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Lignans are phytoestrogens found in various forms such as glycosides, ester-
linked oligomers, and aglycones in a variety of foods, including soy products, 
legumes, grains, nuts, vegetables, and fruits. This study aimed to optimize the 
extraction of lignans from cereal grains using response surface methodology 
(RSM). Lignans, including secoisolariciresinol (Seco), matairesinol (Mat), 
pinoresinol (Pin), lariciresinol (Lar), and syringaresinol (Syr), were quantified 
using high-performance liquid chromatography–tandem mass spectrometry. A 
Box–Behnken design was employed to determine the optimal values for three 
extraction parameters: temperature (X1: 20°C–60°C), methanol concentration 
(X2: 60%–100%), and extraction time (X3: 30–90  min). The highest lignan 
contents were obtained at X1  =  44.24°C, X2  =  84.64%, and X3  =  53.63  min. 
To apply these experimental conditions to the actual experiment, the optimal 
conditions were slightly adjusted to X1  =  40°C, X2  =  80%, and X3  =  60  min. The 
predicted results closely matched the experimental results obtained using the 
modified optimal extraction conditions. The highest lignan content found in 
barley sprouts (85.930  μg/100  g), however, most grains exhibited relatively low 
concentrations of lignans. These findings provide valuable insights into the lignan 
content of grains and contribute to the generation of reliable data in this field.
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1 Introduction

Lignans are phenylpropanoid dimers, where the phenylpropane units are linked by the central 
carbon of their side chains (1). Lignans, including secoisolariciresinol (Seco), matairesinol (Mat), 
pinoresinol (Pin), medioresinol (Med), lariciresinol (Lar), syringaresinol (Syr), sesamin (Ses), 
7′-hydroxymatairesinol (HMR), and isolariciresinol, are widely distributed in the bark, bulbs, 
leaves, seeds, and stems of plants (2, 3). The compounds occur mainly in the glycoside, ester-linked 
oligomer, and aglycone forms (4, 5). Lignans are known as potential antioxidants along with 
phenolic compounds such as flavonoids and phenolic acids (6, 7). Some of the plant lignans 
including secoisolariciresinol diglucoside, Mat, Pin, and Lar are deglycosylated, dehydroxylated, 
demethylated, and converted by intestinal bacteria to the mammalian lignans enterodiol and 
enterolactone and then absorbed through the colon (8–10). Moreover, lignans, referred to as 
phytoestrogens, bind to estrogen receptors and may exhibit both estrogenic and anti-estrogenic 
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effects, affecting conditions such as menopause, cardiovascular disease, 
and cancer (11, 12). Recent studies demonstrated the bioaccessibility and 
bioavailability of plant lignans during digestion and fermentation in 
foodstuffs (13, 14). Grain such as wheat, corn, rice, oats, millet, barley, 
spelt, and rye, are commonly consumed worldwide (15, 16). Various 
studies have investigated the absorption and role of dietary lignans from 
grains (17–19). Moreover, Nørskov et al. (20) have investigated the LC–
MS/MS method of the free and bound form of plant lignans and 
enterolignans after consumption of cereal-based diets. Previous studies 
have shown the lignan content in seeds, vegetables, and fruits (21). Smeds 
et al. (22) evaluated that lignans, including HMR, Seco, Mat, Lar, Pin, 
Med, and Syr, were quantified in wheat, oat, and rye. Thompson et al. 
(23) reported the isoflavone, lignan, and coumestan contents in various 
foods (e.g., soy products, legumes, nuts, grains, vegetables, and fruits) 
commonly consumed in Canadian diets. Lignan contents in seeds, such 
as sesame seeds and flaxseeds have been reported (24–26), but research 
on lignan contents in cereal grain and their products has been limited.

Various extraction methods of lignans in plants have been reported, 
such as ultrasound-assisted extraction, Soxhlet extraction, reflux 
extraction, and microwave-assisted extraction, using organic solvents 
including methanol, ethanol, and ethyl acetate (27–29). Additionally, 
hydrolysis methods have been studied to break the glycoside linkages of 
lignans, such as enzymatic, acidic, and alkaline hydrolysis (24, 30, 31). 
Liquid chromatography combined with mass spectrometry is preferred 
for metabolite identification and quantitative research in foods and 
drugs due to its sensitivity, fast analysis times, simplicity of sample 
preparation, and mass accuracy (32–34). López et al. (35) reported that 
Pin, hydroxy-Pin, and acetoxy-Pin, found in olive oil, were quantitatively 
analyzed by high-performance liquid chromatography mass 
spectrometry (HPLC–MS/MS). Moreover, Kuhnle et al. (36) reported 
that Seco and Mat were simultaneously analyzed in vegetables using 
HPLC–MS/MS. Response Surface Methodology (RSM) is a 
mathematical and statistical technique for determining the optimal 
values to describe the relationship between independent variables and 
responses (37). Currently, RSM is applied in the food and 
pharmacological industries to optimize compound extraction from 
various foods (38, 39). Zhang et al. (40) used RSM to optimize the 
extraction of lignans from flaxseed, and Zhao et al. (41) used RSM to 
optimize schizandrin and schisandrol B extraction from Schisandra 
chinensis using accelerated solvent extraction. A previous study evaluated 
the influence of antioxidants, including polyphenols and vitamin B2, in 
ultrasound-assisted extraction using the response surface method with 
Box–Behnken design (42). However, only a limited number of studies 
have reported on extraction methods and simultaneous analysis of 
lignans such as Lar, Mat, Pin, Seco, and Syr found in cereal grain. This 
study aimed to determine the content of five lignans (Figure 1; Lar, Mat, 
Pin, Seco, and Syr) in cereal grains and their products, and to assess the 
optimal extraction conditions of lignans using RSM.

2 Materials and methods

2.1 Standards and reagents

All the reagents were of analytical and HPLC grade. Syr (≥98%) 
was obtained from ChemFaces (Wuhan, China). Seco (≥95%), Mat 
(≥85%), Lar (≥95%), and Pin (≥95%) were purchased from Sigma-
Aldrich (St. Louis, Mo, United  States). Acetonitrile (ACN) was 
purchased from Merck (Darmstadt, Germany). Methanol was from 

Honeywell Burdick & Jackson (Muskegon, MI, USA). Water was 
deionized from a Milli-Q system (Millipore, Bedford, United States).

2.2 Samples

The oat (Avena sativa L.) powder used in this study was commercial 
product from Natural Hill (Youngin, Korea). A total of 50 grain products 
were provided from Rural Development Administration (Jeonju, Korea) 
in 2022 or 2023. All samples were freeze-dried to achieve less than 3% 
water content. All samples were stored at −80°C until further analysis.

2.3 Parameters on the extraction of lignan

To select the parameters on the extraction of lignan, we select.

2.3.1 Extraction temperature
An amount of 0.1 g of oat powder was weighed in a 2-mL 

centrifuge tube, and 1 mL of 80% methanol was added and vortexed. 
Ultrasound sonication was performed at 0°C, 20°C, 40°C, 60°C, and 
80°C for 60 min. The extract was then cooled and centrifuged at 
22,250 × g at 4°C for 10 min to yield a clear supernatant. The 
supernatant was filtered through a 0.2 μm nylon filter (Whatman Inc., 
Maidstone, United Kingdom) into a vial for HPLC-MS/MS analysis.

2.3.2 Solvent concentration
For the extraction, 0.1 g of samples was weighed in a 2-mL 

microcentrifuge tube, and six different concentrations (water, 
20%, 40%, 60%, 80%, and 100% methanol) of methanol were 
prepared using an ultrasound sonicator at 40°C for 60 min. The 
sample was then centrifuged at 22,250 × g for 10 min, and the 
supernatant was filtered through a 0.2 μm syringe filter for 
HPLC-MS/MS analysis.

2.3.3 Extraction time
The sample (0.1 g) was weighed and transferred to a 2-mL 

microcentrifuge tube. Then, 1 mL of 80% methanol was added and 
vortexed for 3 min. Subsequently, the extraction was carried out at 
40°C for four different durations (30, 60, 90, and 120 min) using an 
ultrasonic extractor. Afterward, the extract was filtered through a 
0.2 μm nylon syringe filter following centrifugation (22,250 × g, 4°C, 
10 min) before HPLC–MS/MS analysis.

2.4 Experimental design and statistical 
model

The RSM was employed to assess the impacts of extraction 
parameters and optimize conditions for multiple responses. The Box–
Behnken design (BBD) was used to determine the extraction 
parameters for lignans from oats. The experimental design comprised 
15 experimental points with three levels (−1, 0, 1) of each factor. The 
independent variables selected for optimizing lignan extraction were 
extraction temperature (°C) (X1), methanol concentration (% (v/v)) 
(X2), and extraction time (min) (X3). The natural and coded values of 
the factors used in the experimental design are presented in Table 1. 
The experimental data were fitted to a second-order polynomial 
model to determine the regression coefficients. The optimum 
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conditions were conducted by 3D response surface plots with the 
relationship between the independent variables and responses. The 
second-order polynomial model expressed total lignan contents 
(μg/100 g) using the following equation:

 
Y = + + +

= = = = +
∑ ∑ ∑ ∑β β β β0
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where Y represents the response variable (total lignan contents 
μg/100 g), β0 is the intercept, βi is the linear regression coefficient, βii 
and βij are the quadratic and interaction terms, respectively. Xi and Xj 
are the actual levels of the independent variables. To assess the 
predictive performance of the model on the response variable, an 
analysis of variance (ANOVA) was conducted with a confidence level 
of 95%. The regression coefficient (R2) and the p-value of the lack of 
fit were calculated using Minitab ver. 14 software (Minitab Inc., State 
College, PA, United States).

2.5 HPLC-MS/MS quantitative analysis of 
total lignans

The HPLC-MS/MS conditions for total lignans were followed as 
described in a previous study (43). HPLC-MS/MS analysis was 

performed using an Agilent 1,260 Infinity II HPLC (Agilent 
Technologies, California, United States) coupled with an AB Sciex 
Triple Quad 4,500 LC-MS/MS system (AB Sciex, Framingham, MA, 
United  States) equipped with an electrospray ionization source 
operating in negative mode. Samples were separated on an Agilent 
Poroshell C18 column (2.1 × 50 mm, 1.9 μm; Agilent Technologies, 
United States). The mobile phase A consisted of water, and mobile 
phase B consisted of acetonitrile, with an injection volume of 2 μL. The 
separation gradient elution program was as follows: 0–2 min, 15% B; 
2–4 min, 50% B; 4–4.1 min, 50% B; 4.1–15 min, 15% B. The flow rate 
was maintained at 0.4 mL/min, and the column temperature was set 
at 30°C. The Turbo-V source parameters were configured as follows: 
curtain gas, 30 psi; collision gas, 9 psi; ion source gas 1, 80 psi; ion 
source gas 2, 40 psi; ionspray voltage, −4,500 V; ion source 
temperature, 450°C. The multiple reaction monitoring (MRM) 
conditions are listed in Table 2. Data acquisition and processing were 
performed using the AB SCIEX Analyst 1.7.1 Software and 
MultiQuant (ver 3.0.3).

2.6 Statistical analysis

Statistical analysis of data was carried out using SAS 9.4 software 
(Statistical Analysis System, SAS Institute Inc., Cary, NC, 
United States). The data were expressed as mean ± standard deviation 
of three experiments. The data were analyzed with one-way analysis 
of variance followed by Duncan’s multiple range test (p < 0.05).

3 Results and discussion

3.1 Effects of the parameters on the 
extraction of lignan

The effects of various parameters (extraction temperature, 
methanol concentration, and extraction time) on the contents of 

FIGURE 1

Chemical structure of plant lignans. (A) Lariciresinol; (B) matairesinol; (C) pinoresinol; (D) secoisolariciresinol; (E) syringaresinol.

TABLE 1 Coded and actual levels of three variables in oat.

Independent 
variables

Coded levels

−1 0 1

Temperature (°C) (X1) 20 40 60

Methanol concentration (%) 

(X2)
60 80 100

Time (min) (X3) 30 60 90
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lignans in oats are presented in Table  3. Among the extraction 
temperatures, the total lignan content of oats ranged from 
37.714 μg/100 g to 56.326 μg/100 g, with Syr showing the highest 
content ranging from 24.454 to 39.592 μg/100 g, while Mat and Seco 
were not detected. Additionally, the total lignan contents of oats were 
lowest at 0°C, increased from 20°C to 60°C, and then decreased at 
80°C. The total lignan content of oats, using different methanol 
concentrations, ranged from 18.166 to 56.326 μg/100 g. Among these 
conditions, the total lignan content was elevated with the use of 80% 
methanol as the extraction solvent. However, Mat and Seco were not 
detected. The content of Syr was 18.166 μg/100 g in 0% methanol, 
while Lar, Mat, Pin, and Seco were not detected. Moreover, Syr was 
the most abundant in 80% methanol (39.592 μg/100 g), followed by 
Pin and Lar at 11.252 and 5.482 μg/100 g, respectively. Previous studies 
reported highly variable ultrasonic extraction times for lignans, 
ranging from 5 min to 4 h depending on the sample type (25, 44–46). 
Therefore, this study used extraction times from 30 to 120 min to 
investigate the effect of extraction time on the lignan content of oats. 
In this study, most of the lignans showed higher content at 60 min, 

with a decrease observed at 90 min. The highest total lignan content 
in oats was observed after 60 min of extraction, with values of 
56.326 μg/100 g. However, a significant decrease was observed at 90 
and 120 min. Among oats, Syr was the most abundant with 
39.592 μg/100 g, while Mat and Seco were not detected. The lignan 
content depends on the variety of the plant and/or the geographical 
location of oats. Durazzo et al. (47) studied that Seco and Mat were 
not detected in oats, which aligns with our results. However, the 
lignan contents of various oat varieties, with Seco and Mat ranging 
from 6 to 19 μg/100 g and 0 to 104 μg/100 g, respectively (25). The 
thermal stability of lignans is known to depend on the structure of the 
compound and its interactions with other compounds in the plant 
matrix (44, 48, 49). Gerstenmeyer et al. (49) evaluated that the Lar 
content in sesame seeds and wheat was stable at 100°C but decreased 
rapidly above 200°C. These findings indicate that the effect of heat 
treatment on lignan concentration depends on the plant species, 
cultivation, extraction, and processing methods (50, 51). Therefore, 
the results of this study suggest that the differences in oat lignan 
content depending on temperature are due to differences in oat 

TABLE 2 MRM transitions and optimized parameters for lignans.

Analytes RT (min) Q1 (m/z) Q3 (m/z) DP (V) EP (V) CE (V) CEP (V)

Lar 3.39 359.100 329.0 −90 −10 −17 −9

Mat 4.11 356.892 83.0 −70 −10 −50 −7

Pin 3.86 357.000 150.9 −95 −10 −24 −9

Seco 3.25 360.892 164.9 −95 −10 −34 −9

Syr 3.78 416.956 181.0 −80 −10 −26 −9

RT, Retention time; Q1, Parent ions; Q3, Product ions; DP, Declustering potential; EP, Entrance potential; CE, Collision energy; CEP, Cell exit potential; Lar, Lariciresinol; Mat, Matairesinol; 
Pin, Pinoresinol; Seco, Secoisolariciresinol; Syr, Syringaresinol.

TABLE 3 The effect of different parameters of lignan contents in oats.

Parameters Lignan contents (μg/100  g)

Lar Mat Pin Seco Syr Total lignan

Extraction 

temperature

0°C 3.471 ± 0.175c ND 9.394 ± 0.293b ND 24.848 ± 0.326c 37.714 ± 0.208d

20°C 4.995 ± 0.380ab ND 11.376 ± 0.238a ND 25.156 ± 0.873c 41.527 ± 0.255c

40°C 5.482 ± 0.046a ND 11.252 ± 0.249a ND 39.592 ± 0.863a 56.326 ± 1.157a

60°C 4.788 ± 0.126b ND 9.702 ± 0.258b ND 33.772 ± 1.710b 48.262 ± 2.093b

80°C 4.730 ± 0.208b ND 9.811 ± 0.189b ND 24.454 ± 0.760c 38.995 ± 1.157cd

Methanol 

concentration

0% ND1 ND ND ND 18.166 ± 0.209d 18.166 ± 0.209d

20% 1.869 ± 0.007d ND 9.670 ± 0.805b ND 23.380 ± 0.481c 34.919 ± 1.293c

40% 2.952 ± 0.326c ND 9.264 ± 0.235bc ND 22.394 ± 0.004c 34.610 ± 0.088c

60% 4.090 ± 0.253b ND 8.779 ± 0.157bc ND 26.516 ± 0.313b 39.385 ± 0.722b

80% 5.482 ± 0.046a ND 11.252 ± 0.249a ND 39.592 ± 0.863a 56.326 ± 1.157a

100% 4.037 ± 0.071b ND 8.587 ± 0.114c ND 26.168 ± 1.054b 38.791 ± 1.011b

Extraction time

30 min 3.963 ± 0.012c ND 9.060 ± 0.286c ND 25.031 ± 1.020b 38.054 ± 0.722c

60 min 5.482 ± 0.046a ND 11.252 ± 0.249a ND 39.592 ± 0.863a 56.326 ± 1.157a

90 min 4.710 ± 0.135b ND 10.491 ± 0.470ab ND 25.380 ± 0.059b 40.581 ± 0.393b

120 min 4.492 ± 0.484bc ND 10.168 ± 0.081b ND 22.154 ± 0.036c 36.814 ± 0.600c

All values are mean ± SD. a–dMeans with different letters in the same column of each sample are significantly different by Duncan’s multiple range test at p < 0.05. Lar, Lariciresinol; Mat, 
Matairesinol; Pin, Pinoresinol; Seco, Secoisolariciresinol; Syr, Syringaresinol.
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variety, growing conditions, and extraction methods. Most lignans in 
grains and seeds are commonly extracted using polar organic solvents 
(methanol, ethanol, acetone), while less polar lignans can be extracted 
using non-polar organic solvents such as n-hexane, dichloromethane, 
and chloroform (5, 18, 52). Additionally, adding 5%–10% water in 
organic solvents promotes solvent penetration into the plant matrix 
and facilitates the extraction of polar lignans (5). A previous study 
examined Seco in flaxseed hulls at various ethanol and methanol 
concentrations (53). The results showed higher contents of Seco in 
methanol compared to ethanol, with the highest extraction observed 
at 70 and 80% methanol concentrations, while extraction yields 
decreased with ethanol concentrations above 80%. The lignans 
examined in this study were generally not detected or showed low 
quantity when extracted with water; however, lignan content increased 
at 80% methanol compared to 100% methanol. These findings are 
consistent with previous research, indicating that the five lignans 
analyzed in this study are more easily extracted in organic solvents 
than water. Additionally, adding 30% water to methanol improves the 
polarity of the solvent, facilitating the extraction of polar lignans. 
Ultrasound-assisted extraction is an approach to create cavitation 
bubbles within plant cell walls to facilitate solvent penetration and 
increase the release of various organic compounds (54, 55). The 
efficiency of the method can be  affected by the extraction time, 
solvent-to-sample ratio, and extraction temperature, which should 
be taken into consideration (56–58). Previous studies have shown that 
the lignan secoisolariciresinol diglucoside and phenolic compounds, 
such as ferulic acid glucoside and caffeic acid glucoside in flaxseed 
increased with extraction time, specifically more than a 2-fold increase 
at 60 min compared to 15 min extraction (59). Guo et  al. (28) 
conducted a study to optimize ultrasonic extraction conditions for 

three lignans ((-)-fargesin, Ses, L-asarinin) from Zanthoxylum 
armatum roots using RSM. The highest lignan content was observed 
at 55°C with an extraction time of 40 min, but prolonged sonication 
time led to its degradation. This study showed that lignan content was 
highest after 60 min of ultrasonic extraction, with the content 
decreasing after 90 min. This indicates that the lignans present in the 
sample matrix were extracted within 60 min, but longer extraction 
time resulted in ultrasonic degradation of released lignans.

3.2 Optimization of total lignan extraction 
conditions

Fifteen experiments were designed with independent variables of 
temperature, methanol concentration, and extraction time coded in 
three levels. The results for the lignan content of oats and the response 
of the surface are presented in Table 4 and Figure 2, respectively. The 
lignan content of oats ranged from 38.777 to 60.709 μg/100 g. Among 
the five lignans, Syr had the highest content, ranging from 23.003 to 
41.812 μg/100 g. Pin and Lar were present in the range of 10.494 to 
13.025 μg/100 g and 4.041 to 6.346 μg/100 g, respectively, while Mat 
and Pin were not detected. The experimental results for oats, designed 
by the BBD, were analyzed for significance and adequacy using 
ANOVA and are presented in Table  5. The p-values of the linear, 
quadratic, and interaction terms of the model ranged from 0.031 to 
0.553, with the term X2 acting as the significant term. The linear term, 
methanol concentration, has a p-value of 0.031, indicating a significant 
effect on the response variable. However, the extraction temperature 
(X1) and extraction time (X3) demonstrated p > 0.05 and were not 
influenced by the response variables. Similarly, the quadratic term was 

TABLE 4 Response surface design and experimental data for the total lignan content in oat.

Run Variables Responses in oat (μg/100  g)

Temperature X1 
(°C)

MeOH 
concentration X2 

(%)

Time X3 
(min)

Lar Mat Pin Seco Syr Total 
lignan

1 −1 (20°C) −1 (60%) 0 (60 min) 5.106 0 10.872 0 26.485 42.464

2 1 (60°C) −1 (60%) 0 (60 min) 4.733 0 10.610 0 28.044 43.386

3 −1 (20°C) 1 (100%) 0 (60 min) 4.041 0 10.494 0 27.602 42.137

4 1 (60°C) 1 (100%) 0 (60 min) 5.449 0 11.068 0 36.116 52.632

5 −1 (20°C) 0 (80%) −1 (30 min) 5.416 0 10.859 0 32.977 49.253

6 1 (60°C) 0 (80%) −1 (30 min) 5.902 0 10.917 0 39.785 56.603

7 −1 (20°C) 0 (80%) 1 (90 min) 6.012 0 11.696 0 30.937 48.645

8 1 (60°C) 0 (80%) 1 (90 min) 4.665 0 10.632 0 25.408 40.705

9 0 (40°C) −1 (60%) −1 (30 min) 4.700 0 11.074 0 23.003 38.777

10 0 (40°C) 1 (100%) −1 (30 min) 5.324 0 13.025 0 31.409 49.759

11 0 (40°C) −1 (60%) 1 (90 min) 4.817 0 11.922 0 30.984 47.722

12 0 (40°C) 1 (100%) 1 (90 min) 5.364 0 11.563 0 35.385 52.312

13 0 (40°C) 0 (80%) 0 (60 min) 5.854 0 11.526 0 40.444 57.824

14 0 (40°C) 0 (80%) 0 (60 min) 6.346 0 12.220 0 41.812 60.378

15 0 (40°C) 0 (80%) 0 (60 min) 6.608 0 11.703 0 39.203 60.709

Lar, Lariciresinol; Mat, Matairesinol; Pin, Pinoresinol; Seco, Secoisolariciresinol; Syr, Syringaresinol.
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found to be a significant variable with a p-value of 0.027 in term X2, 
whereas X1 and X3 did not have a significant effect on the response 
variable (p > 0.05). Furthermore, the interaction term did not show 
significance in all terms (p > 0.05). The results indicated that methanol 
concentration has a significant effect on total lignan content, whereas 
extraction time and extraction temperature do not appear to 
be significant variables. The p-value for lack of fit was 0.059, indicating 
no significant difference, suggesting that the response surface model 
adequately describes the variation in lignan content. Furthermore, the 
R2 value for the response surface model was 82.39%, indicating a 
good fit.

The regression equation obtained for total lignan is expressed as 
equation given below:

 

Total lignan 1 2 3

1 2

1 3 2 3

Y 135.465 1.254X 3.302X 1.037X

0.016 0.020 0.005 0.006X X
0.006X X 0.003X X

= − + + +

− − − +

− −

2 2 2
1 2 3X X X

Table 6 displays the optimized extraction conditions for oat 
lignans, determined by setting the lignan content to its maximum 
value. The predicted optimal extraction conditions for oat lignans 
are a temperature of 44.24°C, a methanol concentration of 84.64%, 
and an extraction time of 53.53 min. However, in this study, the 
optimal extraction conditions were modified to include a 
temperature of 40°C, a methanol concentration of 84%, and an 
extraction time of 60 min. These parameters were selected for 
experimental convenience in evaluating the total lignan content of 
oats. The results showed that the lignan content of the oats was 
59.564 μg/100 g, which was similar to the predicted value of 
60.213 μg/100 g. Several factors, including solvent-to-solid ratio, 
solvent concentration, extraction time, and temperature, may 
significantly impact the extraction efficiency of phenolic 
compounds from plant sources (60–62). Liyana-Pathirana and 
Shahidi (63) reported that the concentration of solvent significantly 
influenced the total antioxidant activity of wheat extracts using 
RSM. Fombang et al. (64) also reported that solvent concentration 
had the greatest effect on the total phenol content of Moringa 
oleifera Lam. leaves compared to extraction temperature and 
extraction time. Additionally, several studies have demonstrated 
that solvent concentration is an important factor in the extraction 
of phenolic compounds from various natural products (65–67), 
consistent with our findings.

3.3 Lignan contents of cereal grains

To validate the LC-MS/MS analytical method of lignans, the 
linearity, limits of detection (LOD), limit of quantitation (LOQ), 
and intra-day and inter-day precision were evaluated. The 
linearity was evaluated with six concentration levels (15.625–
500 ng/mL) for each analyte, showing acceptable correlation 
coefficients (R2 > 0.999) (Supplementary Figure 1). The LOD is in 
the range of 0.041–0.877 μg/100 g, and the LOQ is in the range of 
0.118–1.831 μg/100 g (Supplementary Table 1). The intra-day and 
inter-day precision of the lignans in oats ranged from 0.075%–
3.480% and 0.749%–13.735% RSD, respectively 
(Supplementary Table 2). In this study, a total 53 samples of grains 
and their products using optimal lignan extraction conditions 
based on RSM results was analyzed (Table 7). The total lignan 
contents of the grain samples ranged from 0 to 85.930 μg/100 g. 
Most of the samples exhibited low lignan content, except for Syr. 
Barley sprout had the highest total lignan content among the 
samples with 85.930 μg/100 g. The most abundant lignan in barley 
sprout was Syr with 41.713 μg/100 g. Lar and Pin were present at 
36.491 and 7.726 μg/100 g, respectively, while Mat and Seco were 
not detected. In wheat, all lignans except Syr were not detected. 
In addition, the total lignan content of rice increased after cooking 

FIGURE 2

Response surface graphs for the effects of temperature, methanol 
(MeOH) concentration and extraction time on lignan content of oat: 
(A) Temperature (X1) and extraction time (X3); (B) Temperature (X1) 
and MeOH concentration (X2); (C) MeOH concentration (X2) and 
extraction time (X3).

https://doi.org/10.3389/fnut.2024.1409309
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Kim et al. 10.3389/fnut.2024.1409309

Frontiers in Nutrition 07 frontiersin.org

process. However, considering that the moisture content of cooked 
rice is about 65% (68), the content of lignans consumed from 
cooked rice will be smaller than the value presented in Table 7. 
For example, the lignan intake from cooked Saeilmi brown rice 
would be 17.648 μg per serving of cooked rice (210 g). Smeds et al. 
(25) conducted a study on the lignan content of various cereals 
and found that wheat and barley accounted for approximately 80% 
of the total lignan content, while oats contained 42% Syr, with 
higher proportions of Lar and Pin compared to other varieties. 
The study also showed that Mat was not detected in some wheat 
and oat varieties, and Lar content varied widely, ranging from 50.3 
to 291 μg/100 g depending on the variety. Peñalvo et  al. (10) 
reported that wheat, oat, barley, and rice had the highest levels of 
Syr, with wheat accounting for over 50% of the total lignan 
content, three times more than barley and oat. Barley, wheat, and 
barley had low levels of Mat, ranging from 1 μg/100 g to 3 μg/100 g. 
The lignan content of barley husks was found to be  higher 
compared to other grains, particularly Lar, which was more than 
nine times higher compared to other grains. Makowska et al. (18) 
found that Syr had the highest lignan content among germinated 
grains, with some varieties showing increased contents of Lar and 
Syr after germination. Furthermore, Katina et al. (69) reported 
that germination approximately doubled the lignan levels in 
wheat. It is known that lignans are more easily released from the 
structure of germinated grains, leading to an increase in their 

content. In addition, the breakdown of some starch during 
germination can increase the content of bioactive compounds 
such as phenolic compounds. In a study conducted by 
Gerstenmeyer et al. (49), the content of Lar and Syr increased over 
time when wheat was steamed at 100°C. The increase in lignan 
content may be attributed to the facilitation of lignan extraction 
resulting from changes in the matrix after heating. Therefore, it is 
considered that the high content of lignan observed in the cooked 
samples was due to the release of lignans resulting from the 
gelatinization of starch during cooking.

In conclusion, optimal extraction conditions of lignans from 
cereal grains using RSM was investigated. A Box–Behnken design 
was employed to develop optimal extraction condition of lignan 
using the three extracting parameters (temperature, methanol 
concentration, and extraction time). The optimum extract 
conditions for lignans from grain were obtained at X1 = 44.24°C, 
X2 = 84.64%, and X3 = 53.63 min. To implement these 
experimental conditions in the actual experiment, slight 
modifications were made to the optimal conditions, resulting in 
X1 = 40°C, X2 = 80%, and X3 = 60 min. The predicted results 
matched well with the experimental results obtained using the 
modified optimal extraction conditions. The highest total lignan 
content of grain was found in barley sprout. These results may 
be useful for providing reliable data about the lignan contents in 
cereal grain.

TABLE 5 Analysis of variance (ANOVA) of BBD model for total lignan from oat.

Source DF Seq SS Adj SS Adj MS F value p-value

Model 9 592.302 592.302 65.811 2.60 0.153

X1
1) 1 14.658 66.464 66.464 2.63 0.166

X2
2) 1 74.971 224.108 224.108 8.85 0.031

X3
3) 1 3.137 102.309 102.309 4.04 0.101

X
1

2 1 113.727 151.794 151.794 6.00 0.058

X
2

2 1 221.962 240.504 240.504 9.50 0.027

X
3

2 1 72.270 72.270 72.270 2.85 0.152

X1X2 1 22.912 22.912 22.912 0.91 0.385

X1X3 1 58.452 58.452 58.452 2.31 0.189

X2X3 1 10.213 10.213 10.213 0.40 0.553

Lack of fit 3 0.059

R2 82.39%

1)Temperature (°C); 2)Methanol concentration (%); 3)Extraction time (min). DF, Degrees of freedom; Seq SS, Sequential sum of squares; Adj SS, Adjusted sum of square; Adj MS, Adjusted mean 
squares.

TABLE 6 Optimum conditions, predicted and experimental values of responses of oat.

Responses in oat X1 X2 X3 Total lignan contents (μg/100  g)

Predicted Experimental

Optimum conditions 44.24°C 84.64% 53.63 min 60.213 59.277

Modified conditions 40°C 84% 60 min - 59.564

X1, Temperature (°C); X2, Methanol concentration (%); X3, Extraction time (min).
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TABLE 7 The contents of lignan in grains and grain products.

Sample Lignan contents (μg/100  g dry weight)

Lar Mat Pin Seco Syr Total lignan

Rice (Oryza 

sativa L.)

Baegokchal, white rice, raw 0.398 ± 0.023 ND ND ND 3.336 ± 0.006 3.734 ± 0.029

Baegokchal, white rice, cooked 0.931 ± 0.005 ND ND ND 3.577 ± 0.036 4.508 ± 0.041

Baekjinju, white rice, raw 0.527 ± 0.035 ND ND ND ND 0.527 ± 0.035

Baekjinju, white rice, cooked 0.682 ± 0.021 ND ND ND ND 0.682 ± 0.021

Dodamssal, white rice, raw ND ND ND ND 8.527 ± 0.164 8.527 ± 0.164

Dodamssal, white rice, cooked ND ND ND ND 10.124 ± 0.195 10.124 ± 0.195

Haedam, white rice, raw ND ND ND ND 7.892 ± 0.253 7.892 ± 0.253

Haedam, white rice, cooked ND ND ND ND 9.444 ± 0.609 9.444 ± 0.609

Heukjinju, brown rice, cooked ND ND ND ND 18.642 ± 0.503 18.642 ± 0.503

Heukjinju, brown rice, raw ND ND ND ND 10.538 ± 0.409 10.538 ± 0.409

Odae, brown rice, raw ND ND ND ND 9.189 ± 0.026 9.189 ± 0.026

Odae, brown rice, cooked ND ND ND ND 19.943 ± 1.139 19.943 ± 1.139

Odae, white rice, raw ND ND ND ND 6.825 ± 0.723 6.825 ± 0.723

Odae, white rice, cooked ND ND ND ND 8.729 ± 0.197 8.729 ± 0.197

Saeilmi, brown rice, raw ND ND ND ND 7.805 ± 0.184 7.805 ± 0.184

Saeilmi, brown rice, cooked ND ND ND ND 24.011 ± 0.683 24.011 ± 0.683

Saelimi, white rice, raw ND ND ND ND 8.243 ± 0.209 8.243 ± 0.209

Saelimi, white rice, cooked ND ND ND ND 7.558 ± 0.095 7.558 ± 0.095

Samgwang, brown rice, raw ND ND ND ND ND ND

Samgwang, brown rice, cooked 1.012 ± 0.058 ND ND ND 9.080 ± 0.199 10.092 ± 0.141

Samgwang, white rice, raw 1.766 ± 0.095 ND ND ND ND 1.766 ± 0.095

Samgwang, white rice, cooked 1.899 ± 0.028 ND ND ND ND 1.899 ± 0.028

Shindongjin, brown rice, raw 0.980 ± 0.110 ND ND ND 6.621 ± 0.112 7.601 ± 0.222

Shindongjin, brown rice, cooked 0.466 ± 0.025 ND ND ND 5.858 ± 0.076 6.324 ± 0.051

Rice (Oryza 

sativa L.) 

products

Instant cooked brown rice ND ND ND ND 11.342 ± 0.407 11.342 ± 0.407

Instant cooked white rice 1.859 ± 0.089 ND ND ND 1.850 ± 0.016 3.709 ± 0.105

Instant scorched rice 2.059 ± 0.130 ND ND ND 2.895 ± 0.062 4.954 ± 0.191

Instant rice porridge 1.735 ± 0.037 ND ND ND 2.980 ± 0.023 4.715 ± 0.060

Rice noodle, dried 2.428 ± 0.082 ND ND ND ND 2.428 ± 0.082

Rice noodle, boiled 3.121 ± 0.147 ND ND ND ND 3.121 ± 0.147

Wheat (Triticum 

aestivum L.) 

products

Chewy noodle, boiled ND ND ND ND 8.778 ± 0.091 8.778 ± 0.091

Chewy noodle, dried ND ND ND ND 8.452 ± 0.138 8.452 ± 0.138

Chopped noodle, raw ND ND ND ND 10.258 ± 0.143 10.258 ± 0.143

Chopped noodle, boiled ND ND ND ND 7.293 ± 0.385 7.293 ± 0.385

Ramyeon noodle, boiled ND ND ND ND 8.638 ± 0.361 8.638 ± 0.361

Ramyeon noodle, dried ND ND ND ND 10.407 ± 0.452 10.407 ± 0.452

Fine wheat noodle, boiled ND ND ND ND 7.329 ± 0.072 7.329 ± 0.072

Fine wheat noodle, dried ND ND ND ND 8.063 ± 0.313 8.063 ± 0.313

Spaghetti noodle, boiled ND ND ND ND 8.266 ± 0.600 8.266 ± 0.600

Spaghetti noodle, dried ND ND ND ND 10.006 ± 0.469 10.006 ± 0.469

Udon noodle, raw ND ND ND ND 9.437 ± 0.075 9.437 ± 0.075

Udon noodle, boiled ND ND ND ND 9.263 ± 0.194 9.263 ± 0.194

Wheat flour, all-purpose A ND ND ND ND 11.532 ± 0.267 11.532 ± 0.267

(Continued)
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