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Background: Both diabetic kidney disease (DKD) and chronic kidney disease 
(CKD) are more prevalent among individuals with lower levels of education 
in observational studies. To quantify the mediation effect of recognized 
cardiometabolic traits, we obtain causal estimates between education and DKD 
as well as CKD.

Materials and methods: We assessed the causal effect of education on DKD and 
CKD, separately estimated the causal effect of 26 cardiometabolic traits on DKD 
and CKD, and finally calculated the mediating effects and mediating proportions 
of each using two-step, two-sample multivariable Mendelian randomization 
(MVMR). Furthermore, the genetic association between exposure, mediators, 
and outcomes was investigated using linkage disequilibrium score (LDSC) 
regression analysis. Expression quantitative trait loci (eQTL) were retrieved 
from the Genotype-Tissue Expression Project (GTEx) v8 to serve as genetic 
instrumental variables. Transcriptome-wide association studies (TWAS), Bayesian 
colocalization analysis, and Summary-data-based Mendelian Randomization 
(SMR) analysis were performed to explore underlying susceptibility genes 
between education, mediators, and kidney diseases.

Results: Higher education with a genetically predicted 1-SD (4.2  years) was linked 
to a 48.64% decreased risk of DKD and a 29.08% decreased risk of CKD. After 
extensive evaluation of 26 cardiometabolic traits, 7 and 6 causal mediators were 
identified as mediating the effects of education on DKD and CKD, respectively. 
The largest mediating factor between education and DKD was BMI, which was 
followed by WHR, T2D, fasting insulin, SBP, fasting glucose, and DBP. In contrast, 
candidate mediators in the education-to-CKD pathway included BMI, followed 
by cigarettes smoked per day, WHR, SBP, T2D, and DBP. MR analysis revealed 
that TP53INP1 was found to be a shared susceptibility gene for cardiometabolic 
traits and DKD, while L3MBTL3 was found to be a shared susceptibility gene for 
cardiometabolic traits and CKD.

Conclusion: Our findings provide solid evidence that education has a causally 
protective effect on the development of DKD and CKD. We additionally reveal 
significant directions for intervention on cardiometabolic traits that mitigate the 
negative effects of educational inequities on the onset of DKD and CKD. Our 
work demonstrates a shared genetic basis between education, cardiometabolic 
traits, and kidney diseases. Future research aiming at lowering kidney risk may 
benefit from these findings.
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Introduction

The leading cause of chronic kidney disease (CKD) is diabetic 
kidney disease (DKD), which is brought on by metabolic and 
hemodynamic abnormalities driven on by long-term diabetes (1, 2). 
In addition to the high expenses for healthcare that place an 
enormous burden on social, financial, and health systems all over 
the world, CKD and diabetes are essential risk factors for 
cardiovascular disease and play a significant role in global morbidity 
and mortality (3, 4). Recent observational studies have 
demonstrated an adverse association between education level and 
CKD, with modifiable risk variables such as diabetes, smoking, 
BMI, WHR, and hypertension being highlighted as potential drivers 
of this correlation (5). Another study demonstrated that type 2 
diabetes (T2D) patients with low educational attainment were more 
likely to experience DKD and other diabetic microvascular events 
(6). Improving these cardiometabolic traits could reduce the risk of 
renal disease since they are directly associated with the onset of 
DKD and CKD (7, 8). Due to the influence of confounding factors 
and reverse causality in traditional observational studies, the 
epidemiological evidence to date suggests that education and 
cardiometabolic traits are related to the risk of DKD and CKD, but 
it does not provide a good estimate of their causality. The ability of 
education to reduce the risk of DKD and CKD through 
cardiometabolic traits is therefore unknown, as is the extent to 
which cardiometabolic traits can account for the effect of education 
on DKD and CKD. Studying more concerning this topic will help 
with understanding the etiology of DKD and CKD as well as offer 
strategies for prevention.

Genome-wide association study (GWAS) and Mendelian 
randomization (MR) analyses allow us to explore the causal 
relationship and direction of education, cardiometabolic traits, 
DKD, and CKD. Mendelian randomization mimics the mechanism 
by which genes are randomly distributed from parents to offspring 
during gamete formation and conception, and it allows us to assess 
the causal association between exposure and outcome (9). Mendelian 
randomization, a natural randomized controlled experiment, 
evaluates the causal relationship between exposure and outcome 
using genetic variables related to the targeted phenotype. 
Additionally, MVMR can investigate the causal association between 
the outcome of interest and multiple exposures shared susceptibility 
to single nucleotide polymorphisms (SNPs) (10, 11). Mediation 

analysis is a method of decomposing the effects of an exposure on 
an outcome, which are categorized into direct effects, and indirect 
effects through mediating variables. These effects are decomposed 
through the use of MVMR to estimate the causal effect between 
exposure, mediator, and outcome (12). To evaluate the causal 
relationships between education, cardiometabolic traits, DKD, and 
CKD in this research, we  utilized univariable Mendelian 
randomization (UVMR). In addition, we used multivariable MR to 
assess which cardiometabolic traits mediate the relationship between 
educational attainment and DKD and CKD, as well as what 
proportion of the mediation was accounted for by these factors. 
Understanding these mediating effects will make clinical practice 
guidance more accessible.

Nearly 90% of genetic variants contained by GWAS are found 
in the noncoding region of the genome, meaning that GWAS 
investigations alone are unable to identify the genes that cause 
disease. Expression quantitative trait loci (eQTL) are genomic loci 
that explain variation in gene-expression levels. Prioritizing 
putative causative genes from GWAS studies has been made 
possible by the merging of GWAS and eQTL research, since GWAS 
catalogs noncoding variants linked to disease while eQTL finds the 
relationship between variations and gene expression (13). TWAS 
aims to test whether the expression of a gene mediates the genotype 
effect on the phenotype development. Renal function susceptibility 
gene loci have been identified through the utilization of TWAS 
combined with Bayesian colocalization analysis and SMR analysis 
(13–15). Genetic evidence can be  used to guide drug target 
development, which can dramatically increase the chance of drug 
approval (16). Even though their study produced significant 
results, more MR analysis is recommended to identify susceptibility 
genes related to education, cardiometabolic traits, and 
kidney diseases.

Materials and methods

The article and its Supplementary material contain all of the 
supporting data that the authors declare to have.

Data sources of exposures, mediators, and 
outcomes

Summary-level data based on GWAS carried out among 
participants with mainly European ancestry were used in this MR 
analysis to provide details about exposure, mediators, and outcomes 
(Table 1; Supplementary Table S5). Specific epidemiological evidence 
supporting the association of the 26 candidate mediators with DKD 
and CKD is presented in Supplementary Tables S6, S7. This study did 
not need ethical approval since its results were derived from summary-
level data.

Abbreviations: BF%, Body fat percentage; WHR, Waist-to-hip ratio; SBP, Systolic 

blood pressure; DBP, Diastolic blood pressure; T2D, Type 2 diabetes; GWAS, 

Genome-wide association studies; MR, Mendelian randomization; UVMR, 

Univariable MR; MVMR, Multivariable MR; LDSC, Linkage disequilibrium score; 

GSMR, Generalized Summary-data-based Mendelian Randomization; cML-MA, 

Constrained Maximum Likelihood and Model Averaging; TWAS, Transcriptome-

wide association studies; SMR, Summary-data-based Mendelian Randomization.
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TABLE 1 Summary of the GWAS data used in the MR analyses.

Phenotype Unit

No of 
participants  
(n Cases/n 
Controls)

Ancestry
Consortium/
cohort

Author
Year of 

publication
PubMed 

ID

Exposure

Education SD (4.2 y) 766,345 European SSGAC Lee et al 2018 30038396

Outcome

DKD Event 312,650 (4,111/308539) European FinnGen Kurki et al 2023 36653562

CKD# Event 372,250 (9,073/363177) European FinnGen Kurki et al 2023 36653562

CKD* Event 480,698 

(41,395/439303)

European CKDGen 

Consortium

Wuttke et al 2019 31152163

Candidate mediators

BMI SD (4.7 kg/m2) 681,275 European GIANT Yengo et al 2018 30124842

BF% SD (6.6%) 65,831 European Meta Lu et al 2016 26833246

WHR SD (0.08) 118,003 European GIANT Shungin et al 2015 25673412

HC SD (8.45 cm) 225,487 Mixed GIANT Shungin et al 2015 25673412

WC SD (12.5 cm) 245,746 Mixed GIANT Shungin et al 2015 25673412

Cigarettes smoked 

per day

SD 249,752 European GSCAN Liu et al 2019 30643251

Pack years of 

smoking

SD (18.5y) 142,387 European UK Biobank Ben et al 2018 NA

Maternal smoking 

around birth

Event 289,727 

(88,601/201126)

European Neale Lab Neale et al 2017 NA

Smoking initiation Event 607,291 

(311,629/321173)

European GSCAN Liu et al 2019 30643251

Age of smoking 

initiation

SD 341,427 European GSCAN Liu et al 2019 30643251

Alcoholic drinking SD 335,394 European GSCAN Liu et al 2019 30643251

Coffee intake SD (2.09 cups/

day)

428,860 European UK Biobank Ben et al 2018 NA

SBP SD 757,601 European ICBP Evangelou et al 2018 30224653

DBP SD 757,601 European ICBP Evangelou et al 2018 30224653

TG SD (41.8 mg/dL) 177,861 Mixed GLGC Willer et al 2013 24097068

TC SD (90.8 mg/dL) 187,365 Mixed GLGC Willer et al 2013 24097068

HDL-C SD (15.5 mg/dL) 187,167 Mixed GLGC Willer et al 2013 24097068

LDL-C SD (38.7 mg/dL) 173,082 Mixed GLGC Willer et al 2013 24097068

Fasting glucose SD (0.73 mmol/L) 133,010 European MAGIC Scott et al 2012 22885924

Fasting insulin SD (0.79 pmol/L) 108,557 European MAGIC Scott et al 2012 22885924

MVPA SD (2.084 MET-

min/wk)

377,234 European UK Biobank Klimentidis et al 2018 29899525

VPA Event 261,055 

(98,060/162995)

European UK Biobank Klimentidis et al 2018 29899525

Sedentary behavior SD 372,609 European UK Biobank Wang et al 2022 36071172

Household income SD 397,751 European UK Biobank Hemani et al 2018 29846171

T1D Event 24,840 (9,266/15574) European Meta Forgetta et al 2020 32005708

T2D Event 655,666 (61,714/1178) European Meta Xue et al 2018 30054458

SSGAC indicates Social Science Genetic Association Consortium; GIANT, Genetic Investigation of Anthropometric Traits; GSCAN, GWAS & Sequencing Consortium of Alcohol and Nicotine 
use; GWAS, genome-wide association study; ICBP, International Consortium of Blood Pressure; GLGC, Global Lipids Genetics Consortium; MAGIC, Meta-Analyses of Glucose and Insulin-
related traits Consortium; MET, metabolic equivalent; BMI, body mass index; BF%, body fat percentage; WHR, waist-to-hip ratio; HC, hip circumference; WC, waist circumference; SBP, 
systolic blood pressure; DBP, diastolic blood pressure; TG, triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MVPA, 
moderate to vigorous physical activity; VPA, vigorous physical activity; T1D, type 1 diabetes; T2D, type 2 diabetes; CKD#, this GWAS data was used for UVMR, MVMR, mediation analysis, 
and LDSC analysis; CKD*, this GWAS data was used for TWAS, SMR and colocalization analysis.
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Overall study design

Based on two-sample MR analyses, we employed univariable 
and multivariable MR to evaluate the causal association between 
exposure, candidate mediators, and outcome. Three basic 
assumptions must be satisfied before SNPs can be used as genetic 
tools in MR analyses: first, the genetic variant must be associated 
with the exposure; second, it must not be  associated with any 
confounding factors of the exposure-outcome association; and third, 
there must be no direct relationship between the genetic variant and 
the outcome. The study frame chart is presented in Figure 1. In order 
to determine if candidate mediators contribute to the exposure-
outcome association, we used two-step MR methods (17). To analyze 
the estimation of the effects of exposure on outcomes through 
mediation, two-step MR approaches have been utilized extensively 
(18). Using LDSC regression analysis, the genetic correlation 
between exposure, mediators, and outcomes was investigated. The 
mediator screening procedure is described in Figure 2. Then, TWAS, 
colocalization analysis, and SMR analysis were performed to 
investigate underlying susceptibility genes between education, 
mediators, and kidney diseases. In addition, this study follows the 
STROBE-MR guidelines (19, 20).

Statistical analysis

Primary analysis
To assess the causal relationships between education and the 

candidate mediators, DKD and CKD, as well as the associations 
involving the candidate mediators and these outcomes, we  ran a 
two-sample UVMR. In order to calculate the direct effects between 
education and DKD and CKD as well as between mediators and DKD 
and CKD, MVMR was used to adjust for both education 
and mediators.

The causal effects of education on the candidate mediators, DKD 
and CKD, as well as the causal effects of the candidate mediators on 
DKD and CKD, were evaluated using UVMR. Instrumental variables 
for exposure acquisition were extracted from the outcome GWAS 
data. In addition, we orientated the effect variants in exposure and 
outcome to ensure the correct coordination of alleles (21). Inverse 
variance weighted (IVW) analysis served as the main statistical 
method in this study. Although IVW has effective statistical power, it 
is predicated on assumptions that all variables are valid instrumental 
variables and that effect estimates can be biased in the presence of 
directional pleiotropy (22). To aid in the evaluation of causal effects, 
we  additionally utilized MR-Egger, weighted median, maximum 

FIGURE 1

Flowchart of the Mendelian randomization study revealing the causal relationship between exposure and outcome. MR, Mendelian randomization; 
MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier; SNPs, single-nucleotide polymorphisms; GSMR, Generalized Summary-
data-based Mendelian Randomization; cML-MA, Constrained Maximum Likelihood and Model Averaging.
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likelihood, Constrained Maximum Likelihood and Model Averaging 
(cML-MA), and Generalized Summary-data-based Mendelian 
Randomization (GSMR). Although all SNPs have pleiotropic effects, 
MR-Egger can also offer unbiased estimates and sensitivity to 
abnormal values or less efficient (23). When up to half of the SNPs 
violate the assumptions about instrumental variables, the weighted 
median still produces accurate estimates (24). Maximum likelihood is 
a traditional method with low standard error, which estimates the 
probability distribution parameters by maximizing the likelihood 
function (25). ML and model averaging are combined in the cML-MA 
method, an MR method that is used to address both correlated and 
uncorrelated pleiotropic effects (25). Importantly, it does not rely on 
the InSIDE (Instrument Strength Independent of Direct Effect) 

assumption, setting it apart from other MR approaches. cML-MA has 
better type I error control. GSMR analysis extends the MR approach 
employing all the top related SNPs at a genome-wide significance level 
for exposure as IVs to evaluate causality. Moreover, in contrast to 
other methods, GSMR analysis takes into consideration sampling 
errors in the estimated effect sizes of the instruments on exposure as 
well as potential linkage disequilibrium between SNPs (26). However, 
at least 10 SNPs are required when using this method.

So as to calculate the direct effects between education and DKD 
and CKD as well as the direct effects between mediators and DKD and 
CKD, education and mediators were adjusted for using 
MVMR. MVMR was used to assess the stability of significant causal 
relationships by estimating the causal relationship between each 

FIGURE 2

Overview of the study design. We first filter candidate mediators for the associations between education and DKD as well as CKD using stringent 
criteria, and then we estimate their mediation effects using two-step MR. BMI indicates body mass index; BF%, body fat percentage; WHR, waist-to-hip 
ratio; HC, hip circumference; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; TG, triglyceride; TC, total 
cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MVPA, moderate to vigorous physical activity; 
VPA, vigorous physical activity; T1D, type 1 diabetes; T2D, type 2 diabetes.
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exposure and a single outcome, generating causal estimates of direct 
effects, and adjusting for pleiotropy due to other exposures included 
in the MVMR analysis (12). To determine whether potential mediators 
generated a causal relationship between exposure and outcome, 
we used two-step MR methods (17). In the first step, instrumental 
variables from education were used to estimate the causal effects of 
education on cardiometabolic traits, DKD, and CKD. In the second 
step, instrumental variables from cardiometabolic traits were used to 
estimate the effects of these potential mediators on DKD and CKD, 
and MVMR was used to adjust for education, thus categorizing the 
causal effects of education on DKD and CKD into direct effects (the 
effects of education on DKD and CKD does not depend on the 
mediator) and indirect effects (the effect of education on DKD and 
CKD through the mediator). On this basis, the proportion of the 
mediating effect of the mediating factor was calculated using the 
product of coefficients method. We first estimated the causal effect of 
education on the mediator and then multiplied it by the mediator’s 
effect on DKD or CKD, which resulted in an indirect effect. Finally, 
we assessed the proportion of the mediating effect by dividing the 
indirect effect by the total effect, which in this case is the causal effect 
of education on DKD or CKD. Standard errors were generated using 
the delta method. A two-sided p < 0.05 significance level was used for 
all estimates. Two-sample univariate, multivariate MR analysis, and 
Bayesian colocalization analysis were performed using the 
TwoSampleMR package (version 0.5.6) (21), the 
MendelianRandomisation package (version 0.7.0) (27), the 
MRPRESSO package (version 1.0) (28), the RadialMR package 
(version 1.1), the MRcML package (version 0.0.0.900), the GSMR 
package (26) (version 1.0.9) and the coloc packages (version 5.1.0.1) 
in R (version 4.2.3).

Sensitivity analyses

F-statistics were used to assess the strength of instrumental 
variables and the presence of bias for weak instrumental variables, 
conditional F-statistics were calculated in MVMR. The F statistic can 
reflect the strength of instrumental variables, F-statistics >10 is 
considered to suggest sufficient instrumental strength, while F < 10 
indicates the risk of weak instrumental variables (29).

Furthermore, to make the results of Mendelian randomization 
more robust, we used multiple sensitivity tests to assess whether the 
MR assumptions were violated, such as the MR-Egger intercept test, 
Cochran’s Q test, MR pleiotropy residual sum and outlier 
(MR-PRESSO), RadialMR, and MR Steiger filtering. The MR-Egger 
intercept test can be  used to detect the presence of directional 
pleiotropy, and the presence of a significant difference between the 
MR-Egger intercept and zero indicates the presence of directional 
pleiotropy (23). Cochran’s Q test is used to detect the presence of 
heterogeneity and a significant p-value indicates the presence of 
pleiotropy (30). MR-PRESSO identifies and removes potential 
pleiotropic outliers, but may have a high false positive rate (28). To 
improve the visualization of the IVW, we performed radial variants of 
the IVW instead of a scatter plot. Automatic detection of outliers was 
accomplished using RadialMR imaging (31). In addition, we used 
Steiger filtering to assess whether any individual SNP explained the 
differences in results better than exposure (32). After removing 

outliers identified by sensitivity analyses, MR analyses were 
re-performed.

Linkage disequilibrium score regression 
analysis

Linkage disequilibrium score (LDSC) regression analysis is a 
reliable and effective tool for determining the shared genetic structure 
of complex human traits; it is mostly used to evaluate disease 
heritability and verify genetic correlation (33). We applied full GWAS 
summary data from exposure, mediators, and outcomes to examine 
genetic association in our study.

Transcriptome-wide association studies

Examining overlapping genes could be useful in elucidating the 
mechanism of causality since many genetic variations impact 
complicated traits via regulating gene expression. To investigate the 
connection between genes and education, mediators, DKD as well as 
CKD in further detail, a TWAS analysis utilizing FUSION was 
performed. Gene-level expression quantitative trait loci (eQTL) for 
whole blood were obtained from the GTEx Consortium V8. The 
linear sum of Z-score weights for locus-specific independent SNPs 
was calculated by FUSION. Subsequently, the genetic effects of 
education, mediators, and DKD as well as CKD (GWAS Z scores for 
education, mediators, and DKD as well as CKD) were combined with 
mRNA expression weights. We  calculated the expression weight 
(SNP-gene expression correlations) of TWAS using the FUSION 
platform, considering the reference transcriptome (34). We employ 
several prediction models in our study, including top1, blup, lasso, 
enet, and bslmm. To determine the weights for mRNA expression, 
choose the model that performs the best in terms of predictions. 
Then, the estimated gene expression level was used to study the 
susceptibility genes related to DKD and education as well as 
mediators or the susceptibility genes related to CKD and education 
as well as mediators. Genes classified as shared susceptibility genes 
have a false discovery rate (FDR) < 0. 5.

Bayesian colocalization analysis

By eliminating the impact of linkage disequilibrium, Bayesian 
colocalization analysis was used to investigate whether shared 
susceptibility genes had a similar causal variation with DKD and CKD 
in the genome region (35). The following five hypotheses served as the 
foundation for the colocalization analysis: (i) H0: The genomic region 
contains no causal variant for exposure or outcome; (ii) H1: a single 
causal variant only significantly related to exposure; (iii) H2: a single 
causal variant significantly related to outcome; (iv) H3: the genomic 
region contains causal variables that are significantly related to exposure 
or outcome, but are driven by different causal variants; and (v) H4: The 
same causal variants drive both exposure and outcome. Using the 
default parameters, colocalization analysis of the identified causal genes 
was carried out (P1 = 1 × 10−4; P2 = 1 × 10−4; P12 = 1 × 10−5). PPH4 > 0.8 
is regarded in this work as strong evidence of co-location (35, 36).
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Summary-data-based Mendelian 
randomization analysis

To confirm that shared susceptibility genes cause DKD and CKD, 
further SMR analysis was carried out (37). To determine whether 
shared susceptibility genes result from common genetic variation rather 
than genetic linkage, the Heterogeneity in Dependent Instruments 
(HEIDI) test was conducted if there were more than three SNPs. SMR 
analysis and HEIDI testing need to be performed using SMR software 
(version 1.3.1). In SMR analysis, p < 0.05 was the significant level. The 
causal relationship between exposure and outcome was not affected by 
linkage disequilibrium, as shown by a p > 0.05 in the HEIDI test.

Results

Effect of education on DKD and CKD

The causal effects of education on DKD and CKD were explored 
using two-sample UVMR analyses. The specific details concerning the 
genetic instruments we  employ can be  found in 
Supplementary Table S1. According to UVMR analysis, each 1-SD 
higher genetically predicted education was associated with 0.5136 
times lower odds of DKD (OR 0.5136; 95% CI 0.4212, 0.6264) and 
0.7092 times lower odds of CKD (OR 0.7092; 95% CI 0.6188, 0.8129) 
(Supplementary Table S8; Supplementary Figure S1). All sensitivity 
analyses in the MR results were robust, and there was no heterogeneity 
(Supplementary Table S9) and no pleiotropy (Supplementary Table S10) 
between all exposed genetic instrumental variables and DKD 
and CKD.

Effect of education on each mediator

Using two-sample UVMR analyses, the causal effects of education 
on each mediator were evaluated. Supplementary Table S2 contains 
particular information about the genetic instruments that we  use. 
Education with 26 candidate mediators did UVMR analyses, which 
showed that a total of 23 candidate mediators had statistically 
significant MR results. The MR results showed that each 1-SD longer 
years of schooling was associated with lower BMI (β −0.2942 SD; 95% 
CI −0.3187, −0.2698), lower BF% (β −0.1606 SD; 95% CI −0.2179, 
−0.1033), lower WHR (β −0.2157 SD; 95% CI −0.2670, −0.1643), 
higher HC (β 0.1086 SD; 95% CI 0.0634, 0.1539), lower cigarettes 
smoked per day (β −0.2799 SD; 95% CI −0.3314, −0.2285), lower pack 
years of smoking (β −0.3202 SD; 95% CI −0.3528, −0.2877), a 
decreased risk of maternal smoking around birth (OR 0.8879; 95% CI 
0.8782, 0.8978), a decreased risk of smoking initiation (OR 0.6928; 95% 
CI 0.6681, 0.7185), higher age of smoking initiation (β 0.2777 SD; 95% 
CI 0.2528, 0.3027), higher coffee intake (β 0.0883 SD; 95% CI 0.0732, 
0.1033), lower SBP (β −2.8239 SD; 95% CI −3.1674, −2.4803), lower 
DBP (β −1.1212 SD; 95% CI −1.3088, −0.9336), lower TG (β −0.1426 
SD; 95% CI −0.1876, −0.0977), lower TC (β −0.0801 SD; 95% CI 
−0.1305, −0.0298), higher HDL-C (β 0.1109 SD; 95% CI 0.0634,0.1583), 
lower LDL-C (β −0.0938 SD; 95% CI −0.1448, −0.0429), lower fasting 
glucose (β −0.0917 SD; 95% CI −0.1457, −0.0378), lower fasting 
insulin (β −0.0717 SD; 95% CI −0.1227, −0.0206), lower MVPA (β 
−0.1059 SD; 95% CI −0.1264, −0.0854), higher VPA (β 0.0278 SD; 95% 

CI 0.0157, 0.0399), higher sedentary behavior (β 0.6082 SD; 95% CI 
0.5647, 0.6517), an increased risk of household income (OR 1.8513; 
95% CI 1.8053, 1.8985) and a decreased risk of T2D (OR 0.6982; 95% 
CI 0.6414, 0.7600). At least 4 sensitivity analyses confirmed these IVW 
estimates (Supplementary Table S11; Supplementary Figure S2). 
Genetic instrumental variables for education showed little heterogeneity 
and little pleiotropy with the mediator variables, except for sensitivity 
analyses between the instrumental variables for education and fasting 
insulin, which showed pleiotropy and was mainly driven by horizontal 
pleiotropy (Supplementary Tables S12, S13).

Effect of each mediator on DKD without 
adjustment for education

Utilizing two-sample UVMR analyses, the causal effects of each 
mediator on DKD without controlling for education were assessed. 
Supplementary Table S3 contains particular information on the genetic 
instruments that we apply. Using the UVMR, the causal effect of 26 
candidate mediators on DKD without adjusting for education was 
assessed and 14 mediators were finally selected for further MVMR 
analysis. Each 1-SD unit higher BMI (OR 2.4821; 95% CI 2.1981, 
2.8027); BF% (OR 4.6427; 95% CI 2.5386, 8.4905); WHR (OR 3.3604; 
95% CI 2.4326, 4.6419); coffee intake (OR 4.4362; 95% CI 2.5286, 
7.7828); SBP (OR 1.0221; 95% CI 1.0146, 1.0297); DBP (OR 1.0164; 
95% CI 1.0036, 1.0294); fasting glucose (OR 1.7873; 95% CI 1.2249, 
2.6079); fasting insulin (OR 6.7742; 95% CI 2.5748, 17.8222); T1D (OR 
1.1818; 95% CI 1.1304, 1.2355) and T2D (OR 1.7828; 95% CI 1.6565, 
1.9187) were associated with an increased risk of DKD without 
adjustment for education (Supplementary Table S14). By contrast, each 
1-SD unit higher HC (OR 0.7434; 95% CI 0.6090, 0.9076), LDL-C (OR 
0.8767; 95% CI 0.7935, 0.9686), MVPA (OR 0.4109; 95% CI 0.1797, 
0.9393) and household income (OR 0.5512; 95% CI 0.3709, 0.8193) 
were associated with a decreased risk of DKD without adjustment for 
education (Supplementary Table S14; Supplementary Figure S3). The 
heterogeneity of IVW was tested using the Cochran Q test, and neither 
the Q statistic nor the p-value was significant (p > 0.05), suggesting that 
there was no evidence of heterogeneity of the effects of candidate 
mediators on DKD (Supplementary Table S15). The p-value for the 
intercept was not significant when pleiotropy was tested using the 
MR-Egger intercept term, indicating that directional pleiotropy is not 
an issue for these results (Supplementary Table S16).

Effect of each mediator on DKD with 
adjustment for education

After removing the mediators of the weak instrumental variables, 
we ended up with 7 mediators with robust results. The MVMR results 
showed that each 1-SD unit higher BMI (OR 2.3677; 95% CI 2.0582, 
2.7237); SBP (OR 1.0230; 95% CI 1.0147, 1.0313); DBP (OR 1.0143; 
95% CI 1.0003, 1.0284); and T2D (OR 1.7275; 95% CI 1.6035, 1.8612) 
were associated with an increased risk of DKD after adjusting for 
education (Table 2). However, each 1-SD unit with higher WHR (OR 
0.6326; 95% CI 0.4994, 0.8014), fasting glucose (OR 0.4478; 95% CI 
0.2270, 0.8836), and fasting insulin (OR 0.4850; 95% CI 0.2661, 
0.8842) were associated with a decreased risk of DKD after adjusting 
for education (Table 2). Moreover, sensitivity analyses showed that no 
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TABLE 2 MVMR assessing the causal association between each mediator and DKD with adjustment for education.

Mediator Method β (95% CI) OR (95% CI) P_MVMR Q_statistic P_ Q_statistic Egger_intercept
P_egger_
intercept

BMI MV-IVW 0.8619 (0.7218, 1.0020) 2.3677 (2.0582, 2.7237) 1.74E-33 1276.46 5.16E-09
−0.0015 2.91E-01

MVMR-Egger 0.8451 (0.7022, 0.9880) 2.3283 (2.0183, 2.6859) 4.51E-31 1274.69 5.54E-09

WHR MV-IVW −0.4579 (−0.6944, −0.2214) 0.6326 (0.4994, 0.8014) 1.48E-04 403.63 1.33E-02
0.0034 5.08E-01

MVMR-Egger −0.7216 (−1.5375, 0.0944) 0.4860 (0.2149, 1.0990) 8.30E-02 403.11 1.27E-02

SBP MV-IVW 0.0227 (0.0146, 0.0308) 1.0230 (1.0147, 1.0313) 3.91E-08 1147.07 5.88E-07
0.0029 5.16E-02

MVMR-Egger 0.0230 (0.0149, 0.0311) 1.0233 (1.0150, 1.0316) 2.45E-08 1141.27 9.45E-07

DBP MV-IVW 0.0142 (0.0003, 0.0280) 1.0143 (1.0003, 1.0284) 4.55E-02 1197.71 2.02E-08
−0.0026 7.28E-02

MVMR-Egger 0.0137 (−0.0002, 0.0276) 1.0138 (0.9998, 1.0280) 5.35E-02 1193.44 2.87E-08

Fasting glucose MV-IVW −0.8033 (−1.4828, −0.1238) 0.4478 (0.2270, 0.8836) 2.05E-02 118.88 4.25E-04
−0.0063 3.84E-01

MVMR-Egger −0.3279 (−1.5965, 0.9406) 0.7204 (0.2026, 2.5615) 6.12E-01 117.63 4.23E-04

Fasting insulin MV-IVW −0.7235 (−1.3239, −0.1231) 0.4850 (0.2661, 0.8842) 1.82E-02 73.26 7.22E-02
0.0045 6.02E-01

MVMR-Egger −1.0557 (−2.4414, 0.3300) 0.3479 (0.0870, 1.3910) 1.35E-01 72.90 6.41E-02

T2D MV-IVW 0.5467 (0.4722, 0.6212) 1.7275 (1.6035, 1.8612) 7.37E-47 503.19 1.55E-02
−0.0023 2.37E-01

MVMR-Egger 0.5872 (0.4869, 0.6875) 1.7989 (1.6272, 1.9887) 1.76E-30 501.58 1.61E-02

Effects of genetically predicted body mass index (BMI), waist-to-hip ratio (WHR), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting glucose, fasting insulin, and type 2 diabetes (T2D), respectively, on risk of diabetic kidney disease (DKD), after 
adjusting for education. Multivariable inverse variance weighted (MV-IVW) and multivariable Mendelian randomization Egger (MVMR-Egger) represent different Mendelian randomization models. OR indicates odds ratio; CI, confidence interval.

https://doi.org/10.3389/fnut.2024.1400577
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Wang et al. 10.3389/fnut.2024.1400577

Frontiers in Nutrition 09 frontiersin.org

horizontal pleiotropy affected the results, indicating that our MVMR 
results were robust (Table 2; Supplementary Table S17).

Mediating effects of mediators in the 
association between education and DKD

Following the MVMR analyses mentioned above, we managed to 
eliminate the bias brought on by weak instrumental variables allowing 
us to obtain 7 mediators with robust results. These mediators consist 
of the adiposity trait (BMI and WHR), blood pressure trait (SBP and 
DBP), glucose metabolism-related trait (fasting glucose and fasting 
insulin), and diabetes (T2D), which are major factors in the causal 
pathway of education on DKD. The largest mediator of the causal 
effect from education to DKD was BMI (40.2%; 95% CI 26.6, 53.7%), 
followed by WHR (39.2%; 95% CI 21.0, 57.5%), T2D (31.2%; 95% CI 
18.7, 43.7%), fasting insulin (20.6%; 95% CI 1.6, 39.6%), SBP (9.3%; 
95% CI 5.0, 13.6%), fasting glucose (8.0%; 95% CI 0.6, 15.4%) and 
DBP (2.7%; 95% CI 0.4, 5.1%) (Figure 3).

Effect of each mediator on CKD without 
adjustment for education

Two-sample UVMR analyses were used to explore the causal effects 
of each mediator on CKD without adjusting for education. 
Supplementary Table S4 provides comprehensive details regarding the 
genetic instruments we employ. The causal effect of the 26 candidate 
mediators on CKD without adjusting for education was assessed using 
UVMR, and 14 mediators were screened for subsequent MVMR 
analyses. Each 1-SD unit higher BMI (OR 1.4623; 95% CI 1.3460, 
1.5887); BF% (OR 2.2205; 95% CI 1.2081, 4.0815); WHR (OR 1.3368; 
95% CI 1.1003, 1.6241); cigarettes smoked per day (OR 1.3273; 95% CI 
1.1767, 1.4970); pack years of smoking (OR 1.7019; 95% CI 1.2142, 
2.3854); maternal smoking around birth (OR 7.5675; 95% CI 1.4536, 
39.3967); SBP (OR 1.0198; 95% CI 1.0147, 1.0249); DBP (OR 1.0172; 
95% CI 1.0082, 1.0263); TG (OR 1.0955; 95% CI 1.0014, 1.1985); fasting 
glucose (OR 1.4033; 95% CI 1.0934, 1.8012); T1D (OR 1.0536; 95% CI 
1.0372, 1.0702); and T2D (OR 1.1267; 95% CI 1.0752, 1.1805) were 
associated with an increased risk of CKD without adjustment for 
education (Supplementary Table S18). By contrast, each 1-SD unit with 
higher TC (OR 0.8961; 95% CI 0.8321, 0.9651) and household income 
(OR 0.6017; 95% CI 0.4533, 0.7988) were associated with a decreased 
risk of CKD without adjustment for education (Supplementary Table S18; 
Supplementary Figure S4). In addition, both heterogeneity and 
pleiotropy were not detected by the sensitivity analyses, indicating that 
the MR results were reliable (Supplementary Tables S19, S20).

Effect of each mediator on CKD with 
adjustment for education

After removing the mediators of the weak instrumental variables, 
we finally obtained 6 mediators with robust results, and the MVMR 
results showed that each 1-SD unit higher BMI (OR 1.4170; 95% CI 
1.2906, 1.5559); SBP (OR 1.0207; 95% CI 1.0151, 1.0263); DBP (OR 
1.0221; 95% CI 1.0123, 1.0320); and T2D (OR 1.1440; 95% CI 1.0911, 
1.1995) were associated with an increased risk of CKD after adjusting 

for education (Table 3). However, each 1-SD unit with higher WHR 
(OR 0.7081; 95% CI 0.6043, 0.8298) and cigarettes smoked per day 
(OR 0.7233; 95% CI 0.6245, 0.8377) was associated with a decreased 
risk of CKD after adjusting for education (Table  3). Moreover, 
sensitivity analyses showed that no horizontal pleiotropy affected the 
results, indicating that our MVMR results were robust (Table  3; 
Supplementary Table S21).

Mediating effects of mediators in the 
association between education and CKD

We finally obtained 6 mediators with robust results, the adiposity 
trait (BMI and WHR), smoking (cigarettes smoked per day), blood 
pressure trait (SBP and DBP), and diabetes (T2D). These mediators 
are the most important factors in the association between education 
and CKD. The largest mediator from education to CKD was BMI 
(32.5%; 95% CI 17.6, 47.5%), followed by cigarettes smoked per day 
(23.1%; 95% CI 9.0, 37.1%), WHR (18.2%; 95% CI 3.4, 33.1%), and 
SBP (16.1%; 95% CI 8.3, 24.0%), T2D (12.5%; 95% CI 4.9, 20.0%) and 
DBP (5.6%; 95% CI 1.8, 9.3%) (Figure 3).

Genetic correlation between exposure, 
mediators, and outcomes

LDSC regression analysis was employed to assess the genetic 
correlations between education, mediators, and DKD as well as CKD 
(Table 4). Negative genetic correlations were found between education 
and DKD (Rg = −0.2348, p = 8.23 × 10−11); CKD (Rg = −0.2655, 
p = 4.71 × 10−8); BMI (Rg = −0.2687, p = 4.19 × 10−79); WHR 
(Rg = −0.2687, p = 4.94 × 10−22); SBP (Rg = −0.1166, p = 1.30 × 10−18); 
DBP (Rg = −0.0827, p = 1.45 × 10−9); fasting glucose (Rg = −0.1029, 
p = 1.49 × 10−2); fasting insulin (Rg = −0.1344, p = 2.39 × 10−3); 
cigarettes smoked per day (Rg = −0.2928, p = 5.71 × 10−42); and T2D 
(Rg = −0.2575, p = 1.11 × 10−36). Positive genetic correlations were 
found between BMI (Rg = 0.4628, p = 1.91 × 10−31); WHR (Rg = 0.4130, 
p = 3.75 × 10−9); SBP (Rg = 0.2027, p = 5.15 × 10−7); DBP (Rg = 0.1442, 
p = 2.43 × 10−4); fasting glucose (Rg = 0.6635, p = 8.71 × 10−7); fasting 
insulin (Rg = 0.5784, p = 4.51 × 10−4); T2D (Rg = 0.7300, p = 2.80 × 10−31) 
and DKD. Significant positive genetic correlations were identified in 
the examination of the genetic association between mediators and 
CKD. Positive genetic correlations between mediators and CKD were 
discovered using LDSC regression analysis in BMI (Rg = 0.4006, 
p = 6.89 × 10−16), WHR (Rg = 0.4767, p = 1.43 × 10−8), SBP (Rg = 0.3370, 
p = 7.62 × 10−9), DBP (Rg = 0.2599, p = 4.25 × 10−5), and T2D 
(Rg = 0.5543, p = 1.27 × 10−17). Regretfully, no significant genetic 
correlation was found between cigarettes smoked per day (Rg = 0.1147, 
p = 9.08 × 10−2) and CKD.

Potential mediator interactions identified 
by UVMR analyses

To identify the key mediators and subsequently guide clinical 
decision-making, we  employ UVMR analysis to investigate the 
intricate relationships between the mediators that have been screened. 
UVMR results showed that each 1-SD higher BMI was associated with 
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higher WHR (β 0.3665 SD; 95% CI 0.3373, 0.3958), higher fasting 
glucose (β 0.0699 SD; 95% CI 0.0475, 0.0924), lower fasting insulin  
(β −0.0267 SD; 95% CI −0.0510, −0.0025), higher cigarettes smoked 
per day (β 0.3356 SD; 95% CI 0.2991, 0.3721), and a increased risk of 
T2D (OR 2.7189; 95% CI 2.5601, 2.8875); each 1-SD higher WHR was 
associated with higher fasting glucose (β 0.0869 SD; 95% CI 0.0551, 
0.1186), higher fasting insulin (β 0.1331 SD; 95% CI 0.0493, 0.2170), 
higher SBP (β 1.4421 SD; 95% CI 0.0670, 2.8173), and a increased risk 
of T2D (OR 1.4388; 95% CI 1.0890, 1.9011); each 1-SD higher SBP 
was associated with higher cigarettes smoked per day (β 0.0026 SD; 
95% CI 0.0006, 0.0047); each 1-SD higher DBP was associated with a 
increased risk of T2D (OR 1.0168; 95% CI 1.0096, 1.0241); each 1-SD 
higher fasting insulin was associated with higher fasting glucose  
(β 0.2934 SD; 95% CI 0.1878, 0.3989), lower BMI (β −0.2407 SD; 95% 
CI −0.4066, −0.0749), and a increased risk of T2D (OR 5.0216; 95% 
CI 1.8095, 13.9356); each 1-SD higher T2D was associated with higher 
fasting glucose (β 0.0680 SD; 95% CI 0.0506, 0.0853) and higher SBP 
(β 0.4566 SD; 95% CI 0.2516, 0.6617) (Table 5). Moreover, sensitivity 
analyses showed that no horizontal pleiotropy affected the results, 
indicating that our UVMR results were robust (Table 5).

Identification of shared susceptibility genes 
for mediators and DKD as well as CKD

To explore the underlying molecular mechanisms, we used the 
TWAS approach to identify a series of genes that are commonly 
expressed in education, mediators, and kidney diseases 
(Supplementary Tables S22, S23). It is noteworthy that TP53INP1 is 
the common susceptibility gene for fasting glucose, T2D, SBP, DBP, 
and DKD (Supplementary Table S22; Figure 4A), while BMI, cigarettes 
smoked per day, T2D, and CKD are shared susceptibility genes for 
L3MBTL3 (Supplementary Table S22; Figure 4B). To find out if the 
GWAS variations in proteins are what cause the links between kidney 
diseases and proteins, we  subsequently conducted colocalization 
analyses. The causal relationship between TP53INP1 and DKD was 
supported by the significant evidence of colocalization between 
TP53INP1 and DKD at rs4734285 (PPH4 = 0.8829) (Figure 4C). The 
causal relationship between L3MBTL3 and CKD was supported by the 
significant evidence of colocalization between L3MBTL3 and CKD at 
rs7740107 (PPH4 = 0.9715) (Figure  4D). To confirm the findings, 
we performed SMR analysis and the HEIDI test in later testing. Both 
the SMR analysis and the HEIDI test were passed by TP53INP1 (Psmr 
<0.05 and PHEIDI >0.05) and L3MBTL3 (Psmr <0.05 and PHEIDI 
>0.05) (Figures 4E–H).

Discussion

The preventive effects of education on DKD and CKD are strongly 
supported by our MR findings. The incidence of developing DKD or 
CKD was found to be reduced by 48.64 and 29.08%, respectively, at an 
in-depth level of MR analysis for each additional 4.2 years of 
education. In order to explore the mechanisms by which education 
reduces the chance of getting DKD and CKD, we  identified 26 
cardiometabolic traits as potential mediators. Following the 
comprehensive screening, we  identified 7 and 6 causal mediators, 
respectively, by which education generates a causal effect on DKD and T
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CKD. Among the mediating effects between education and DKD, the 
largest mediator was BMI (40.2%), followed by its sub-WHR (39.2%), 
T2D (31.2%), fasting insulin (20.6%), SBP (9.3%), fasting glucose 
(8.0%) and DBP (2.7%), respectively. In contrast, potential mediators 
in the pathway from education to CKD, in descending order of 
mediator proportions, included BMI (32.5%), followed by cigarettes 
smoked per day (23.1%), WHR (18.2%), SBP (16.1%), T2D (12.5%) 
and DBP (5.6%). From our MR analysis, we revealed the protective 
effect of education on DKD as well as CKD. Common cardiometabolic 
traits (mainly adiposity trait, T2D, glucose metabolism-related trait, 
and blood pressure trait) were also explored to play an important role 
in the pathway from education to DKD. Moreover, similar findings are 
presented concerning the causal mediation from education to 
CKD. Interestingly, mediator interaction analysis revealed a strong 
causal relationship between BMI, WHR, and other cardiometabolic 
traits. This suggests that obesity is central to the estimation of clinical 
decision-making and should be prioritized when determining the 
direction of interventions. Moreover, it was shown that increased 
whole blood expression of TP53INP1 and L3MBTL3 was associated 
with an increased risk of kidney disease; TWAS, SMR, and 
colocalization analysis corroborated this finding.

In this study, UVMR found no causal association between 
genetically determined education and alcoholic drinking and T1D, 
suggesting that significant associations found in observational studies 
(38, 39) may be partially affected by confounders or reverse causality 
bias. On the one hand, WC, smoking trait, TG, TC, HDL-C, VPA, and 
sedentary behavior were excluded when UVMR was used to explore 
the causal effect of candidate mediators on DKD, a discrepancy that 
may be  attributed to the limitations of traditional observational 
studies in identifying causal effects. It is worth noting that smoking 
may increase the risk of DKD through the metabolic effects of 
smoking as well as inflammation and endothelial dysfunction, but this 
relationship was more pronounced in patients with T1D (40). 
Although we used the most recent GWAS data from the FinnGen 

study database, we could not clearly distinguish whether DKD was 
from T1D or T2D and look forward to future sizable RCT (randomized 
controlled trial) studies to further explore this ambiguous association. 
In addition, an MR analysis study showed that genetically predicted 
lipid traits were associated with renal function in African populations 
(41), however, the data we used for the mediator analysis were from 
European populations, and the effect of lipid traits on renal disease 
may vary between different ethnic groups. On the other hand, when 
using UVMR to explore the causal effects of candidate mediators on 
CKD, HC, WC, smoking initiation, age of Smoking Initiation, coffee 
intake, HDL-C, LDL-C, fasting insulin, physical activity, or sedentary 
behavior were excluded due to non-significant p-values, and this 
discrepancy in results is since traditional observational studies have 
not done a good job of excluding confounders or the presence of 
reverse causality. Smoking initiation was defined as “ever” (current or 
former) and “never” are two phenotypes of regular smokers. Age of 
smoking initiation is a quasicontinuous variable that measures the age 
at which smokers begin to smoke regularly (42). It is striking that 
smoking initiation and age of smoking initiation were not associated 
with the onset of CKD, but cigarettes smoked per day significantly 
increased the risk of CKD, which may suggest that CKD is positively 
associated with the number of cigarettes smoked. In the mediation 
analyses between education and DKD, BF%, HC, and household 
income were excluded due to weak instrumental variable strengths or 
non-significance after adjusting for education because of their 
significant bidirectional causality with education, which was partially 
consistent with the mediation MR analyses of 1 MR study for the 
relationship of reverse causality between education and hypertension 
(43). When exploring education and CKD mediating risk factors, pack 
years of smoking and maternal smoking around birth were excluded 
due to bias from weak instrumental variables (29). After adjusting for 
education, BF%, TG, fasting glucose, and household income were no 
longer significant. The result was probably because, on the one hand, 
previous studies had found an inverse causal relationship between 

FIGURE 3

Mendelian randomization (MR) estimates of proportions mediated by mediators in the causal association between education and DKD as well as CKD. 
BMI, body mass index; WHR, waist-to-hip ratio; SBP, systolic blood pressure; DBP, diastolic blood pressure; T2D, type 2 diabetes; DKD, diabetic kidney 
disease; CKD, chronic kidney disease; CI, confidence interval.
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education and BF% and household income (43); on the other hand, 
TG and fasting glucose are significantly associated with the risk of 
developing CKD (44–46), but they do not act via the education-
to-CKD pathway or the relationship between TG, fasting glucose and 
CKD is nonlinear (46).

Our findings in the mediating MR analysis of education for DKD 
showed that more than 20.6% of the total was mediated by BMI, 
WHR, T2D, and fasting insulin, with BMI accounting for as much as 
40.2% of the mediating proportions. These results are consistent with 
previous observational epidemiological studies as well as MR 
analyses, in other words, obesity, T2D, and fasting insulin are closely 
associated with the risk of developing DKD or proteinuria (47–49). 
Regarding the mechanism of obesity on DKD, it is generally agreed 
that reactive oxygen and nitrogen species (ROS and RNS), redox 
processes, mitochondrial dysfunction, and adiponectin-5′-AMP 
activated protein kinase (AMPK) pathway are the core drivers 
between obesity and DKD (50, 51). Dihydroethidium fluorescence, a 
marker of in vivo superoxide generation, was surprisingly decreased 
in glomeruli and cortical tubules using both real-time measurements 
and confocal analysis, demonstrating lower superoxide production 

in the diabetic kidney compared to the control kidney (52). Electron 
paramagnetic resonance analysis of recently extracted renal cortex 
tissue revealed a comparable drop in superoxide when compared to 
the control kidney, in addition, the diabetic kidney’s mitochondria 
were observed to produce less hydrogen peroxide (50). Combining 
various methods led to the discovery that the kidney’s superoxide 
creation and the diabetic kidney’s mitochondria’s ROS production 
were decreased. Additionally, AMPK activation also significantly 
decreased glomerular transforming growth factor-beta (TGF-β), 
collagen, and fibronectin accumulation in several mouse models of 
diabetic kidney disease (53). The above results suggest that taking 
reasonable measures to lose weight, controlling fasting insulin, and 
even preventing the occurrence of T2D disease may produce a good 
reduction in the risk of DKD in some regions or populations with low 
education levels. Meanwhile, our results showed that SBP, fasting 
glucose, and DBP also played an important mediating role, and their 
mediating effects ranged from 2.7 to 9.3%, which is consistent with 
previous observational studies that blood pressure and fasting glucose 
increase the risk of DKD (49, 54). Vasoactive and AGE (Advanced 
glycation end-products) linkages connecting blood pressure, glucose, 
and DKD have been emphasized in recent research as contributors to 
renal impairment (55). Research employing an angiotensin type 2 
(AT2) antagonist and studies in AT2 KO (knockout) mice revealed 
that suppressing AT2  in diabetes reduces macrovascular diseases 
(56). Additionally, prior research has indicated a connection between 
AT2 activation and apoptosis and antiproliferative and anti-
inflammatory properties (57–59). A mineralocorticoid receptor 
(MR) blocker lowers the expression of monocyte chemoattractant 
protein 1 (MCP-1) upstream transcription factor NF-kB (nuclear 
factor-kappa B), renal macrophage infiltration, albuminuria, 
glomerulosclerosis, and MCP-1 in experimental models (60). The 
production of AGEs is accelerated by oxidative stress and persistent 
hyperglycemia (61, 62). In diabetes, advanced glycation modifies 
short-lived proteins and substantially alters long-lived proteins. 
Furthermore, the products of Kreb’s citric acid cycle and other 
glycolytic metabolites of glucose, such as glyoxal, are far more 
effective than glucose at initiating intracellular advanced glycation. 
The formation of Amadori products, the pentose phosphate pathway’s 
glyceraldehyde-3-phosphate, and the formation of the reactive 
carbonyl methylglyoxal—a dicarbonyl that was previously associated 
with diabetic complications—all result in complex biochemical 
reactions that give rise to AGE pathways, which are as diverse as their 
products (55).

After mediating effects for mediators of education and CKD were 
analyzed, we identified 6 mediators with significant results, of which 
BMI, cigarettes smoked per day, WHR, SBP, and T2D mediated 
greater than 12.5%, with BMI accounting for the largest mediator 
(32.5%) and DBP accounting for the smallest mediator (5.6%). The 
effects of BMI and WHR on CKD have been reported in observational 
studies. In univariate analysis, each 0.1 unit increase in WHR was 
associated with an 81% increase in CKD risk, while each 2 kg/m (2) 
increase in BMI was associated with an 11% increase in risk of 
developing incident CKD, but in multivariate analysis, each unit 
increase in WHR was still associated with an increased risk of CKD 
prevalence, and interestingly BMI in multivariate confounders such 
as potential age, sex, prior cardiovascular disease, diabetes, 
hypertension, and lipids were no longer significant after mutual 

TABLE 4 Genetic correlation estimates from LDSC regression between 
exposure, mediators, and outcomes.

Exposure Outcome Rg (SE) p-value

Education DKD −0.2348 (0.0361) 8.23E-11

Education CKD −0.2655 (0.0486) 4.71E-08

Education BMI −0.2687 (0.0143) 4.19E-79

Education WHR −0.2687 (0.0278) 4.94E-22

Education SBP −0.1166 (0.0132) 1.30E-18

Education DBP −0.0827 (0.0137) 1.45E-09

Education Fasting glucose −0.1029 (0.0423) 1.49E-02

Education Fasting insulin −0.1344 (0.0443) 2.39E-03

Education Cigarettes smoked per 

day

−0.2928 (0.0216) 5.71E-42

Education T2D −0.2575 (0.0204) 1.11E-36

BMI DKD 0.4628 (0.0397) 1.91E-31

WHR DKD 0.4130 (0.0701) 3.75E-09

SBP DKD 0.2027 (0.0404) 5.15E-07

DBP DKD 0.1442 (0.0393) 2.43E-04

Fasting glucose DKD 0.6635 (0.1349) 8.71E-07

Fasting insulin DKD 0.5784 (0.1649) 4.51E-04

T2D DKD 0.7300 (0.0628) 2.80E-31

BMI CKD 0.4006 (0.0496) 6.89E-16

WHR CKD 0.4767 (0.0841) 1.43E-08

Cigarettes smoked 

per day

CKD 0.1147 (0.0678) 9.08E-02

SBP CKD 0.3370 (0.0583) 7.62E-09

DBP CKD 0.2599 (0.0635) 4.25E-05

T2D CKD 0.5543 (0.0649) 1.27E-17

BMI, body mass index; WHR, waist-to-hip ratio; SBP, systolic blood pressure; DBP, diastolic 
blood pressure; T2D, type 2 diabetes; LDSC, linkage disequilibrium score; Rg, genetic 
correlation; SE, the standard error of Rg.
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TABLE 5 UVMR assessing the causal association among mediators.

Exposure Outcome Method β (95% CI) OR (95% CI) P_ivw Q_statistic
P_Q_

statistic
Egger_

intercept
P_egger_
intercept

BMI T2D IVW 1.0002 (0.9400, 1.0604) 2.7189 (2.5601, 2.8875) 7.83E-233 1826.02 1.77E-74 0.0006 6.84E-01

BMI WHR IVW 0.3665 (0.3373, 0.3958) 1.4427 (1.4011, 1.4855) 2.54E-133 1295.71 6.00E-15 0.0002 8.22E-01

BMI Fasting glucose IVW 0.0699 (0.0475, 0.0924) 1.0724 (1.0486, 1.0968) 9.87E-10 459.93 1.77E-11 −0.0004 3.70E-01

BMI Fasting insulin IVW −0.0267 (−0.0510, −0.0025) 0.9736 (0.9503, 0.9975) 3.07E-02 564.92 7.14E-22 0.0003 5.44E-01

BMI Cigarettes smoked per day IVW 0.3356 (0.2991, 0.3721) 1.3988 (1.3486, 1.4508) 1.85E-72 1655.38 3.55E-42 −0.0002 7.73E-01

WHR T2D IVW 0.3638 (0.0853, 0.6424) 1.4388 (1.0890, 1.9011) 1.05E-02 78.27 1.44E-10 0.0460 1.46E-01

WHR Fasting glucose IVW 0.0869 (0.0551, 0.1186) 1.0907 (1.0567, 1.1259) 7.95E-08 14.40 5.69E-01 −0.0038 1.64E-01

WHR Fasting insulin IVW 0.1331 (0.0493, 0.2170) 1.1424 (1.0505, 1.2424) 1.86E-03 77.20 9.31E-11 −0.0011 8.84E-01

WHR SBP IVW 1.4421 (0.0670, 2.8173) 4.2298 (1.0693, 16.7311) 3.98E-02 201.09 2.07E-32 0.0910 5.16E-01

SBP Cigarettes smoked per day IVW 0.0026 (0.0006, 0.0047) 1.0026 (1.0006, 1.0047) 1.02E-02 1172.78 1.40E-20 0.0008 3.10E-01

DBP T2D IVW 0.0167 (0.0096, 0.0238) 1.0168 (1.0096, 1.0241) 4.35E-06 1588.17 2.45E-90 0.0017 2.70E-01

Fasting insulin T2D IVW 1.6138 (0.5931, 2.6344) 5.0216 (1.8095, 13.9356) 1.94E-03 27.34 4.90E-05 −0.0353 5.16E-01

Fasting insulin Fasting glucose IVW 0.2934 (0.1878, 0.3989) 1.3409 (1.2066, 1.4901) 5.07E-08 16.81 1.14E-01 0.0015 8.10E-01

Fasting insulin BMI IVW −0.2407 (−0.4066, −0.0749) 0.786 (0.6659, 0.9278) 4.44E-03 36.30 1.55E-05 −0.0089 2.17E-01

T2D Fasting glucose IVW 0.0680 (0.0506, 0.0853) 1.0703 (1.0519, 1.0891) 1.64E-14 194.67 2.30E-15 0.0016 4.09E-01

T2D SBP IVW 0.4566 (0.2516, 0.6617) 1.5788 (1.2860, 1.9381) 1.28E-05 552.97 8.01E-59 0.0072 6.73E-01

BMI, body mass index; WHR, waist-to-hip ratio; SBP, systolic blood pressure; DBP, diastolic blood pressure; T2D, type 2 diabetes.
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FIGURE 4

Colocalization and SMR analyses prioritized shared genes and DKD as well as CKD. (A) Hub gene transcripts analysis associated with mediators and 
DKD. (B) Hub gene transcripts analysis associated with mediators and CKD. (C) Colocalization analysis of TP53INP1 with DKD. (D) Colocalization 

(Continued)
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correction (63). WHR reflects an indicator of the size of central 
adiposity, whereas BMI does not respond to the distributional 
characteristics of adiposity (64), which may be an important reason 
why the risk of CKD is mainly related to central obesity rather than 
peripheral obesity. The association of smoking, SBP, DBP, and T2D 
with CKD has been reported in a large number of observational 
studies (65–68), but evidence of causality is lacking. Cigarettes 
smoked per day accounted for 23.1% of the mediation in the education 
to CKD pathway, which may be because nicotine in cigarette smoke 
and reactive aldehydes by damaging endothelial cells, increasing 
reactive oxygen species production, and activating pro-fibrotic 
pathways (69, 70). The primary causes of hypertension and CKD are 
widely accepted to be  the renin-angiotensin-aldosterone system 
(RAAS), endothelial dysfunction, and endoplasmic reticulum (ER) 
stress (71). Blood flow is diminished in peritubular capillaries located 
downstream of glomeruli that have sclerosed. Reduced effective 
(perceived) blood flow causes glomeruli in certain areas to 
hypersecrete renin, which raises the levels of angiotensin II in the 
blood (71). Due to its direct vasoconstrictor action, angiotensin II 
raises blood pressure and systemic vascular resistance. Endothelial 
dysfunction (including impaired nitrous oxide production), oxidative 
stress, and elevated endothelin levels are also implicated in the 
pathogenesis of hypertension in patients with CKD (72). Notably, 
obesity, blood pressure, glucose metabolism, and T2D are common 
disorders with significant public health implications, often occurring 
as co-morbidities and sharing common biological mechanisms 
including chronic inflammation, oxidative stress, and energy 
metabolism (73–75). The proportions of the mediators in our 
mediation analysis run at risk of overlapping since the mediators are 
inextricably linked.

Tumor protein p53 inducible nuclear protein 1 (TP53INP1) is 
involved in the regulation of N6-methyladenosine (M6A) 
methylation autophagy, apoptosis, and inflammation (76–78). M6A 
modification, apoptosis, and inflammation are key processes causing 
pathological damage in DKD (79, 80). Podocyte destruction is also 
significantly influenced by the intricate relationships among 
autophagy, apoptosis, and inflammatory regulation (51, 81). 
According to recent research, METTL3 induces apoptosis and 
inflammation by affecting TIMP2 mRNA m6A methylation (79). 
Additionally, FTO intronic transcript 1 (FTO-IT1) deletion elevated 
TP53INP1 mRNA m6A methylation, which consequently promoted 
apoptosis (76). The observed cell death following TP53INP1-LC3 
interaction is dependent on both autophagy and caspase activity (77). 
Under oxidative stress conditions, P53 is regulated by TP53INP1, 
while P53 can positively regulate the expression of TP53INP1, so the 
two form a positive feedback loop (82). Through transcriptional 
activation, P53 can interact with the TP53INP1 gene’s promoter to 
boost the expression of TP53INP1 (82). One possible target for 
preventing oxidative stress-induced apoptosis is the TP53INP1-P53 
positive feedback loop. In summary, we may conclude that TP53INP1 

is essential for m6A methylation, autophagy, apoptosis, and oxidative 
stress. Given its predicted substantial effect on these critical pathways 
of podocyte damage in DKD, TP53INP1 may be  provided as a 
possible target for therapy.

Nephron loss, inflammation, myofibroblast activation, and 
extracellular matrix (ECM) deposition are the hallmarks of CKD (83). 
The loss of the nephron, including the tubules, glomerulus, and 
endothelium, is caused by lipotoxicity and oxidative stress (83). 
Injured renal resident cells release proinflammatory cytokines and 
chemokines to recruit bone marrow-derived macrophages and other 
immune cells (84). Numerous profibrotic cytokines, including 
angiotensin II and TGF-β1, are secreted by injured renal resident cells 
and immune cells (83). TGF-β and Notch signaling facilitate 
myofibroblast activation and the production of ECM (85). In 
conclusion, Lipotoxicity, macrophages, and Notch signaling are 
critical to the pathogenic progression of CKD. Decreased peripheral 
fat depots, impaired adipogenesis, and ultimately elevated risk of 
kidney disease were linked to lethal (3) malignant brain tumor-like 3 
(L3MBTL3) (86). Observational studies also revealed a significant 
association between fat depots and an increased chance of CKD (87, 
88), resulting from a decreased ability for adipocyte differentiation 
triggered by L3MBTL3. The immune infiltration of macrophages and 
their polarization from M1 to M2 were notably related to L3MBTL3 
(89). The recombining binding protein suppressor of hairless (RBPJ), 
a transcription factor, interacts with the intracellular domain of the 
Notch receptor and the coactivator mastermind to form an activation 
complex (90). In contrast to other RBPJ binding partners, L3MBTL3 
exhibits a unique binding motif in its interaction with RBPJ to regulate 
the Notch pathway (90). In summary, L3MBTL3 contributes 
significantly to the critical pathway of CKD pathogenesis. However, 
further research is required to fully understand its specific 
function in CKD.

The large amount of GWAS data allowed us to explore causal 
associations between education, mediators, DKD, and CKD, and 
we set stringent criteria for the robustness of our results. First, the 
GWAS sources we chose for DKD and CKD were from the most 
recent FinnGen study, and there was little overlap between this data 
and the exposure and mediator’s GWAS data. Second, different 
assumptions were applied to different MR analysis methods, and the 
consistency of results from multiple MR analyses made our results 
more robust while selecting multiple sensitivity analyses such as 
MR-Egger intercept test, Cochran’s Q test, MR-PRESSO, RadialMR, 
and MR Steiger filtering. Finally, we set the criteria for mediator 
screening to exclude weak instrumental variables from interfering 
with the results, ensuring the credibility and plausibility of the 
model we construct to explain the mediation effect. In addition, 
we used LDSC to estimate whether the observed relationship is due 
to shared genetic background. TWAS, SMR, and colocalization 
analysis were used to find shared susceptibility genes among 
education, cardiometabolic traits, and kidney diseases. However, our 

analysis of L3MBTL3 with CKD. (E) Locus zoom plots showing the genetic effects between TP53INP1 and DKD. (F) Locus zoom plots showing the 
genetic effects between L3MBTL3 and CKD. (G) Three-step SMR indicating significant causal relationships between gene expressions and DKD onset 
(all three-step SMR p  <  0.05, HEIDI test p  >  0.05). (H) Three-step SMR indicating significant causal relationships between gene expressions and CKD 
onset (all three-step SMR p  <  0.05, HEIDI test p  >  0.05).

FIGURE 4 (Continued)

https://doi.org/10.3389/fnut.2024.1400577
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Wang et al. 10.3389/fnut.2024.1400577

Frontiers in Nutrition 16 frontiersin.org

findings have several important limitations to consider when 
interpreting the results. First, it is challenging to exclude the effect 
of numerous confounding factors from the relationship between 
CKD and education because CKD usually occurs later in life, several 
years after the completion of education. On the other hand, as 
educational attainment is a phenotype that can be  genetically 
tracked and is a lifelong process, it has been suggested that MR 
analyses can show the causal relationship between educational 
attainment and complicated disorders (91, 92). Recent MR studies 
have shown that kidney damage causally influences the cortex 
structure (93), suggesting a strong link between kidney function and 
brain structure and education. Second, The GWAS data we used was 
from developed, high-income European populations, and the results 
of the MR analyses still need to be further validated in low-income 
country populations and other ethnic groups. Third, as our choice 
of candidate mediators was limited to cardiometabolic traits, this 
only partially explains the causal effect of education on DKD and 
CKD in clinical or public policy terms. Fourth, we  used 
MR-PRESSO, RadialMR, and MR Steiger filtering to remove outliers 
and causally incorrect SNPs, but we  could not exclude some 
mediators, such as poor areas and health policies, because these 
confounding factors do not have corresponding GWAS data and are 
non-heritable phenotypes. Fifth, sample overlap between GWAS 
studies may bias MR estimates toward observational association 
estimates (94). Sixth, GWAS research including higher sample sizes 
is necessary to reduce correlations across phenotypes because of the 
multicollinearity among cardiometabolic traits. Seventh, the 
function of susceptibility genes in kidney disease requires 
further research.

Conclusion

Higher education has a protective effect on the risk of DKD and 
CKD, identifying the mediating effects of modifiable cardiometabolic 
traits on the causal relationship. The biggest mediator of the 
relationship between education and DKD was BMI (40.2%), which 
was then followed by its sub-WHR (39.2%), T2D (31.2%), fasting 
insulin (20.6%), SBP (9.3%), fasting glucose (8.0%), and DBP (2.7%). 
In descending order of mediator proportions, BMI (32.5%), cigarettes 
smoked per day (23.1%), WHR (18.2%), SBP (16.1%), T2D (12.5%), 
and DBP (5.6%) were potential mediators in the pathway from 
education to CKD. Furthermore, it was discovered that elevated 
whole blood levels of TP53INP1 and L3MBTL3 expression were 
related to a higher risk of kidney disease; TWAS, SMR, and 
colocalization analysis all supported this finding. Therefore, for 
individuals with limited access to educational resources, adopting 
strategies (including losing weight, controlling blood pressure, 
regulating fasting glucose as well as fasting insulin, quitting smoking, 
and targeting TP53INP1 and L3MBTL3) may prove effective in 
preventing DKD and CKD.
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