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Considering a growing, aging population, the need for interventions to improve 
the healthspan in aging are tantamount. Diet and nutrition are important 
determinants of the aging trajectory. Plant-based diets that provide bioactive 
phytonutrients may contribute to offsetting hallmarks of aging and reducing 
the risk of chronic disease. Researchers now advocate moving toward a positive 
model of aging which focuses on the preservation of functional abilities, rather 
than an emphasis on the absence of disease. This narrative review discusses 
the modulatory effect of nutrition on aging, with an emphasis on promising 
phytonutrients, and their potential to influence cellular, organ and functional 
parameters in aging. The literature is discussed against the backdrop of a recent 
conceptual framework which describes vitality, intrinsic capacity and expressed 
capacities in aging. This aims to better elucidate the role of phytonutrients on 
vitality and intrinsic capacity in aging adults. Such a review contributes to this new 
scientific perspective—namely—how nutrition might help to preserve functional 
abilities in aging, rather than purely offsetting the risk of chronic disease.
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1 Introduction

By the year 2100, it is projected that a quarter of the world’s population will be aged over 
64 (1). Living longer has not necessarily been accompanied by continued good health, 
therefore while lifespan may have increased, the healthspan has been improving at a much 
slower pace (2). Healthspan, or healthy aging, is defined as the number of years lived in good 
physical, cognitive, and emotional health (3).

Diet and lifestyle stand out as pivotal factors in this quest, with nutrition playing a crucial 
role in modulating multiple cellular aging processes (4–10). Good quality plant-based diets 
which provide essential nutrients and bioactive phytonutrients, have the potential to impact 
multiple aging mechanisms, such as, inflammation, metabolism, and cellular repair (10–15). 
Phytonutrients have been defined as, “Compounds present in and/or derived from plants that 
confer a health benefit (including metabolites post consumption)” (16). These compounds are 
found in edible plants and have a variety of important functions including protecting plants 
from various environmental stressors (17). Phytonutrients should ideally be provided via 
healthy dietary patterns which emphasize plant foods, or they may also be provided in safe, 
concentrated forms via plant nutraceuticals. Nutraceuticals can be defined as “A compound or 
mixture of compounds present in food or food supplements intended to exert a therapeutic effect” 
(11, 16).
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Recently, the preservation of vitality and intrinsic capacity, as 
opposed to specifically focusing on the presence and absence of 
disease, has come to the fore in healthy aging research (7). In this 
narrative review, we present and discuss the scientific evidence around 
certain dietary phytonutrients and their modulatory effects on aging 
at the cellular, organ and functional levels. With more than 10,000 
potential phytonutrients, this review has selected phytonutrients with 
varying levels of research ranging from the emerging to the well-
studied. We will discuss this broad range of phytonutrients against the 
backdrop of the conceptual framework on vitality and intrinsic 
capacity in aging originally proposed by Beard et al. (18) and recently 
elaborated by a WHO working group (7). In the context of nutrition, 
the consideration of this framework in a narrative review helps to 
contextualize and elucidate how certain phytonutrients might 
influence biological aging across the aforementioned levels. 
Furthermore, we identify research gaps and future opportunities for 
phytonutrients to help influence the vitality and intrinsic capacity of 
aging adults.

1.1 Aging is a multifactorial and multiorgan 
loss of functional ability

Aging is a multifactorial process, driven by a complex interplay 
of numerous molecular mechanisms that collectively contribute to 
the gradual decline in physiological function and increased 
susceptibility to age-related diseases (19). Understanding the 
intricacies of aging involves examining both organ or system specific 
changes and the broader network of interactions among organ 
systems. For instance, the aging immune system is characterized by 
immunosenescence, inflammaging, and age-related dysbiosis (20). 
This progressively leads to a diminishing ability of the body to 
protect itself, making older adults more susceptible to infections, and 
less responsive to vaccination (21). In the cardiovascular system, 
vascular aging results in endothelial dysfunction and impaired 
vasodilation, placing older adults at a higher risk of cardiovascular 
disease (CVD). In addition, metabolic dysfunction arising from 
disrupted nutrient sensing, coupled with low-grade inflammation 
and oxidative stress, contribute to worsening atherosclerotic plaque, 
arterial thickness and stiffness further increasing that risk (22). 
Similar declines are observed in the nervous and musculoskeletal 
systems with cognitive impairment and sarcopenia as known 
consequences (23–25).

Aging organs are interconnected, with the biological aging rate in 
one organ system affecting the aging trajectory of others (26, 27). 
Consequently, accelerated biological aging in the kidney or the brain, 
can exert systemic effects on other organ systems through shared 
pathways, including inflammation, oxidative stress, and hormonal 
dysregulation (28). This interorgan communication forms a complex 
network of interactions, leading to the concept of multiorgan aging 
and therefore comorbidity (29).

1.2 Nutrition as a contributor to healthy 
aging

The ideal scenario of healthy aging is that lifespan extension is 
accompanied by a proportional increase in healthspan, resulting in an 

older population that lives longer, in better health, with a condensed 
period of morbidity (Figure 1).

Building on this foundation, Figure 2 provides a comprehensive 
overview of healthspan, detailing its definition, key components, 
influencing factors, and methods for optimization. Importantly, 
Figure  2 aims to highlight that the notion of healthspan should 
recognize that aging is not solely defined by the absence of disease or 
compression of morbidity, but also encompasses the preservation of 
intrinsic capacity and vitality (30).

In addition, Figure 2 highlights the notion that diet is central to 
influencing healthspan (14, 22, 31), and interlinked with other lifestyle 
and environmental factors, such as physical activity, sleep quality, 
access to medical care and preventive measures. Adequate nutrition is 
associated with maintaining intrinsic capacity by supporting bodily 
functions and cognitive health, and it may also play a vital role in 
boosting vitality (6, 7, 9). Diet and nutrition are also at the heart of 
current research areas, including studies on longevity genes, the 
biological impacts of nutrition and exercise synergies, the effects of 
senolytics, and the potential benefits of caloric restriction and its 
mimetics (32, 33). Such research underscores the importance of 
nutritional intervention strategies aimed at promoting healthy aging 
and enhancing quality of life.

The concept of intrinsic capacity, introduced by Beard et al. (34) 
refers to individuals’ physical and mental abilities that enable them to 
perform daily activities effectively and maintain independence as they 
age (6, 35). This notion is pivotal in understanding aging, as it shifts 
the focus from the mere absence of disease to the positive aspects of 
aging, emphasizing the potential for well-being and functionality into 
older age. Intrinsic capacity encompasses five domains, including 
cognitive function, sensory capacity, locomotor function, 

FIGURE 1

Comparative diagram of lifespan vs. healthspan.
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psychological well-being, and vitality (6). Vitality is described by 
physical and mental vigor, reflecting an individual’s overall sense of 
well-being, engagement in life and resilience to challenges associated 
with aging (7). The longitudinal analysis and validation of intrinsic 
capacity suggest that it is a robust outcome and applicable across 
culturally diverse population groups (18, 34). Understanding the 
complex interplay between nutrition and aging requires a nuanced 
appreciation of intrinsic capacity and vitality. By nurturing vitality and 
supporting the various domains of intrinsic capacity, nutrition 
emerges as a key modulator of aging, offering promising pathways for 
enhancing quality of life and functional independence among 
older adults.

Beard’s framework (Figure 3) is useful for this narrative review 
since it encapsulates the relevant domains of the cells, organs and 
potential functional outcomes on which nutrients and phytonutrients 
might act. Hence, the framework will help to contextualize the 
literature and elucidate findings. Furthermore, narrative reviews have 
been criticized for not using existing theoretical or conceptual 

thinking in their framing, discussion, and consideration of the 
literature (36).

1.3 A framework to conceptualize vitality, 
intrinsic capacity, and expressed capacities 
in aging

Enhancing the intrinsic capacity of individuals early in life is likely 
to have a substantial impact on maintaining independence in older 
age, thereby reducing the impending strain on healthcare and social 
support systems globally. Implementing policies and healthcare 
strategies focused on healthy aging is becoming increasingly crucial 
as we face an unprecedented global aging population.

Targeting cellular mechanisms involved in the hallmarks of aging 
can induce shifts in biomolecular systems and organs, affecting vitality 
(determined by genetic inheritance and other environmental factors) 
(19) which in turn can modulate intrinsic capacity and expressed 

FIGURE 2

Overview of healthspan with focus on determinants and optimization strategies.
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capacities (measured as, e.g., locomotor, psychological, 
cardiorespiratory abilities and more). A recent consensus by a WHO 
working group underscores the role of vitality as a foundational 
element of intrinsic capacity (7). While frailty might be considered as 
an “accumulation of deficits,” the notion of vitality advances thinking 
in this area toward considering the trajectories of aging.

The overall architecture of this conceptual framework 
demonstrates the complex interplay between biological factors at 
distinct levels that cumulatively affect vitality, illustrating how 
biomolecular and physiological systems interconnect to shape the 
health and functionality of an organism.

1.4 Phytonutrients in the context of aging, 
vitality, and intrinsic capacity

The relevance of plant-based diets for aging may be attributed, in 
part, to their high content of nutrients and phytonutrients. Several 
studies suggest that phytonutrients are an important dietary 
constituent for healthy aging as they modulate oxidative stress, 
inflammation, and various signaling pathways involved in the 
hallmarks of aging, potentially playing a key role in preventing 
age-related diseases, maintaining normal metabolism, and supporting 
overall quality of life (37–46).

The “hallmarks of aging” were initially described by López-Otín 
et al. (20) and further revised a decade later (47). The 12 hallmarks 
have been extensively described in the literature as being genomic 
instability; telomere attrition; epigenetic alterations; loss of 

proteostasis; deregulated nutrient sensing; cellular senescence; 
mitochondrial dysfunction; stem cell exhaustion; altered intercellular 
communication; disabled macroautophagy; chronic inflammation and 
age-related dysbiosis. Although these hallmarks are independent 
drivers of aging, they are highly interconnected as they share common 
pathways, namely the sirtuins, mammalian target of rapamycin 
(mTOR), the nuclear factor erythroid 2–related factor 2 (Nrf2), and 
the nuclear factor kappa (NF-kb) signaling pathways (20, 47).

Plant-based solutions that attenuate cellular hallmarks of aging 
may confer benefits to subsequent tissues, organs, and systems (48), 
and potentially contribute to the intrinsic capacity of aging adults and 
therefore have the theoretical potential to influence the healthspan of 
this population (18). For instance, consumption of flavonoids, 
commonly found in fruits, vegetables, cocoa, wine, and tea, have 
demonstrated significant efficacy in reducing cellular damage through 
regulating the phosphoinositide 3-kinases (PI3K)/Akt/mTOR 
pathway, activation of sirtuin 1 (SIRT1), forkhead box, subgroup O 
(FOXO) and suppressing pro-inflammatory pathways in aged animal 
models (49). Inflammation being an important hallmark of aging, the 
observed anti-aging effect of flavonoids is likely to be mediated by 
their modulation of molecular pathways driving this hallmark.

However, the scientific literature on this topic presents a varied 
range of findings. A comprehensive analysis of the current evidence is 
necessary to discern the effects of different phytonutrients on the key 
aspects of aging and the development of age-associated conditions. 
This would help in identifying plant-derived compounds that have 
potential benefits for human aging. Moreover, existing reviews have 
not yet aligned their findings with a theoretical model of healthy aging 
that emphasizes vitality and intrinsic capacity.

1.5 The modulatory effect of nutrition on 
the hallmarks of aging

In the exploration of the molecular mechanisms of how nutrition 
regulates the aging process, recent advancements in “nutrigerontology” 
have highlighted the potential of dietary patterns and interventions to 
modulate the hallmarks of aging, aiming to extend healthspan and 
combat age-related diseases (33). López-Otín et al. emphasize the 
crucial role of dietary modulation in addressing the hallmarks of 
aging, suggesting that it is a viable approach to slow down the 
degenerative processes (47).

Key findings reveal that caloric restriction, specific nutrient 
supplementation, and adherence to diets rich in defined nutrients and 
bioactive compounds, such as NAD+ precursors, omega-3 fatty acids, 
and polyphenols can influence critical cellular pathways—ranging 
from mitochondrial function and telomere maintenance to 
intercellular communication and chronic inflammation (19). Among 
these bioactive compounds, polyphenols like resveratrol, quercetin, 
and epigallocatechin gallate have garnered attention for their ability 
to modulate nutrient sensing pathways including AMPK, SIRTs, and 
mTOR, which are pivotal in enhancing cellular energy efficiency, 
orchestrating appropriate metabolic responses, and promoting 
longevity while reducing disease risk (50, 51). Their impact extends to 
improving metabolic health and stress resistance through the 
activation of AMPK and SIRT1, and potentially decreasing cancer risk 
by inhibiting the mTOR pathway, thus supporting vital cellular 
processes like autophagy and mitophagy. Additionally, by modulating 
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nutrient sensing pathways, polyphenols exhibit senolytic properties, 
allowing them to selectively induce the death of senescent cells—cells 
that have stopped dividing and thus contribute to aging and various 
chronic diseases (52, 53). Polyphenols, therefore, may have the 
potential to help improve tissue function and reduce inflammation 
associated with aging.

Furthermore, polyphenols are recognized for their role in 
mitigating immunosenescence—a gradual decline in the immune 
system’s functionality with age—by reducing senescent cell 
accumulation, decreasing cellular oxidative stress, and modulating 
immune function through epigenetic mechanisms (54, 55). Their 
ability to alter the gut microbiome composition, promoting the 
growth of beneficial bacteria, further supports immune function via 
the gut-immune system axis (56). These dietary strategies, including 
the enhancement of microbial diversity that affects systemic health by 
modulating neuroendocrine and inflammatory pathways, have been 
shown to regulate cellular mechanisms involved in aging, such as 
influencing metabolic health and potentially altering the course of 
aging and disease onset (57). The impact of polyphenols on 
immunometabolism highlights their potential in integrating metabolic 
and immune responses to maintain health and delay age-associated 
diseases (58).

Collectively, these findings underscore the intricate link between 
diet, cellular health, and healthy aging, offering promising avenues for 
dietary interventions to improve aging outcomes. While healthy, 
balanced diets may provide important quantities of phytonutrients 
from dietary sources (such as anthocyanins from berries, flavanones 
from citrus fruits and chlorogenic acid from coffee) some dietary 
patterns contain very low amounts of plant foods (59) and would 
benefit from dietary modification or supplementation. In the next 
sections, therefore, we will specifically focus on the potential role of 
phytonutrients to influence aging processes and relevant outcomes, 
against the backdrop of Beard et  al. framework highlighted in 
Figure 3.

The relationship between diet and chronic disease is well 
established. High intakes of fruits and vegetables have been associated 
with reduced risk of chronic disease and mortality (60–62). The 
investigation of plant compounds involved in the mitigation of disease 
in aging has attracted widespread research. Some phytonutrients have 
been extensively investigated, whereas others that have recently 
emerged show promise, but well-designed randomized controlled 
trials (RCTs) are lacking. The next section discuss a range of 
phytonutrients, from the well-studied to the emerging and innovative, 
with the potential to support healthy aging. Furthermore, in addition 

FIGURE 3

Reproduced with permission from Beard et al. (18)—a conceptual framework explaining vitality and intrinsic capacity.

https://doi.org/10.3389/fnut.2024.1409339
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Jacquier et al. 10.3389/fnut.2024.1409339

Frontiers in Nutrition 06 frontiersin.org

to the dietary sources of phytonutrients, this review considers studies 
in which the concentrated form of the compound (or “plant 
nutraceutical) has been studied.

2 Amino acids and amines

2.1 Spermidine

Spermidine is a naturally occurring polyamine (63) with highest 
amounts reported in soybeans, peas, and pears (64), as well as in 
wheat germ, mushrooms, some nuts, and spinach (65). Spermidine is 
well-absorbed and rapidly distributed to the body’s tissues (66).

In aging, cellular levels of spermidine and ornithine decarboxylase 
(ODC), the enzyme involved in the synthesis of spermidine, decline 
with age (67, 68). Spermidine administration significantly extended 
the lifespan of yeast, flies and worms, and mice (69). In-vitro and 
in-vivo data demonstrates the ability of spermidine to impact the 
cellular hallmarks of aging via enhancing mitochondrial function, 
inducing cell growth and proliferation along with exerting anti-
inflammatory, antioxidant and anti-senescent effects (63). Spermidine 
has also been shown to enhance autophagy in cellular and animal 
models of aging (63).

Epidemiological studies have correlated higher dietary spermidine 
intake with reduced all-cause mortality (70), including reductions in 
CVD and cancer-specific mortality (71). The first randomized 
controlled trial (RCT) to investigate the effect of spermidine 
supplementation on memory performance in older adults was a pilot 
study published in 2018 which reported a positive effect in adults aged 
60–80 years (72). A further RCT found a positive effect of 3 months of 
spermidine supplementation on cognitive performance, using bread 
rolls containing either 3.3 mg or 1.9 mg of spermidine, in adults aged 
60–96 years. In particular, those receiving the higher dose of 
spermidine showed improvements in cognitive performance among 
those with mild and moderate dementia (65). In one double-blind, 
randomized, placebo-controlled trial, 100 older adults (age 
60–90 years) with subjective cognitive decline were supplemented 
with 0.9 mg/day of spermidine or placebo for 12 months (73). Results 
indicated no difference in memory performance and biomarkers in 
the spermidine supplemented group versus the placebo, though 
exploratory analysis showed possible beneficial effect of the 
intervention on inflammation and verbal memory. Overall, human 
RCTs show mixed results from spermidine supplementation.

The pre-clinical data and emerging studies indicate a potential 
for spermidine to impact cellular hallmarks of aging, and functional 
parameters such as cognitive function. Further clinical trials are 
required to confirm the preliminary data effect in humans, in 
particular for cellular health, neuro-protective function, and the 
potential to contribute to vitality and intrinsic capacity in aging.

2.2 Ergothioneine

Ergothioneine (EGT) is a naturally occurring amino acid, with 
good free-radical scavenging activity (74). The antioxidant activity of 
EGT makes it a potential candidate to offset the cycle of damage to 
cells via its anti-inflammatory, anti-neurodegenerative and 

anti-senescence properties demonstrated in cellular and animal 
models (75–78). EGT can only be obtained from a limited number of 
foods such as mushrooms, liver, black beans, garlic and oat bran 
(79, 80).

Absorption studies support the ability of EGT to be absorbed via 
the intestine, passed into circulation, and transferred into tissues 
throughout the body (81, 82). EGT levels decline after 60 years of age 
and more so in individuals with cognitive impairments (83, 84). On 
the contrary, a relationship between healthier dietary patterns, lower 
CVD risk, and higher circulating EGT levels has been observed 
(85, 86).

Human clinical studies have been conducted to investigate the 
effect on EGT on postprandial triglyceride response (87), oxidative 
stress and inflammation (82), and effects on lipid peroxidation, DNA 
damage, urate oxidation, protein carbonylation and C-reactive protein 
with limited to no effects observed (88). A single study examined the 
functional effect of EGT supplementation (combined with other anti-
inflammatory nutrients and analgesics) on joint pain and range of 
motion (ROM) in adults with significant improvements over 
6 weeks (88).

Despite a lack of data from human RCTs related to EGT, its role 
in cellular signaling pathways associated with aging, the protection of 
mitochondria and anti-inflammatory, anti-senescent effects make it a 
promising candidate for improving vitality and intrinsic capacity 
(34, 89).

3 Polyphenols

Polyphenols are natural compounds synthesized by plants and 
present in a variety of plant foods. They can be classified as phenolic 
acids, flavonoids (the largest subclass of polyphenols), polyphenolic 
amide, and other non-flavonoids (90). Epidemiological data 
highlights the association between polyphenol and flavonoid intake 
and a reduction of mortality from all causes and from CVD (91), 
cancer, diabetes, neurodegenerative disease, and osteoporosis (92). 
Polyphenols have shown multifaceted effects contributing to healthy 
aging by attenuating the development and accumulation of senescent 
cells, cellular oxidative stress, and immune dysfunctions (57); 
promoting cardiovascular health (93), reducing oxidative stress and 
inflammation; preventing neurodegenerative diseases, modulating 
autophagy and gut microbiota (94), and potentially extending 
healthspan by targeting various cellular mechanisms and 
signaling pathways.

This section will consider some well-known polyphenols and 
flavonoids, along with lesser-known emerging candidates, and discuss 
their potential to influence cellular exposure to oxidative stress, 
inflammation and a reduced activation of protective stress response 
pathways related to aging (95).

3.1 Flavonoids

3.1.1 Cocoa flavanols
Research into the flavanols from cocoa beans has shown that they 

possess properties which may offset the risk of chronic disease in 
aging, in particular CVD and type 2 diabetes (T2D), via their 
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antioxidant and anti-inflammatory potential (96, 97). The main 
flavanols found in cocoa beans are epicatechin, catechin, and 
procyanidins, which are associated with various health benefits (98). 
The absorption and bioavailability of the flavanol compounds have 
been extensively described elsewhere and are well-understood, in 
particular for epicatechin (99). However, there is less information in 
relation to the complex metabolism of flavonoids by gut microbial 
pathways (100). It is thought that the active component of polyphenols 
might not be  the polyphenols themselves, but their active 
metabolites (101).

The antioxidant potential of cocoa flavanols were first described 
by Waterhouse et  al. who reported that cocoa polyphenols were 
superior to red wine polyphenols in their ability to inhibit LDL 
oxidation (102). Cell models have since elucidated that cocoa 
polyphenols are likely to prevent oxidation by acting on tumor 
necrosis factor alpha (TNFα), enzymes cyclo-oxygenase-2 (COX-2), 
C-reactive protein and soluble adhesion molecules (101) to down-
regulate inflammation. However, some authors do not agree with the 
notion that flavonoids act as antioxidant molecules, but rather 
modulate the antioxidant response by targeting cellular 
pathways (103).

Several human intervention studies have demonstrated that cocoa 
and cocoa-containing products are associated with reducing CVD risk 
(104) via increasing HDL-cholesterol (105), improving endothelial 
function (106, 107), reducing blood pressure (108), decreasing blood 
triglycerides (104, 105), and reducing markers of oxidative stress 
(109). A large clinical trial in the US (COSMOS) reported that while 
cocoa extract supplementation did not reduce CVD events, it reduced 
deaths from CVD by 27% (110). Cocoa has also been found to 
improve insulin sensitivity in human RCTs (107, 111, 112).

Several studies have examined the effect of cocoa flavanols on 
cognitive performance in both old and younger populations (113) and 
have shown to have a potential effect on cognitive performance in 
aged populations since cocoa flavanols enhance cerebral blood flow in 
older subjects (114). In older adults (115) and adults with mild 
cognitive impairment (116), cocoa flavanols have been shown to 
improve cognitive performance and flexibility, processing speed (117), 
and working memory (118). However, one study in older adults 
showed no benefit of flavanols from chocolate, or a cocoa beverage, 
on cognitive performance (118). Inconsistencies in clinical studies on 
cocoa flavanols may be  due to the variability of cocoa flavanol-
containing food matrices along with inter and intra-individual 
variation in the response to cocoa polyphenols (39, 101). Moreover, 
cocoa flavanol supplementation was shown to positively affects facial 
wrinkles and elasticity in moderately photo-aged women (119). 
Nevertheless, future research should elucidate how the timing, form, 
and dosage of cocoa flavanols could elicit beneficial neuromodulatory 
effects in aging populations along with genetic factors that may impact 
an individual’s response to coco flavanols.

Overall, these studies suggest that flavanols in cocoa beans have 
multiple beneficial effects on health in aging, including improvements 
in oxidative stress, inflammation, cardiometabolic health, physical 
performance, skin health, cognitive function, neuroprotection, 
vascular function, and may reduce the risk of chronic diseases. While 
research on the specific effects of flavanols in cocoa beans on aging is 
ongoing, accumulating evidence suggests that incorporating cocoa or 
cocoa-derived products rich in flavanols into the diet may have 
beneficial effects on overall vitality and intrinsic capacity in aging.

3.1.2 Luteolin
Luteolin, a flavone metabolite, and luteolin-7-O-glucoside 

(LUT-7G) is a dietary derived compound found in carrots, peppers, 
celery, olive oil, rosemary, artichoke, pomegranate and plant extracts 
such as chrysanthemum (120, 121). Luteolin and LUT-7G have been 
shown to have potential anti-inflammatory, antioxidant, 
neuroprotective, DNA-protective, anti-cancer, anti-diabetic properties 
along with an ability to modulate cellular signaling pathways in 
in-vitro and in-vivo studies (122–130). Luteolin has also been shown 
to protect heart tissue in a diabetic mouse model via modulating Nrf2-
mediated resistance to oxidative stress and NF-κB-induced 
inflammatory responses (131). Such data places luteolin as an 
emerging candidate to attenuate cellular hallmarks of aging. In 
particular luteolin has been cited as having widespread neuroprotective 
effects in both in-vitro and in-vivo models of Alzheimer’s disease 
(AD), Parkinsons disease (PD) and cognitive decline, and is able to 
suppress inflammation in brain tissue (127, 132).

Epidemiological evidence suggests that luteolin possesses anti-
inflammatory and cardioprotective effects. Studies have shown a 
significant reduction in CVD mortality and decreased incidence of 
epithelial ovarian cancer associated with higher luteolin intake 
(133, 134).

Human clinical trials investigating luteolin supplementation are 
limited, with mixed results. One study examining luteolin’s role in 
Gulf War Illness, characterized by high levels of inflammatory 
markers, showed no significant improvement in symptom severity 
(135, 136). However, in a placebo-controlled trial targeting pre-obese 
individuals, a phytonutrient blend containing luteolin demonstrated 
promising cardiometabolic outcomes, including weight reduction and 
improvements in glycemic and lipid parameters. Authors postulated 
that the findings may, in part, be  due to the ability of luteolin to 
attenuate adipose tissue inflammation and insulin resistance, as 
demonstrated in animal models (137).

Overall, more research is required to understand effective human 
doses, metabolism and absorption of luteolin in order to perform 
well-designed human clinical trials involving luteolin and LUT-7G 
(138). Nonetheless, in-vitro and in-vivo data indicate the potential for 
luteolin to impact vitality via its neuroprotective, cardioprotective, 
anti-inflammatory and anti-obesity properties. Further research 
would help to elucidate any eventual impact of luteolin on vitality and 
intrinsic capacity in aging.

3.1.3 Fisetin
Fisetin is a flavonoid present in fruits such as strawberries, apples, 

kiwi and mangoes (139). Fisetin demonstrated pre-clinical potential 
to offset inflammatory pathways that lead to chronic diseases in aging 
(140). Chronic inflammation, if left uninhibited, may trigger cellular 
pathways that lead to CVD, osteoporosis, cancer and 
neurodegenerative disease, via its inter-connectedness with many of 
the cellular hallmarks of aging (141). Furthermore, fisetin has been 
widely studied for its antioxidant effects, along with its ability to 
inhibit cellular senescence (142). Notably, in a pre-clinical trial, out of 
10 flavonoids studied, fisetin was found to be  the most potent 
senolytic, reducing senescence markers in multiple tissues (53). 
Neurodegenerative diseases linked to mitochondrial dysfunction and 
ROS may benefit from intervention with fisetin since it has been 
shown to interact with diverse REDOX signaling pathways, restore 
mitochondrial function, and contribute to prevention of neuronal cell 
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death (143). Despite encouraging in-vitro and in-vivo data on the 
multiple beneficial effects of fisetin in relation to the hallmarks of 
aging, its translation to human RCTs has been limited for the time 
being. Small scale human clinical trials focus on fisitin 
supplementation post cardiovascular events and inflammatory 
conditions (such as Gulf War Illness) with mixed effects (144–148). Its 
poor absorption in humans has limited its therapeutic potential. To 
address this issue, an innovative study proposed encapsulating fisetin 
into a fisetin-loaded dietary fiber hydrogel scaffolds to improve its 
delivery and bioavailability in human subjects (149).

While further research is needed to fully elucidate the therapeutic 
potential of fisetin in humans, both pre-clinical and small-scale 
clinical studies suggest that fisetin holds promise as a natural 
compound for promoting vitality in aging. Its multifaceted 
mechanisms of action make it a promising candidate to impact 
multiple hallmarks of aging, including cellular senescence, 
mitochondrial dysfunction, and chronic inflammation.

3.1.4 Quercetin
Quercetin is one of the most common and studied flavonoids, 

present in many different fruits and vegetables such as onions, apples, 
berries, kale, leeks, asparagus and capers (150). However, dietary 
intake of quercetin varies depending on the fruit and vegetables 
intake (151).

It has been shown to have anti-inflammatory, antioxidant, anti-
cancer, anti-hypertensive, anti-diabetic, anti-neurodegenerative and 
cardio-protective properties in pre-clinical models and in human 
RCTs (144, 152). Several studies have found beneficial effects of 
quercetin with respect to antioxidant biomarkers and the inhibition 
of LDL oxidation (145, 153–155). However, a systematic review of 
RCTs concluded that quercetin supplementation did not lead to a 
clinically significant effect on plasma lipids, but a dose of >50 mg/day 
may have a beneficial effect on reduction of triglycerides (156). One 
study found that quercetin supplementation inhibited platelet 
aggregation (157) improved some biomarkers of endothelial 
dysfunction (158) reduced systolic blood pressure (155) and reduced 
blood pressure in hypertensive patients (159, 160). Furthermore, a 
systematic review of RCTs concluded that quercetin supplementation 
of >500 mg/day could significantly reduce blood pressure (161). 
Together, these studies suggest that quercetin may confer some 
cardioprotective effects. However, more studies of longer duration are 
required, in different populations, to confirm these findings and to 
gain more insight into potential mechanisms of action. A systematic 
review of in-vitro and in-vivo data support the potential anti-diabetic 
effect of quercetin (162). It has been shown to act on signaling 
pathways such as TNFα, NFkB, AMPK, Akt, and Nrf2 which are 
implicated in the pathogenesis of T2D and insulin resistance (163). 
The oral administration of 250 mg/day for 8 weeks improved the 
antioxidant status among subjects with T2D (164).

Furthermore, quercetin interacts with SIRT1, a key enzyme in 
cellular processes linked to aging (165, 166). Animal studies suggest 
increased SIRT1 expression may protect against AD (167), while 
decreased expression is observed in aging mice (168). Quercetin 
regulates SIRT1 pathways, potentially initiating protective mechanisms 
against AD. A randomized trial in older adults showed quercetin 
supplementation improved reaction time and preserved cerebral 
blood flow over 40 weeks (169). Further research is needed, but 

quercetin shows promise for mitigating age-related cognitive decline 
and supporting neurocognitive health.

Further investigation is warranted to fully comprehend the 
potential cardioprotective and cognitive benefits of quercetin, a 
naturally occurring senolytic compound. Its interaction with SIRT1 
makes it a promising candidate for targeting cellular senescence and 
enhancing vitality. However, a deeper understanding of its mechanism 
of action within specific disease phenotypes is essential for guiding 
future research and potential applications of quercetin in alleviating 
chronic conditions associated with aging. Nonetheless, encouraging 
diets that contain food sources of quercetin, or the inclusion of 
bioavailable sources of quercetin as supplements may contribute to 
vitality and intrinsic capacity in aging.

3.2 Stilbenes

3.2.1 Resveratrol
Resveratrol is a polyphenol present in plant foods, with top 

sources being grape skin, red wine, blueberries, and peanuts (44). The 
polyphenolic nature of resveratrol makes it a powerful antioxidant 
shown to upregulate the expression of antioxidant enzymes and to 
reduce mitochondrial superoxide generation by stimulating 
mitochondrial biogenesis in pre-clinical studies (170). Several studies 
suggest that resveratrol has the potential to extend lifespan and 
improve healthspan in various species, particularly through 
mechanisms involving metabolic regulation, stress resistance, and 
activation of longevity genes, although its effects may vary across 
different organisms (171–173). Resveratrol also has demonstrated 
significant potential to activate autophagy, increase mitochondrial 
biogenesis, support free radical quenching, and induce anti-
inflammatory effects (44). This may occur through stimulating SIRT1 
and NRF2 pathways, and by downregulating NF-kB and Akt/mTOR 
pathways. Consequently, by regulating multiple longevity-related 
signaling pathways, resveratrol demonstrates considerable potential 
in addressing various hallmarks of aging, such as low-grade 
inflammation, compromised autophagy, and deregulated nutrient 
sensing (44).

Multiple rodent studies have provided evidence supporting the 
neuroprotective effects of resveratrol. These studies have 
demonstrated that resveratrol supplementation improves 
antioxidant status in the brain, reduces concentrations of 
inflammatory markers, and enhances memory performance in 
animal models of memory impairment, including working memory, 
spatial memory, and learning memory (146–148). Specifically, 
resveratrol has been found to stimulate brain SIRT1 activity while 
suppressing NF-kb and enhancing AMPK. This activation of AMPK 
is crucial in protecting against the accumulation of Amyloid-β 
through the regulation of neuro-inflammation and oxidative stress 
(174–176).

One clinical trial has demonstrated that resveratrol 
supplementation for 30 days induces metabolic changes in obese 
humans, mimicking the positive effects of calorie restriction (177). 
Resveratrol supplementation significantly improved glucose control 
and insulin sensitivity in persons with T2D but did not affect glycemic 
measures in nondiabetic persons (178). Overall, resveratrol is regarded 
as a caloric restriction mimetic (CRM) based on evidence from 
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clinical trials demonstrating its ability to replicate some of the 
metabolic benefits observed with caloric restriction.

Resveratrol has popularly been investigated for its cardioprotective 
benefits and has been studied in models of CVD (148). In humans, 
clinical trials have shown contradicting results in terms of the 
cardioprotective effect of resveratrol. In fact, while consistent 
reductions in inflammatory markers and improvements in endothelial 
function are observed, the hypolipidemic, hypoglycemic, and 
hypotensive effects of resveratrol remain inconclusive (179). Regarding 
neuroprotection, administering resveratrol orally led to dose-
dependent increases in cerebral blood flow during task performance. 
However, cognitive function remained unaffected in one RCT (179).

Resveratrol is rapidly metabolized after absorption, leading to low 
bioavailability in its unmetabolized form (180). This may be one of the 
reasons behind the variability seen in clinical trials. For instance, in a 
study investigating the effect of resveratrol on blood pressure, only 
doses higher than 300 mg/day were shown to reduce systolic and 
diastolic blood pressure, possibly compensating for the low 
bioavailability of resveratrol (181). Indeed, its bioavailability was 
shown to depend on the dose administered, and other bioactives 
contained in the meal (182). Co-ingestion of piperine and quercetin 
with resveratrol increased its bioavailability in animal studies (182) 
however further human studies are required to confirm this outcome.

In summary, resveratrol has demonstrated significant benefits as 
an antioxidant and anti-inflammatory bioactive in model organisms 
and humans, making it a potential positive contributor to vitality. 
While resveratrol shows promise as a metabolic enhancer and caloric 
restriction mimetic, clinical trials have yielded mixed results, 
particularly concerning its cardioprotective effects. Further research 
is necessary to clarify its therapeutic potential and optimize its efficacy 
in promoting vitality and health in aging.

3.2.2 Pterostilbene
Pterostilbene is a naturally occurring polyphenol most abundantly 

found in blueberries (183), with lower concentrations in other plant 
sources such as grapes, cranberries, almonds, and peanuts (184). Yet, 
the quantity of pterostilbene in blueberries may be too low to induce 
health benefits which means that delivery of pterostilbene via dietary 
supplements would enable provision of nutritionally relevant 
amounts (185).

Pterostilbene is a 3,5-dimethoxyl-resveratrol, which has been 
reported to have superior bioavailability according to data in animal 
models (186). Many in-vitro and in-vivo studies have demonstrated 
the potential vitality enhancing effects of pterostilbene via its ability 
to exert anti-inflammatory, antioxidant, neuroprotective (187, 188) 
and cardioprotective effects (189–191). It is understood to elicit these 
beneficial effects via its action on mitochondrial oxidative stress, 
mitochondrial biogenesis and mitochondrial apoptosis (192). In 
addition, there is evidence pterostilbene may have the potential to 
decrease glucose and increase plasma insulin levels in animal models 
of T2D (193, 194).

Unfortunately, human RCTs using pterostilbene are scarce. One 
such study found a beneficial effect of pterostilbene supplementation 
on systolic and diastolic blood pressure (195). However, an interesting 
observation from the study was that while pterostilbene 
supplementation improved blood pressure, there was an increase in 
LDL cholesterol levels. Remarkably, this rise in LDL cholesterol was 

not observed in participants who received a combination of grape 
extract and pterostilbene. Grape extract is known to contain various 
bioactive compounds with potential cardiovascular benefits and 
combining it with pterostilbene seemed to mitigate the adverse effect 
on LDL cholesterol levels.

Further research is warranted in order to design human RCTs 
which can shed light on the required dosage, delivery method, disease-
specific formulations, and efficacy in the longer term (196). 
Nonetheless, the pre-clinical data support pterostilbene as a potential 
phytonutrient which may promote vitality in aging via effects on 
cellular pathways related to hallmarks of aging.

3.3 Beta-diketones

3.3.1 Curcumin
Curcumin (diferuloylmethane) is a polyphenolic compound 

extracted from the turmeric (Curcuma longa L.) root that is widely 
used in Asia, as a spice, food additive, and herbal remedy (197). In 
fact, in Ayurveda, turmeric is prescribed to support immunity and 
treat respiratory disorders such as asthma (197). In the scientific 
literature, curcumin is mostly known for its anti-inflammatory and 
antioxidant properties and has demonstrated efficacy on reducing the 
severity of arthritis symptoms (198, 199) and glucose impairment 
(200, 201) as reported in meta-analyses of clinical trials. Curcumin 
can target multiple pathways involved in inflammation, autophagy, 
and other hallmarks of aging. However, its clinical application is 
limited by poor bioavailability, attributed to low water solubility, rapid 
metabolism, and fast systemic elimination. To address these 
challenges, various strategies have been employed, including 
nanotechnology-based approaches (such as liposomes, nanoparticles, 
and solid lipid nanoparticles), the use of adjuvants (notably piperine, 
which inhibits metabolic degradation), and formulation modifications 
(like water-soluble derivatives and polymeric micelles) (202).

Curcumin induces cellular stress responses in normal human skin 
fibroblasts, potentially offering a useful anti-aging approach by 
enhancing cellular antioxidant defenses (203). Curcumin and its 
metabolite, tetrahydrocurcumin, increase lifespan in model organisms 
by regulating oxidative stress responses and age-related genes (204). 
Animal studies have facilitated the understanding of molecular 
mechanisms underlying curcumin benefits. Curcumin triggers the 
Nrf2 pathway which activates antioxidative enzymes, thereby 
mitigating oxidative stress and facilitating ROS removal from the cells, 
ultimately leading to lower lipid peroxidation, lower ROS 
concentration in tissues, and increased antioxidant capacity (197). In 
humans, supplementation with 600 mg of curcumin per day reduces 
circulating malondialdehyde, a marker of oxidative stress, and 
increases superoxide dismutase, an antioxidant enzyme, in red blood 
cells, as reported in a meta-analysis of 8 clinical trials (205). These 
findings highlight curcumin as a promising candidate for targeting 
oxidative stress associated with aging and supporting healthy aging. 
This is particularly true for managing age-related diseases like 
atherosclerosis and T2D, along with their complications such as 
retinopathy and nephropathy.

The clinical trial literature on curcumin shows promising efficacy 
in the prevention of atherosclerosis. Accordingly, two meta-analyses 
of five (206) and two (207) randomized controlled trials, respectively, 
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reported a significant overall increase in flow-mediated dilation, 
generally associated with better vascular health, in both healthy and 
metabolically unhealthy individuals following daily curcumin 
supplementation. In addition, there is good evidence supporting the 
role of curcumin in reducing LDL-cholesterol, triglycerides, and 
increasing HDL-C levels in healthy subjects as well as those at risk of 
CVD (205, 208, 209).

Although the anti-inflammatory capacity of curcumin may 
originate from its antioxidant effects, this bioactive has also shown to 
directly modulate the inflammatory cascade through its inhibitory 
effect on NF-kB, a known regulator of pro-inflammatory gene 
expression and promoter of inflammatory cytokines and chemokines 
(210). Research on curcumin supports its role in attenuating systemic 
inflammation and reducing symptoms of age-related inflammatory 
conditions such as osteoarthritis (199, 211), improving CVD risk 
factors, and reducing severity of non-alcoholic fatty liver disease 
(212, 213).

Curcumin affects multiple nutrient sensing pathways, including 
the insulin/insulin growth factor, AKT, and mTOR pathways, crucial 
for aging hallmarks. In vitro studies demonstrate curcumin’s 
suppression of mTOR and FOXO signaling while enhancing AKT 
signaling. These effects correlate with lifespan extension in multiple 
model organisms (197). Curcumin’s signaling effects extend to 
systemic protection in vital organs like the brain. Animal models of 
cognitive deficit or neuroinflammation reveal curcumin’s ability to 
reduce brain tissue inflammation, neuronal loss, and cognitive 
impairment. However, human studies on curcumin and cognition are 
limited and yield inconsistent results (214).

In summary, curcumin emerges as a widely utilized 
phytonutrient with demonstrated antioxidant properties across in 
vitro, animal studies, and human clinical trials. Its potential as an 
anti-aging bioactive is underscored by its mechanism of action, 
which involves suppressing mTOR and FOXO pathways while 
upregulating the P13K–AKT cascade. Notably, curcumin influences 
several hallmarks of aging, including nutrient sensing, oxidative 
phosphorylation, and chronic inflammation. Although further 
research is necessary to validate its role in aging, numerous clinical 
trials substantiate its efficacy in mitigating inflammatory conditions, 
endothelial impairment, metabolic deregulation, and CVD—each of 
which may significantly impact expressed capacities in older adults. 
As a low-cost intervention, curcumin holds promise for enhancing 
vitality and intrinsic capacity in aging, thereby warranting 
continued investigation.

3.4 Benzo-coumarins

3.4.1 Urolithin A
Urolithin A (UroA) emerges as a pivotal metabolite derived from 

the gut microbiota’s conversion of ellagitannins and ellagic acid, 
abundantly found in red fruits, pomegranates, and nuts. This 
conversion exhibits considerable variability, influenced by individual 
age and health status. In a series of in vitro, animal, and human 
studies, a pure form of urolithin A was shown to upregulate genes and 
activate pathways involved in mitophagy (215), activate antioxidant 
pathways (216) and reduce oxidative stress markers (217, 218), 
improve age-related functional health (219, 220), and even increase 

the lifespan in an aging model (221). In human cell lines, particularly 
dermal fibroblasts damaged by UV light, UroA has been shown to 
activate the NRF2 pathway, thereby boosting ROS scavenging and the 
release of antioxidant enzymes (222). This effect is partly mediated by 
the SIRT3-FOXO3-PINK1-PARKIN network, which plays a crucial 
role in mitophagy. Remarkably, treatment with UroA has led to 
significant reductions in inflammatory cytokines such as TNF-α and 
IL-6 in studies involving microglia and neural cells (215). Inducing 
mitophagy has a beneficial effect on mitochondrial health, an effect 
that has been observed in healthy volunteers after UroA interventions. 
Significant decreases in acylcarnitines, C-reactive protein, and 
ceramides—markers of mitochondrial dysfunction and age-related 
diseases—were observed in middle-aged and older volunteers post-
UroA intervention (219, 220).

The functional effects of UroA have been further investigated 
in the context of age-related diseases. Significant improvements in 
neuroinflammation and memory impairment have been noted in 
mice (223), while human studies have reported enhanced muscle 
strength and exercise performance in middle-aged and older adults 
(219, 220). Clinical trials focusing on urolithin-producing foods 
like raspberries, strawberries, and pomegranate have also 
highlighted potential health benefits. For instance, the consumption 
of raspberry juice was associated with improved endothelial 
function, correlating positively with UroA plasma concentration 
(224). Two clinical trials (225, 226) investigated the consumption 
of strawberries (226) and pomegranate extract in relation to 
microbiota compositional changes, reporting an increased 
abundance of strains associated with longevity (226) and a healthy 
metabolic profile (225, 226). Although these results are very 
promising, further studies isolating the effect of UroA itself are 
warranted to support the emerging evidence on UroA and 
functional benefits linked to the hallmarks of aging and potential 
contribution to vitality.

In summary, the mechanistic effects of UroA on mitophagy, 
mitochondrial health, oxidative balance, and low-grade inflammation 
could potentially translate into clinically significant advantages for a 
range of age-related conditions, including sarcopenia, osteoarthritis, 
Alzheimer’s disease, and more. Clinical evidence supports UroA’s 
enhancement of muscle strength and metabolic health, with 
pre-clinical studies suggesting broader anti-aging effects on organs 
and systems such as the brain and skin.

4 Glucosinolates

4.1 Glucoraphanin

Glucoraphanin (GPh) is a glucosinolate found in cruciferous 
vegetables such as broccoli, particularly concentrated in broccoli 
sprouts, cauliflower, kale, cabbage and Brussel sprouts, and has 
garnered attention for its antioxidant and anti-inflammatory 
properties (227–230).

GPh is converted into sulforaphane (SPh) through a process that 
involves an enzyme known as myrosinase (230). This conversion can 
occur within the plant itself, as well as through the action of the oral 
and gut microbiota after ingestion (231). SPh is capable of interacting 
with many different molecular pathways associated with aging (229). 
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In particular, SPh is a potent inducer of phase 2 enzymes which may 
help cells to better detoxify and remove potentially harmful 
compounds (232). There is also a genetic influence which may mediate 
the benefit of GPh consumption. About 50% of the population possess 
the glutathione S-transferases 1 genotype (GSTM-1) and may gain 
additional benefit from GPh ingestion, versus those without the 
genotype who excrete more SPh in 24 h (233).

Pre-clinical evidence, largely from cell culture and animal studies, 
has indicated that sulforaphane may have a role in the prevention and 
amelioration of various conditions such as certain cancers, T2D, and 
asthma due to its activation of Nrf2 signaling and resulting induction 
of cytoprotective enzymes (234).

Clinical trials involving broccoli sprout preparations, which 
contain high levels of GPh, began in the late 1990s (235). These trials 
have evaluated the safety, acceptability, bioavailability, and 
pharmacokinetics of these preparations. However, it should be noted 
that most clinical studies to date have used broccoli sprout 
preparations rather than pure GPh or SPh, and it remains to 
be determined whether there is bioequivalence in these interventions. 
A systematic review cited 8 human RCTs which have examined the 
effect of broccoli sprouts on various outcomes (236). In a Chinese 
study, a broccoli sprout containing beverage was consumed for 
12 weeks, providing 600 μmol GPh and 40 μmol SPh. The authors 
reported that SPh was capable of binding and excreting airborne 
pollutants (237).

Two human clinical trials demonstrated that diets containing 
400 g of high-GPh broccoli per week, for 12 weeks, can significantly 
lower LDL-C levels, versus diets containing 400 g of standard broccoli 
per week (238). Moreover, among healthy, overweight subjects 
consuming 30 g of broccoli sprouts per day led to a significant 
decrease in inflammatory markers as well as in body fat mass (239). 
A further study demonstrated that a SPh-rich broccoli sprout extract 
improved liver function by reducing oxidative stress in Japanese men 
with fatty liver (240). Another small trial randomized 14 patients to 
a high-glucosinolate diet for 14 days prior to knee replacement 
surgery. They found that glucosinolates were able to penetrate the 
knee joint and synovial fluid (241). Such trials pave the way for the 
exploration of GPh on osteoarthritis of the knee. This builds on prior 
in-vitro and in-vivo data demonstrating SPh can protect cartilage 
destruction (242).

Helicobacter pylori (H. pylori) infected patients who consumed 
70 g/day of broccoli sprouts for 8 weeks displayed decreased markers 
of H. pylori colonization and reduced markers of gastric inflammation 
(243). A further study found that an aqueous broccoli seed extract 
reduced levels of pro-inflammatory cytokines and led to greater 
H. pylori eradication versus the placebo (11.1% vs. 3.7% at 60 days) 
(244). Eradication of H. pylori infection is associated with a reduced 
incidence of stomach cancer (245). These findings from clinical trials 
are supported by similar results from a study in a female mouse model 
infected with H. pylori (243).

In conclusion, emerging studies highlight the potential health 
benefits of broccoli, broccoli sprouts, broccoli seeds and sources of 
myrosinase in the diet, beyond the usual consideration of the nutrient 
contributions that vegetables make to the diet. Nonetheless, studies 
are somewhat sparse and heterogeneous. Future research on the 
benefits of GPh will open up possibilities for a low-cost dietary 
intervention to enhance antioxidant and anti-inflammatory pathways 
which may influence vitality capacity in aging.

5 Carotenoids

5.1 Astaxanthin

Astaxanthin, a xanthophyll carotenoid, has been acclaimed for its 
anti-aging properties, eclipsing beta-carotene and vastly 
outperforming vitamins E and C in neutralizing ROS (246, 247). 
Originating from aquatic sources like crustaceans and salmon, where 
it imparts a distinct orange-pink-red hue, astaxanthin is integral to 
their diet for both coloration and health (248). Its bioactivity surpasses 
that of lutein and zeaxanthin, with promising improvements in 
inflammation and oxidative markers in preclinical studies (249). 
Given its foundational role in chronic disease mechanisms, 
astaxanthin’s research trajectory is directed toward its efficacy as an 
anti-aging agent (250).

Termed a “mitochondrial antioxidant,” astaxanthin has 
demonstrated defensive capabilities against ROS in cellular studies, 
safeguarding cell and mitochondrial membranes (251, 252). Human 
randomized controlled trials (RCTs) have indicated that astaxanthin 
supplementation can significantly reduce oxidative stress markers, 
such as malondialdehyde, and inflammatory markers like IL-6, 
particularly in T2D patients (253). Furthermore, astaxanthin has been 
shown to improve skin health, evidenced by enhancements in skin 
appearance, texture, and UV damage protection (44, 254). Clinical 
studies have also touched on astaxanthin’s potential neuroprotective 
effects, with certain studies reporting improved cognitive functions, 
such as verbal episodic memory, in middle-aged adults following 
astaxanthin supplementation (255).

Consequently, there is emerging potential for astaxanthin to 
support healthy aging, as highlighted in studies that demonstrate anti-
inflammatory and antioxidant properties, skin- aging benefits and 
potential protection in the context of neurodegenerative diseases. 
Astaxanthin warrants further investigation as a potential geroprotector 
with the potential to contribute to vitality and intrinsic capacity 
in aging.

6 Plant extracts

6.1 Rosemary

Rosemary (Rosmarinus officinalis L.) contains biologically active 
phenolic compounds, the principal components being rosmarinic acid 
(RA), carnosic acid (CA) and carnosol.

RA has been described as having a myriad of healthspan-
promoting biological activities in-vivo and in-vitro (256), such as 
protecting cell membranes from oxidation (257), promoting 
antioxidant activity against ROS production and IL-6 release in 
human keratinocytes (258), along with anti-viral, anti-mutagenic, 
anti-bacterial, analgesic, and anti-inflammatory activities (259–262). 
RA has also shown promise in helping to avoid the build-up of 
amyloid-β aggregation by inhibition of aggregation pathways in-vivo 
(263) and may help to improve motor control and extend lifespan of 
ALS mouse models (264). How RA exerts these beneficial effects at the 
level of the cell is not fully understood but experts suggest it may 
be linked to its ability to act as a regulator of TNF-α-induced NF-κB 
signaling, which is crucial to the balance between cell life and death 
(265). Two further active compounds CA and carnosol have been 

https://doi.org/10.3389/fnut.2024.1409339
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Jacquier et al. 10.3389/fnut.2024.1409339

Frontiers in Nutrition 12 frontiersin.org

found to have anti-inflammatory, anti-tumor and antioxidant activity 
in vitro and in vivo (266–268). In particular, the anti-inflammatory 
effect of CA on brain microglia (269) and anti-depressant effect in 
mouse models (270) has led to interest in the use of CA for therapeutic 
treatment in neurodegenerative diseases.

In human clinical trials, rosemary has frequently been studied for 
its ability to enhance memory and cognitive function. One clinical 
trial testing 68 university students found that 500 mg of dried 
rosemary supplementation (aerial parts) for 1 month significantly 
improved memory performance and sleep quality, while decreasing 
anxiety and symptoms of depression (271). One RCT provided RA 
capsules to patients for 8 weeks as an adjunct therapy for depression. 
The scores on measures of anxiety and depression reduced significantly 
in the RA treated group versus the placebo therefore RA may be of use 
in the reduction of anxiety and depression in depressed patients, 
alongside anti-depressant medication (272). Another RCT found that 
short-term low-dose rosemary supplementation (750 mg) induced a 
statistically significant beneficial effect on speed of memory in older 
adults (mean age, 75 years old) compared to placebo (273). This study 
also indicates that exceedingly high RA doses (6,000 mg) lead to 
impairment in cognitive performance, emphasizing the significance 
of appropriate dosage in optimizing cognitive benefits. Furthermore, 
an extract of Melissa officinalis (M. officinalis), which supplied 500 mg 
of RA daily, was found to be  effective in helping to prevent the 
worsening of neuropsychiatric symptoms related to AD (274). The 
same extract was found to be beneficial in preventing cognitive decline 
in non-hypertensive adults without dementia following 
supplementation with 500 mg of RA for 96 weeks (275).

Moreover, rosemary has often been studied in combination with 
other botanical ingredients and therapies. For example, an extract of 
Lemon balm (Melissa officinalis), which supplied 500 mg of RA daily, 
was found to be  effective in helping to prevent the worsening of 
neuropsychiatric symptoms related to AD (274). The same extract was 
found to be  beneficial in preventing cognitive decline in 
non-hypertensive adults without dementia following supplementation 
with 500 mg of RA for 96 weeks (275). One RCT found no effect of a 
proprietary spearmint extract, high in RA, on executive function in 
adults (276) whereas a trial in older adults with memory impairment 
found that supplementation with the spearmint extract (900 mg/day) 
improved working memory and spatial working memory (277). 
Improvements in cognitive function were also found in young, healthy 
adults who consumed the high RA spearmint extract (278). A further 
trial using the same extract reported an improvement in reactive 
agility among healthy adults who were supplemented with 900 mg of 
the extract versus placebo (279). More evidence is provided by one 
study where a combination of sage, rosemary and lemon balm extract 
was more effective than a placebo in supporting verbal episodic 
memory in healthy subjects under 63 years of age (280).

Overall, these studies support the notion that rosemary and its 
constituents may offer a new avenue in combating age-related 
cognitive decline. The urgent need for effective treatments in the face 
of devastating neurodegenerative conditions underscores the critical 
importance of further research into rosemary extracts. Its potential 
ability to mitigate cognitive decline and oxidative stress marks a 
significant breakthrough in the pursuit of safe, cost-effective 
interventions. Rosemary extracts hold promise in revitalizing 
cognitive vitality and influencing expressed capacities in aging 

individuals, paving the way for a future where cognitive problems may 
find formidable adversaries in nature’s own remedies.

6.2 Ginger

Although originating in Southeast Asia, ginger (Zingiber 
officinale) has become a globally consumed spice deeply ingrained in 
various cultures, cherished for its perceived health benefits and 
medicinal attributes (281). The gingerols, shogaols, paradols, and 
zingiberene are the principal bioactive compounds (282, 283). Ginger 
and its constituents may improve vitality and intrinsic capacity via 
their ability to modulate cellular pathways related to hallmarks of 
aging, eliciting anti-inflammatory and antioxidant benefits (284–286).

Preclinical research demonstrates that ginger and its bioactive 
compounds scavenge free radicals and mitigate oxidative stress (286, 
287). Studies in animal models have shown that ginger 
supplementation enhances antioxidant enzyme activity and reduces 
oxidative damage to cellular macromolecules, thereby promoting 
cellular longevity (285, 288). Anti-inflammatory properties are also 
demonstrated both in vitro and in vivo indicating that gingerols and 
related compounds inhibit pro-inflammatory mediators such as 
NF-κB and cytokines (289–291). By modulating inflammatory 
pathways, ginger may attenuate age-related inflammation and mitigate 
associated health risks (289). Moreover, ginger and its bioactive 
constituents exert neuroprotective effects by enhancing antioxidant 
defenses, reducing neuroinflammation, and modulating 
neurotransmitter activity (292, 293). Animal models of AD have 
demonstrated improvements in cognitive function and decreased 
neuroinflammation following ginger supplementation, implicating its 
potential in promoting brain health and longevity (294). Fermented 
ginger was found to reduce synaptic disorder and neuron cell 
death (295).

Human trials corroborate these findings (286, 296). A meta-
analysis of clinical trials examining the effect of ginger on oxidative 
stress biomarkers concluded that ginger supplementation decreased 
biomarkers of oxidative stress such as malondialdehyde, and increased 
antioxidant enzymes such as GPx (297). Moreover, a comprehensive 
systematic review of RCTs on ginger and human health concluded that 
ginger was effective in studies related to digestive function and anti-
inflammatory action (298). Commonly recognized for relieving 
nausea and vomiting, this benefit of ginger is also validated by animal 
and human trials (299). A single dose of ginger (1.2 g) has been shown 
to stimulate gastric emptying and stomach contractions (300). One 
gram of ginger root was able to prevent hyperglycemia-evoked slow-
wave gastric dysrhythmias potentially via blunting the production of 
prostaglandins (301). There are several proposed mechanisms via 
which ginger may alleviate nausea and vomiting via its anti-
inflammatory properties, redox signaling abilities, effect on motility 
and gastric emptying, and vasopressin release (299). Ginger has been 
found to promote gastric motility, a beneficial function in healthy 
individuals (302) and those with dyspepsia (303) and to enhance 
swallowing in older populations (304).

Ginger’s impact extends to various aging-related health issues, 
including metabolic disorders, CVD, neurodegenerative conditions, 
and arthritis. Systematic reviews and meta-analyses of controlled trials 
show that ginger can significantly modulate metabolic health 
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markers—reducing body weight, waist-to-hip ratio, fasting glucose, 
insulin resistance index, and elevating HDL-cholesterol (305–309). 
Cardiovascular health, integral to healthspan and longevity, may also 
be favorably influenced by ginger. Meta-analyses of RCTs suggest that 
ginger can lower blood pressure, improve serum lipid profiles, and 
enhance endothelial function, particularly in individuals with 
hypertension and dyslipidemia (310). Cognitive health, especially in 
neurodegenerative diseases, benefits from ginger as well. In fact, 
findings from an RCT demonstrate that ginger extracts, at doses of 
400 or 800 mg/day, could improve cognitive performance in middle-
aged women (311).

In the context of arthritis, the anti-inflammatory properties of 
ginger have shown promise in reducing pain associated with 
osteoarthritis (OA) and decreasing reliance on pain medication (312, 
313). A human trial indicated that 500 mg/day of ginger could lower 
proinflammatory cytokines after 3 months of supplementation (314). 
While ginger combined with pain medication was more effective than 
either alone for OA symptom relief, a separate study found no benefit 
of ginger powder over placebo for knee OA pain (315, 316). In 
rheumatoid arthritis (RA), ginger supplementation was observed to 
potentially influence inflammation and immunity genes, as indicated 
by changes in disease activity scores and gene expression (317, 318).

Overall, both preclinical and clinical studies provide compelling 
evidence for the potential health-promoting effects of ginger and its 
bioactive components, particularly in relation to inflammation, 
oxidative stress, cardiovascular health, neuroprotection, and 
metabolic regulation. The evidence points to ginger as a promising 
natural extract to contribute to vitality, intrinsic capacity and 
potentially expressed capacities in aging. By targeting underlying 
mechanisms of aging and age-related diseases, ginger holds promise 
as a natural intervention for promoting healthspan and longevity in 
human populations. Further studies which elucidate the effective 
dosage for different age-related diseases, along with an improved 
understanding of the pharmacodynamics and pharmacokinetics will 
accelerate our understanding of gingers’ potential to influence 
healthspan in aging.

7 Discussion

Our review introduces a novel conceptual thinking in relation 
to phytonutrients and their ability to impact cellular processes in 
aging, which may improve vitality and intrinsic capacity (35). 
Additionally, plants which provide phytonutrients like ginger, 
curcumin, and rosemary, have been the subject of significant 
research, could potentially impact the expressed capacities associated 
with aging. Plant-based diets or supplements that provide 
phytonutrients could be valuable alongside wider diet and lifestyle 
interventions in healthy aging (7). The theoretical framework shown 
in Figure 3 introduces a novel perspective for assessing the efficacy 
of nutritional components or interventions, proposing a structured 
framework to support the empirical substantiation of nutrition’s role 
in preserving and augmenting intrinsic capacity. By scrutinizing the 
functions of select plant-based nutrients through this lens, 
we contribute to a refined comprehension of how dietary practices 
which emphasize the nutrient contribution of plant-foods might 
be  instrumental in advancing healthspan (Figure  4). Indeed, it 

should be noted that the evidence supporting the efficacy of these 
phytonutrients spans a spectrum from emerging to multiple human 
randomized controlled trials, necessitating a balanced and ongoing 
assessment of nutritional research findings in the context of 
healthy aging.

Cesari et al. highlights the relationship between nutrition and 
intrinsic capacity (9). Their research further supports the hypothesis 
that nutrition significantly influences the core components of intrinsic 
capacity, thereby affecting vitality and the process of aging. Cesari 
et  al. argue that nutrition is not merely about the prevention of 
deficiencies but is integral to optimizing health, functionality, and 
well-being in older adults. A nutritious diet supports all dimensions 
of an individual’s intrinsic capacity, including cognitive function, 
physical strength, immune response, and emotional health (6, 9, 25). 
This conceptual shift underscores the importance of dietary factors in 
supporting the expressed capacities of aging individuals, and 
consequently, their functional health (9) (Table 1).

Emphasizing a diet rich in plant foods to provide bioactive 
compounds could become a cornerstone of public health strategies 
aimed at the aging population (10, 319). Adopting nutritional 
guidelines that promote such diets has the potential to enhance 
functional health, decrease comorbidity, and improve overall well-
being. Although further clinical research is needed, the use of carefully 
designed supplements, with adequate safety evaluations, containing 
standardized, bioavailable extracts may prove helpful in ensuring 
efficacious doses are consumed. Meanwhile, improving diets by 
emphasizing plant foods, or Mediterranean-style dietary patterns 
could lead to reduced healthcare costs and improved quality of life for 
seniors, aligning healthcare systems and practitioners more closely 
with the preventive and holistic perspective that the Beard et al. (18, 
34) and Bautman et al. (7) advocate.

7.1 Crosstalk in molecular mechanisms of 
action

Integrating the effects of these phytonutrients within the intrinsic 
capacity framework, it is evident that their roles in healthy aging are 
interdependent and multifaceted. The cross-over in their mechanisms 
of action reflects a complex interplay that could potentially support 
overall vitality. Amino acids such as spermidine and amines like 
ergothioneine engage in enhancing autophagy and reducing oxidative 
stress, respectively, sharing common pathways such as the 
upregulation of sirtuin activity. Polyphenols, including resveratrol, 
cocoa flavanols, luteolin, fisetin, quercetin, curcumin, and 
pterostilbene, exhibit overlapping mechanisms like the modulation 
of the NF-kB pathway, indicating a collective impact on inflammation, 
cellular senescence, and metabolic regulation (40, 42, 48, 90, 93, 99, 
320). The plant extracts from rosemary and glucoraphanin, as well as 
other nutrients like astaxanthin and urolithin A, contribute to these 
shared pathways, reinforcing antioxidant defenses, and improving 
mitochondrial function. The convergence of their effects on 
molecular targets like mTOR, AMPK, and Nrf2 underscores the 
potential of a diet rich in these compounds to combat the complex 
process of aging.

This complex interplay of phytonutrient effects enhances the 
theoretical framework’s focus on maintaining intrinsic capacity and 
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functional ability, offering a holistic approach to the multifactorial 
nature of aging. Nutritional interventions that incorporate a range 
of bioactive compounds could potentially address the 
interconnected cellular pathways implicated in physiological 
decline. By doing so, such interventions may serve as a preventive 
strategy against the cascade of age-related changes. The potential of 
these compounds to collectively target longevity-regulating 
pathways suggests that a diet rich in phytonutrients could be  a 
cornerstone for preventive health strategies, aiming to reduce the 
rate of physiological decline and maintain quality of life in aging 
populations. Continued research is essential to fully understand the 
dosage, combinations, and long-term impact of these 
nutritional interventions.

7.2 Reflection on phytonutrients and higher 
physiological systems

Reflecting on the potential biomarkers of vitality capacity across 
various physiological systems, such as energy and metabolism, 
neuromuscular function and immune and stress response, aids in 
elucidating the potential impact of various bioactive compounds on 
aging (Figure 4) (7).

Spermidine’s ability to enhance autophagy could theoretically 
improve metabolic functions and reduce fatigue by clearing damaged 
proteins and organelles (63). Ergothioneine is recognized for its 
strong antioxidant properties (76, 89). Thus, higher dietary 
ergothioneine intake is associated with lower CVD risk in 

FIGURE 4

Schematic representation of the relationship between intrinsic capacity and vitality across biological hierarchies.
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epidemiological studies (86). On the other hand, polyphenols have 
been largely studied for their antioxidant properties and their effects 
on vasodilation, energy metabolism and adiposity. (40, 92, 93). GPh 
reduces LDL cholesterol and improves liver function, indicative of its 
potential impact on metabolism and antioxidant capacity (229). 
Astaxanthin can reduce oxidative stress markers and improve lipid 
profiles, influencing energy metabolism positively (249). UroA may 
improve mitochondrial health and reduce markers of mitochondrial 
dysfunction, with associated potential benefits for energy metabolism 
(218, 219, 223).

In terms of neuromuscular function, polyphenols, especially 
resveratrol, have been linked to improved muscle strength and 
function, potentially through their effects on mitochondrial biogenesis 
and inflammation (92, 101, 144). Moreover, potential benefits for 
neuroprotection and cognitive health are indicated for resveratrol, 
cocoa flavanols, curcumin and rosemary extracts, but require further 
validation in human studies (115, 147, 175, 272). Rosemary’s active 
compounds as well as curcumin, have demonstrated strong anti-
inflammatory effects in some human trials, potentially impacting 
immune status and stress response (199, 211, 214, 257, 272). There is 
also moderate evidence for glucoraphanin, astaxanthin and urolithin 
A to modulate the immune system.

The gaps in understanding the impact of phytonutrients on 
vitality capacity largely revolve around the complexity of human 
metabolism and the multifaceted nature of aging. While certain 
phytonutrients have been linked to improvements in metabolism 
and inflammation biomarkers the translation to clinically 
significant outcomes require further investigation. The potential for 
phytonutrients to impact the attributes of vitality capacity is 
promising, with several bioactive compounds showing synergistic 
effects on various physiological systems and some expressed 

capacities. They may offer non-pharmacological strategies to 
support healthspan through diet or supplementation. However, 
realizing this potential requires addressing the aforementioned gaps 
through well-designed clinical trials, longer study durations, larger 
and more diverse populations, and standardized outcome measures.

7.3 Future directions

Transitioning from the traditional medical paradigm, which 
primarily focuses on reactive treatment of diseases after symptoms 
manifest, to a preventive model of care is imperative (15). In this 
paradigm shift, the emphasis lies on preventive interventions and 
lifestyle changes to avert future diseases and mitigate physiological 
decline. Long-term studies are essential to track the aging process 
accurately; however, they are costly, require sustained funding, and 
may encounter participant attrition, potentially affecting the 
consistency of the data. The use of biomarkers could provide more 
accessible means of monitoring aging, enabling the evaluation of 
interventions without the need for extensive longitudinal studies (321, 
322). Investigating how dietary components like phytonutrients 
interact with identified biomarkers could advance our understanding 
of their role in promoting intrinsic capacity.

To effectively preserve intrinsic capacity and vitality in aging, 
targeting specific biomarkers within panels categorized into physical, 
cognitive, and metabolic health is crucial. For physical capacity, 
biomarkers like creatinine and serum cystatin C could be potential 
candidates as they indicate muscle mass and function (323). Cognitive 
health might be assessed through brain-derived neurotrophic factor 
(BDNF) and homocysteine, which are key indicators of neural health 
and cognitive function (324). Metabolic health is evaluated via insulin 

TABLE 1 A qualitative summary of the direction of the evidence in relation to molecular pathways in aging and the potential to influence expressed 
capacities in aging.

Phytonutrient

Qualitative summary of the direction of the evidence

Effect on molecular pathways Potential effect on expressed capacities

No 
existing 
human 
studies

Emerging 
clinical 

evidence

Moderate 
clinical 

evidence

Good 
clinical 

evidence

No 
existing 
human 
studies

Emerging 
clinical 

evidence

Moderate 
clinical 

evidence

Good 
clinical 

evidence

Spermidine x x

Ergothionine x x

Cocoa flavanols x x

Luteolin x x

Fisetin x x

Quercetin

Pterostilbene x x

Resveratrol x x

Curcumin x x

Urolithin A x x

Glucoraphanin x x

Astaxanthin x x

Rosemary x x

Ginger x x
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sensitivity and lipid profiles, including HDL and LDL cholesterol 
(325, 326).

Among these, certain biomarkers are particularly likely to 
be modulated by nutrition: antioxidative markers such as glutathione 
peroxidase and superoxide dismutase in the physical panel, 
influenced by dietary antioxidants (327); anti-inflammatory markers 
like C-reactive protein (CRP) and interleukin-6 (IL-6) within the 
cognitive realm, modulated by omega-3 fatty acids and polyphenols 
(328); and Vitamin D levels, vital for both physical and metabolic 
health, enhanced by dietary intake or supplementation (329). These 
nutrition-sensitive biomarkers may facilitate a targeted approach to 
dietary interventions aimed at enhancing overall health 
and longevity.

Adding a holistic perspective, the systematic review by Leitão 
et al. (330) addressed how different dietary patterns, particularly those 
low in carbohydrates and rich in vegetables, fruits, nuts, cereals, fish, 
and unsaturated fats, not only influence these biomarkers but also play 
a crucial role in decreasing CVD and obesity risks and protecting 
brain health (330). This integration underscores the necessity of 
considering the broad impact of diet when evaluating biomarkers for 
aging, to formulate nutritional strategies that effectively support 
preservation of intrinsic capacity and vitality in aging populations. 
This may pave the way for dietary guidelines and interventions 
targeting longevity and vitality.

Future studies may also shed light on how these compounds 
interact at the cellular and molecular levels and improve our 
understanding of potential combined effects on aging processes. 
Future research should also explore the dose–response relationships 
of phytonutrients in clinical settings to optimize dietary 
recommendations. Exploring the synergy and interaction between 
different phytonutrients could lead to more effective dietary strategies 
for aging populations. Identifying which phytonutrients work best 
together might further enhance their beneficial effects on health.

Therapeutic algorithms may provide a systematic framework for 
integrating and monitoring the use of phytonutrients alongside 
established pharmaceutical treatments in managing age-related 
diseases. Given the complexity of interactions between various 
compounds and medications, these algorithms can guide healthcare 
providers in customizing treatment plans that capitalize on the 
benefits of both natural compounds and conventional medicine while 
mitigating potential risks. For example, in mice supplementation of 
0.05% trans-resveratrol did not interact with warfarin, whereas 0.5% 
trans-resveratrol enhanced the anticoagulant activity of warfarin 
(331). Moreover, there is theoretical concern that astaxanthin could 
interfere with the metabolism of statins prescribed for treatment of 
cardiovascular diseases. However, other studies have found that 
astaxanthin could be used as an alternative therapy in statin intolerant 
patients (332). Through continuous evaluation of potential 
interactions and effectiveness, therapeutic algorithms could enable 
healthcare professionals to optimize treatment plans—balancing 
benefits and risks—thereby enhancing patient outcomes in 
age-related conditions.

Lastly, personalized nutrition, focusing on tailoring dietary 
recommendations or nutrient supply based on individual genetic, 
metabolic, and microbiome profiles, offers a promising avenue for 
optimizing the efficacy of phytonutrient interventions in healthy 
aging. This approach could help identify which individuals are most 

likely to benefit from specific phytonutrients or combinations thereof, 
based on their unique biological characteristics. By examining genetic 
markers related to nutrient metabolism and the gut microbiota’s role 
in phytonutrient bioavailability and effects, personalized nutrition 
could enhance health outcomes and prevent age-related diseases 
more effectively.

8 Conclusion

In conclusion, our narrative review reinforces the notion that 
diets, rich in plant foods providing phytonutrients, have the potential 
to positively influence the aging trajectory. Furthermore, emerging 
data highlights the potential of phytonutrients as a future intervention 
to enhance vitality and intrinsic capacity in aging, due to their ability 
to modulate cellular hallmarks of aging. This highlights the need for a 
paradigm shift toward preventive nutrition, integrating 
nutrigerontology into mainstream healthcare practices to support the 
health and well-being of the aging global population.
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