with higher weight, but this

is reasoned to be due to a common cause, where longer sleep is

due to conditions that cause fatigue or other disability leading to

lower energy expenditure. On the other hand, the association with

short sleep is thought to be a result of glucose intolerance and IR.

Short sleep in the acute-term reliably results in higher blood glucose

responses to meals (100, 101). Since loss of blood sugar control is

an early sign of diabetes which is closely related to obesity, it would

stand to reason that repeated exposure to this glucose intolerance

adds up to the observed long-term association. Moreover, short

sleep increases appetite (99).

However, animal studies on total sleep deprivation (TSD)

tell a mostly opposite story. It takes rats about 2–3 weeks

to die from TSD (102). Before death, TSD reliably results in

reduction in core temperature, elevated energy expenditure, weight

loss despite hyperphagia, increased catecholamines, and reduced

thyroid hormones (103–105). The elevation in energy expenditure

is caused by mitochondrial uncoupling (103) to such a degree that

before death, rats are expending more than twice baseline rates

(106). In mice, ketone bodies are reportedly elevated in the brain

(107) indicating inadequate glucose supply, along with increased

AMPK (108) In many respects rodents respond to TSD as if

experiencing starvation or adaptation to cold, even though food

intake is increased and TSD did not reduce RQ in rat models,

possibly simply because of their excessive carbohydrate intake (103)

(see Table 1).

These pathways are not confirmed in humans, partly because

we cannot expose them to TSD until death. TSD does result in

a reduction in core body temperature (76). In studies on sleep

restriction (SR) as mentioned above, hyperphagia is seen, but

energy expenditure doesn’t seem to rise enough to match. Energy

expenditure does in fact rise, an observation that has been used to
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TABLE 1 Energy signals in various states.

GB-F GB-LG KD-F GB-TSD GB-SR

KBs − − + + −

orexin − + + + +

AMPK − + + + ?

mtROS + − + + ?

UCPs − − + + ?

GB-F, glucose-base, fed; GB-LG, glucose-based, low glucose; KD-F, ketogenic diet, fed;

GB-TST, glucose-based, total sleep deprivation (in rodents); GB-SR, glucose-based, sleep

restricted (humans). “+” indicates elevated relative to a glucose-based metabolism in the

post-absorptive phase.− and ? indicates mixed or incomplete research.

support the hypothesis that energy conservation is a function of

sleep (63). But this observation is accompanied by the cautionary

warning: “The finding that sleep deprivation increases energy

expenditure should not be interpreted that sleep deprivation is a

safe or effective strategy for weight loss as other studies have shown

that chronic sleep deprivation is associated with impaired cognition

and weight gain.” (63).

6 The role of mitochondrial
uncoupling and uncoupling proteins

Mitochondrial uncoupling refers to the process where the

transfer of protons across the mitochondrial inner membrane

during oxidative phosphorylation is disconnected from ATP

synthesis, resulting in the generation of heat instead of storing

energy as ATP. However, mitochondrial uncoupling is a subject

of multiple controversies. First of all, other than UCP1, it is

questionable whether the so-called uncoupling proteins result in

uncoupling at all (109, 110). Second, the function of uncoupling

when it does occur is disputed. One prominent theory is

that mitochondrial uncoupling serves to protect against ROS

(see below).

ROS are a normal byproduct of oxidative phosphorylation

(111). Although unchecked it can lead to oxidative damage, as

a byproduct of a process it is a marker, and hence it signals

energy generation. In the hypothalamus, ROS signal satiety (112–

115). It’s also possible that they signal “satiety” in adipose tissue1.

ROS have been implicated in IR, the inhibition of glucose uptake

via GLUT4 (116–118). While this is normally conceived of as

detrimental, because of the connection between IR and diabetes,

glucose intolerance at the adipocyte means less adipose expansion.

It is a natural cellular signal of “we don’t need more energy.”

At the same time, the hypothesis that ROS promote sleep

(119) has been supported by experiments showing that SD

causes oxidation (120–122), that antioxidants can reduce negative

consequences of SD (122, 123) and further, that death by TSD can

be prevented via antioxidant intake in drosophilia (124). In one

model, this is explained by proposing that one function of sleep is

to clear ROS (125). Hence they propose that sleep is regulated by

ROS levels. A ROS theory of sleep function is thus consistent with

1 I attribute this idea to Peter Dobromylskyj.

Nicolaidis’ prediction: ROS promote sleep and satiety, and ROS

are an energy balance signal. If uncoupling is indeed a response to

protect against ROS [but see (109)], then the extreme rise in energy

expenditure in TSD would also support the ROS clearance function

of sleep.

Returning to the criticism that most uncoupling proteins do

not uncouple, it is notable that what they do have in common is

an upregulation of processes related to lipid metabolism. UCP1

was the first uncoupling protein to be discovered, but is now

considered further derived from other UCPs (126). It is associated

with mitochondrial uncoupling in brown adipose tissue, which is

more prevalent in non-human animals than in humans. UCP2 has

a glucose sparing role, reducing the entry of pyruvate into the

Krebs cycle and reducing insulin secretion (127). UCP3 enhances

fat metabolism (128).

Given that SD promotes uncoupling proteins (129) and KDs

promote uncoupling proteins (130–132), and likewise SD and KDs

promote glucose intolerance that may be benign in the context of

low glucose intake (see Section 2.2), the totality of the evidence

suggests that SD is concordant with a fat-based metabolism

(Table 1). Hence it is possible that the differences observed between

rodent and human responses to SD are attributable to either

(a) species differences in uncoupling protein activation, such

that humans have hyperphagia without compensatory energy

expenditure, (b) an incomplete response to SR, such that ROS first

induce IR and only under longer periods of restriction activate

uncoupling, or (c) a physiological mismatch between short sleep

and glucose intake, such that glucose intake is not concordant with

long wake times. The former discordance bears some resemblance

to mismatches observed when circadian rhythms are disrupted–

eating during times usually reserved for sleep also results in IR.

In other words, SD under a glucose-based metabolism creates a

metabolic mixed state.

7 Discussion

If, as posited by the energostatic model, “energy” is the

parameter of regulation for satiety (or anything else), it still must be

mediated by a signal or set of signals. Many signals that characterize

a fat-based metabolism–ketone bodies, orexin, adenosine, AMPK–

are at risk of conflation with signals of energy deficiency. That is,

they can be present with or without satiation. Because KDs can

result in weight loss, weight stability, or weight gain, we need to

look at other signals to determine true energy status.

Mitochondrial ROS (mtROS) are a candidate exception,

because they are signals of satiety in a glucose-based metabolism

even though they are also signals of a high energy state in

a fat-based metabolism; in the absence of glucose, FAO leads

to ROS (as all energy generation does), but also becomes part

of a cascade leading to uncoupling which in turn lowers ROS,

allowing even more FAO (113). In other words, FAO in the

absence of glucose initiates a hysteresis mechanism that helps to

bootstrap the fat-based metabolism via increasing ROS tolerance

through uncoupling and the resulting increased energy expenditure

(Figure 2). Insofar as ROS reduction is an important function of

sleep, it could help to functionally explain the previously observed

overlap in sleep and satiety signaling. It could also potentially
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FIGURE 2

ROS signal energy status in sleep and satiety. In this model, mitochondrial ROS from energy generation signals sleep pressure and satiation.

Uncoupling proteins enable more energy expenditure by reducing ROS and decreasing satiation. If this is accompanied by increased energy

expenditure it leads to weight loss or weight maintenance at higher caloric intake. Otherwise it leads to weight gain.

explain why TSD in rodents increases hunger that cannot keep

up with energy expenditure, if the uncoupling response to excess

ROS burden increases without bound (Figure 1E). It also helps

distinguish how a fat-based metabolism can improve sleep quality

under fed conditions, even though starvation, which also has a

ketogenic metabolic profile, compromises sleep. For a summary

comparison of various states discussed and energy signals, see

Table 1. A potential area of further investigation is the role of

thermoregulation, given the connection of heat generation to

uncoupling and the interactions between temperature and sleep

quality.

Taken together, these observations support the conceptual

framework of energy availability as the target of homeostasis

that sleep and satiety regulate. That is, the signals that promote

transitions between sleeping and waking on the one hand, and

between eating and not eating on the other, are direct consequences

of energy availability and use. This framework can then help to

explain why KDs have such broad therapeutic value, through the

common effect of energy availability in the brain and periphery.

In the brain, many neurological and psychiatric disorders have

been described as problems of energy access (133). Moreover,

sleep problems are frequently comorbidities (134). Insofar as sleep

quality reflects adequate energy, the beneficial effects of KDs on

sleep may be seen as confirmation of their ability to restore

brain energy. At the same time, adequate sleep allows further

restorative processes that may directly contribute to therapeutic

effects (78). In the periphery, ad libitum KDs treat obesity, not

by sending signals of reduced energy availability that serve to

induce catabolism of fat stores as in caloric restriction regimes,

but by sending signals of increased energy availability (and hence

satiety) when body fat is used. Use of fat for energy during a

glucose-based metabolism would be a mixed state, and less likely to

send clear satiety signals, with the exception of ROS. Surprisingly,

high fat KDs can in some cases treat anorexia (135). While

the mechanism for this is unclear, it may be a combination of

brain energy effects and restored satiety signaling in response to

fat intake.
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